中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

应用微束分析技术研究铜钴矿床中钴的赋存状态

涂家润, 卢宜冠, 孙凯, 周红英, 郭虎, 崔玉荣, 耿建珍, 李国占. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226-238. doi: 10.15898/j.cnki.11-2131/td.202112060194
引用本文: 涂家润, 卢宜冠, 孙凯, 周红英, 郭虎, 崔玉荣, 耿建珍, 李国占. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226-238. doi: 10.15898/j.cnki.11-2131/td.202112060194
TU Jiarun, LU Yiguan, SUN Kai, ZHOU Hongying, GUO Hu, CUI Yurong, GENG Jianzhen, LI Guozhan. Application of Microbeam Analytical Technology to Study the Occurrence of Cobalt from Copper-Cobalt Deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226-238. doi: 10.15898/j.cnki.11-2131/td.202112060194
Citation: TU Jiarun, LU Yiguan, SUN Kai, ZHOU Hongying, GUO Hu, CUI Yurong, GENG Jianzhen, LI Guozhan. Application of Microbeam Analytical Technology to Study the Occurrence of Cobalt from Copper-Cobalt Deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226-238. doi: 10.15898/j.cnki.11-2131/td.202112060194

应用微束分析技术研究铜钴矿床中钴的赋存状态

  • 基金项目:
    国家自然科学基金项目(42103025,41873066,42073055);中国地质调查局地质调查项目(DD20190439,DD20221801)
详细信息
    作者简介: 涂家润,博士,高级工程师,分析化学专业。E-mail:jrtu@mail.nankai.edu.cn
  • 中图分类号: O657.63

Application of Microbeam Analytical Technology to Study the Occurrence of Cobalt from Copper-Cobalt Deposits

  • 微束分析技术能够在微米-纳米尺度上精确分析矿石矿物的物相、形貌、结构、成分以及同位素组成,为地球科学精细研究提供重要技术支撑。本文利用多种微束分析技术的自身优势,综合运用微区X射线荧光光谱(micro-XRF)、偏光显微镜、电子探针(EPMA)以及激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析技术,建立了一种简单直观且全面快速鉴别钴赋存状态的技术方法。首先采用偏光显微镜选出部分代表性的探针片,然后进行微区X射线荧光光谱面扫描,获得探针片中钴及组合元素分布规律及特征,再利用偏光显微镜细致观察鉴别,结合元素分布特征规律识别出独立钴矿物以及含钴矿物,最后圈出代表性矿物并采用电子探针和LA-ICP-MS进行主微量化学成分测定。将该方法应用于中非铜钴成矿带上典型铜钴矿床中钴的赋存状态研究,查明了谦比希东南矿体中的钴主要以独立矿物(钴镍黄铁矿、硫钴矿、硫铜钴矿)和类质同象(主要赋存于黄铁矿、磁黄铁矿中)两种形式存在,而谦比希西矿体中的钴主要以独立矿物——硫铜钴矿的形式零星存在。

  • 加载中
  • 图 1  钴元素赋存状态微束分析流程

    Figure 1. 

    图 2  谦比希东南矿体QBXDN-13b样品micro-XRF面扫描主要元素分布及局部显微照片

    Figure 2. 

    图 3  谦比希东南矿体QBXDN-13b样品micro-XRF面扫描Co元素分布及对应显微照片

    Figure 3. 

    图 4  谦比希东南矿体QBXDN-19a样品micro-XRF面扫描Co-Fe-Cu三元素组合分布图及对应显微照片

    Figure 4. 

    图 5  谦比希西矿体QBXX-1样品micro-XRF面扫描Co-Fe-Cu三元素组合分布图及对应显微照片

    Figure 5. 

    图 6  谦比希东南矿体QBXDN-13a样品micro-XRF面扫描Co-Fe-Cu三元素组合分布图及对应显微照片

    Figure 6. 

    图 7  谦比希西矿体QBXX-7样品micro-XRF面扫描Co-Fe-Cu三元素组合分布图及对应显微照片

    Figure 7. 

    图 8  谦比希东南矿体含钴矿物LA-ICP-MS激光剥蚀Fe-Co信号曲线

    Figure 8. 

  • [1]

    卢宜冠, 郝波, 孙凯, 等. 钴金属资源概况与资源利用情况分析[J]. 地质调查与研究, 2020, 43(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001010.htm

    Lu Y G, Hao B, Sun K, et al. General situation of cobalt resource and its utilization analysis[J]. Geological Survey and Research, 2020, 43(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001010.htm

    [2]

    翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm

    Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm

    [3]

    Schulz K J, DeYoung J H, Seal R R, et al. Critical min-eral resources of the United States—Economic and environmental geology and prospects for future supply[R]. U.S. Geological Survey, 2017.

    [4]

    王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904005.htm

    Wang H, Feng C Y, Zhang M Y. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 739-750. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904005.htm

    [5]

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    [6]

    Rundnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.

