Skarn Mineral Characteristics of the Ahetala Copper Deposit and Its Geological Significance
-
摘要:
阿合塔拉铜矿位于新疆维吾尔自治区阿合奇县境内,地处中国塔里木板块北缘的南天山造山带,是典型的矽卡岩型矿床。为了查明该矿床矽卡岩矿物的类型以及成矿过程与成矿环境,本文在详细的野外调查和室内显微镜观察的基础上,利用电子探针技术对矿床中主要矽卡岩矿物石榴石、辉石、硅灰石、绿泥石、绿帘石的化学成分进行了详细分析。电子探针分析结果表明,矿床中的石榴石为钙铝榴石、钙铁榴石,辉石为透辉石(Di77.74~95.46),帘石为绿帘石,绿泥石为铁绿泥石,属于典型交代矽卡岩大类中的钙矽卡岩类型。透辉石的Mn/Fe值介于0.00~0.12之间,指示了矿床的铜矿化。推断出矿床的成矿阶段主要经历了早期矽卡岩、晚期矽卡岩(退化蚀变)、氧化物和早期硫化物阶段。成矿环境总体上经历了由矽卡岩期高温、高氧逸度、中-酸性的弱氧化-还原环境,向石英-硫化物期相对低温、高硫逸度、碱性的还原环境的转变过程。
Abstract:BACKGROUND The Ahetala copper deposit is located in Arheqi County, Xinjiang Uygur Autonomous Region. It is located in the South Tianshan orogenic belt, northern margin of Tarim Basin. The deposit belongs to a typical skarn type deposit.
OBJECTIVES In order to determine the types of skarn minerals, as well as the metallogenic process and environment of the deposit.
METHODS Based on detailed field and indoor microscopic observations, electron probe microanalysis (EPMA) was carried out to determine the chemical composition of skarn minerals in the Ahetala copper deposit. RESULTS: The results showed that the skarn minerals were garnet, pyroxene, wollastonite, chlorite and epidote. The EPMA results showed that garnets were grossular and andradite. Pyroxene was diopside (Di77.74-95.46), chlorite was minnesotaite. The Mn/Fe value of diopside was 0.00-0.12, indicating the copper mineralization of this deposit.
CONCLUSIONS The skarn of the Ahetala copper deposit is a typical calcium skarn of metasomatic skarn. According to the mineral paragenetic association and metasomatism, the mineralization stages of the deposit can be divided into early skarn stage, late skarn stage (retrograde alteration), oxide stage and early sulfide stage. From the skarn period to the quartz-sulfide period, the metallogenic environment generally underwent changes from the high temperature, high oxygen fugacity, intermediate-acidic, weak oxidizing-weak reducing environment, to the low temperature, high sulfur fugacity, alkaline reducing environment.
-
图 1 阿合塔拉铜矿区地质图(据文献[10]修改)
Figure 1.
图 4 辉石端元组分图解(据Morimoto等[11]修改)
Figure 4.
表 1 辉石电子探针分析数据
Table 1. Electron probe microanalysis data of pyroxene
组分 含量(wB/%) AHTL-005 AHTL-012D AHTL-B5 AHTL-B5B AHTL-B6 SiO2 50.66 52.36 51.98 51.85 53.75 TiO2 0.64 - 0.21 0.13 0.18 Al2O3 2.83 2.75 0.23 0.49 0.03 Cr2O3 0.25 0.14 0.11 - 0.07 TFeO 5.76 3.94 8.45 8.77 3.60 MnO 0.32 - 0.89 0.50 0.43 MgO 14.67 17.31 12.87 12.74 15.81 CaO 23.88 22.30 24.77 24.67 25.49 Na2O 0.68 0.10 0.27 0.27 0.15 K2O - 0.29 - - 0.01 Σ 99.69 99.19 99.78 99.42 99.52 以6个氧原子为基准计算的阳离子数 Si 1.89 1.93 1.97 1.97 1.99 AlⅣ 0.11 0.07 0.01 0.00 0.01 AlⅥ 0.01 0.05 0.00 0.00 0.00 Ti 0.02 0.00 0.01 0.00 0.01 Cr 0.01 0.00 0.00 0.00 0.00 Fe3+ 0.15 0.06 0.09 0.09 0.04 Fe2+ 0.03 0.06 0.17 0.19 0.07 Mn 0.01 0.00 0.03 0.02 0.01 Mg 0.82 0.95 0.73 0.72 0.87 Ca 0.95 0.88 1.00 1.00 1.01 Na 0.05 0.01 0.02 0.02 0.01 K 0.00 0.01 0.00 0.00 0.00 端元组分(%) Wo 47.56 44.94 49.13 49.27 50.08 En 40.65 48.53 35.52 35.40 43.22 Fs 9.35 6.16 14.38 14.36 6.17 Di 95.46 94.42 78.26 77.74 90.79 Hd 3.35 5.58 18.66 20.53 7.81 Jo 1.18 0.00 3.07 1.73 1.40 注:端元组分由Geokit软件计算得出,“-”表示实验结果未达到检测线。Wo—硅灰石;En—顽火辉石;Fs—斜方铁辉石;Di—透辉石;Hd—钙铁辉石;Jo—锰钙辉石。 表 2 硅灰石电子探针分析数据
Table 2. Electron probe microanalysis data of wollastonite
组分 含量(wB/%) AHTL-Wo1 AHTL-Wo2 AHTL-Wo3 AHTL-Wo4 AHTL-Wo5 SiO2 50.22 50.48 50.98 50.59 50.42 TiO2 0.17 0.20 0.06 0.02 0.16 Al2O3 0.05 0.03 - 0.01 - Cr2O3 0.14 0.13 0.18 0.24 0.14 TFeO - 0.03 - - 0.06 MnO 0.01 0.06 - - - MgO - 0.12 - 0.04 - CaO 48.92 48.57 48