    [7]

    赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 28-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924005.htm

    Zhao J X, Li G M, Qin K Z, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 28-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924005.htm

    [8]

    刘超, 陈甲斌. 全球钴资源供需形势分析[J]. 国土资源情报, 2020(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ202010005.htm

    Liu C, Chen J B. Analysis of supply and demand situation of global cobalt resources[J]. Land and Resources Information, 2020(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ202010005.htm

    [9]

    Muchez P, Vanderhaeghen P, Desouky H E, et al. Anhyd-rite pseudomorphs and the origin of stratiform Cu-Co ores in the Katangan copper belt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575-589. doi: 10.1007/s00126-008-0183-5

    [10]

    Desouky H A E, Muchez P, Boyce A J, et al. Genesis of sediment-hosted stratiform copper-cobalt minerali-zation at Luiswishi and Kamoto, Katanga copper belt(Democratic Republic of Congo)[J]. Mineralium Deposita, 2010, 45(8): 735-763. doi: 10.1007/s00126-010-0298-3

    [11]

    阎磊, 范裕, 刘一男. 安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律[J]. 岩石学报, 2021, 37(9): 2778-2790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202109011.htm

    Yan L, Fan Y, Liu Y N. The occurrence and spatial distribution of cobalt in Longqiao iron deposit in Luzong Basin, Anhui Province[J]. Acta Petrologica Sinica, 2021, 37(9): 2778-2790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202109011.htm

    [12]

    Fleischer V D. Discovery, geology and genesis of copper-cobalt mineralisation at Chambishi Southeast prospect, Zambia[J]. Precambrian Research, 1984, 25(1-3): 119-133. doi: 10.1016/0301-9268(84)90027-5

    [13]

    卢宜冠, 涂家润, 孙凯, 等. 中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 2021, 28(3): 338-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103031.htm

    Lu Y G, Tu J R, Sun K, et al. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian copper belt, central Africa[J]. Earth Science Frontiers, 2021, 28(3): 338-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103031.htm

    [14]

    徐昭啟. 云南永平县水泄—厂街铜钴矿铜钴的赋存状态与选矿工艺学[J]. 云南冶金, 2012, 41(3): 5-9. doi: 10.3969/j.issn.1006-0308.2012.03.002

    Xu Z Q. Research on the occurrence of Cu & Co and process mineralogy of copper-cobalt ore of Shuixie—Changjie copper-cobalt mine in Yongping County, Yunnan[J]. Yunnan Metallurgy, 2012, 41(3): 5-9. doi: 10.3969/j.issn.1006-0308.2012.03.002

    [15]

    刘东盛, 王学求, 聂兰仕, 等. 中国钴地球化学异常特征、成因及找矿远景区预测[J/OL]. 地球科学, 2021, https://kns.cnki.net/kcms/detail/42.1874.P.20210830.1411.012.html.

    Liu D S, Wang X Q, Nie L S, et al. Cobalt geochemical anomalies characteristics and genesis in China and metallogenic prospecting areas prediction[J/OL]. Earth Science, 2021, https://kns.cnki.net/kcms/detail/42.1874.P.20210830.1411.012.html.

    [16]

    陈彪, 戚长谋. 钴的赋存状态及其在找矿和资源评估中的意义[J]. 长春科技大学学报, 2001, 31(3): 217-218. doi: 10.3969/j.issn.1671-5888.2001.03.003

    Chen B, Qi C M. The occurrence state of cobalt and its significance in prospecting and resource assessment[J]. Journal of Changchun University of Science and Technology, 2001, 31(3): 217-218. doi: 10.3969/j.issn.1671-5888.2001.03.003

    [17]

    王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033015.htm

    Wang Y, Zhong H, Cao Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033015.htm

    [18]

    李向前, 闫艳玲, 徐宪立. 刚果(金)加丹加省堪苏祁铜钴矿床铜钴矿物赋存状态研究[J]. 矿产与地质, 2009, 23(3): 253-257. doi: 10.3969/j.issn.1001-5663.2009.03.012

    Li X Q, Yan Y L, Xu X L. Occurrence of Cu-Co minerals of the Kansuki copper-cobalt deposit in the Katanga Province, D.R. Congo[J]. Mineral Resources and Geology, 2009, 23(3): 253-257. doi: 10.3969/j.issn.1001-5663.2009.03.012

    [19]

    李宝庆, 庄新国, 赵仕华. 新疆煤中钴的分布、赋存特征及成因分析[J]. 岩石矿物学杂志, 2014, 33(3): 574-580. doi: 10.3969/j.issn.1000-6524.2014.03.015

    Li B Q, Zhuang X G, Zhao S H. The distribution, modes of occurrence and genesis of cobalt in coals of Xinjiang[J]. Acta Petrologica et Mineralogica, 2014, 33(3): 574-580. doi: 10.3969/j.issn.1000-6524.2014.03.015

    [20]

    陈意, 胡兆初, 贾丽辉, 等. 微束分析测试技术十年(2011—2020)进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(1): 1-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm

    Chen Y, Hu Z C, Jia L H, et al. Progress of microbeam analytical technologies in the past decade (2011—2020) and prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm

    [21]

    戴婕, 徐金沙, 潘晓东, 等. 微束分析技术在研究伴生金元素赋存状态中的应用[J]. 岩矿测试, 2011, 30(6): 655-663. doi: 10.3969/j.issn.0254-5357.2011.06.002 http://www.ykcs.ac.cn/article/id/dcb94b4d-2a12-4ab5-86ba-a79d1a63a2ea

    Dai J, Xu J S, Pan X D, et al. The application of the microbeam analysis technique in associated gold and its occurrence state[J]. Rock and Mineral Analysis, 2011, 30(6): 655-663. doi: 10.3969/j.issn.0254-5357.2011.06.002 http://www.ykcs.ac.cn/article/id/dcb94b4d-2a12-4ab5-86ba-a79d1a63a2ea

    [22]

    李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115

    [23]

    王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086

    Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086

    [24]

    Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261(3-4): 217-229. doi: 10.1016/j.chemgeo.2008.05.019

    [25]

    王冠, 戴婕, 王坤阳, 等. 应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 659-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202012240172

    Wang G, Dai J, Wang K Y, et al. Occurrence of associated elements in a copper mine by EDX-SEM[J]. Rock and Mineral Analysis, 2021, 40(5): 659-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202012240172

    [26]

    Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia—Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326-327: 72-87. doi: 10.1016/j.chemgeo.2012.07.017

    [27]

    范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm

    Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (nano)SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm

    [28]

    刘武生, 赵如意, 张熊, 等. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA-ICP-MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 2019, 40(2): 291-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902005.htm

    Liu W S, Zhao R Y, Zhang X, et al. The EPMA and LA-ICP-MS in-situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu-polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 2019, 40(2): 291-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902005.htm

    [29]

    郭东旭, 刘晓, 张海兰, 等. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征[J]. 岩矿测试, 2021, 40(5): 698-709. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060002

    Guo D X, Liu X, Zhang H L, et al. The infrared spectroscopy characteristics of alteration and mineralization in the porphyry copper deposit in Pulang, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(5): 698-709. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060002

    [30]

    Gholap D S, Izmer A, Samber B D, et al. Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia Magna[J]. Analytica Chimica Acta, 2010, 664(1): 19-26. doi: 10.1016/j.aca.2010.01.052

    [31]

    沈亚婷, 罗立强. 现代实验室型X射线荧光元素分布成像和形态分析技术的研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 686-695. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103004.htm

    Shen Y T, Luo L Q. A review of the development of modern laboratory X-ray fluorescence element distribution imaging and species analysis technology[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 686-695. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103004.htm

    [32]

    梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试, 2015, 34(2): 201-206. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.008

    Liang S T, Liu Y C, Liu Z, et al. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.008

    [33]

    罗立强, 沈亚婷, 马艳红, 等. 微区X射线荧光光谱仪研制及元素生物地球化学动态分布过程研究[J]. 光谱学与光谱分析, 2017, 37(4): 1003-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704003.htm

    Luo L Q, Shen Y T, Ma Y H, et al. Development of laboratory microscopic X-ray fluorescence spectrometer and the study on spatial distribution of elements in biofilms and maize seeds[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1003-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704003.htm

    [34]

    张一帆, 范裕, 陈静, 等. 矿精粉中关键金属元素赋存状态研究方法流程的建立: 以长江中下游成矿带富钴硫矿精粉为例[J]. 岩石学报, 2021, 37(9): 2791-2804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202109012.htm

    Zhang Y F, Fan Y, Chen J, et al. Establishment of a research workflow for occurrence state of critical metal in ore concentrate powder: A case study of the cobalt-rich sulfur ore concentrate powder from the Middle—Lower Yangtze River Valley metallogenic belt, China[J]. Acta Petrologica Sinica, 2021, 37(9): 2791-2804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202109012.htm

    [35]

    卢宜冠, 孙凯, 覃鹏, 等. 赞比亚铜带省谦比希盆地含矿地层地球化学特征、物源属性及其成矿地质背景研究[J]. 地质学报, 2021, 95(4): 1082-1099. doi: 10.3969/j.issn.0001-5717.2021.04.010

    Lu Y G, Sun K, Qin P, et al. Geochemical charact-eristics, nature of provenance and metallogenic geological settings of the ore-bearing strata in the Chambishi Basin, Copper Belt Province, Zambia[J]. Acta Geologica Sinica, 2021, 95(4): 1082-1099. doi: 10.3969/j.issn.0001-5717.2021.04.010

    [36]

    左立波, 任军平, 王杰, 等. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 2020, 43(1): 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004

    Zuo L B, Ren J P, Wang J, et al. Geochemical characteristics, zircon U-Pb ages and Lu-Hf isotopic composition of granites in Bangweulu Block, Zambia[J]. Geological Survey and Research, 2020, 43(1): 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004

  • 加载中

(8)

计量
  • 文章访问数:  2066
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2021-12-06
修回日期:  2022-01-08
录用日期:  2022-01-27
刊出日期:  2022-03-28

目录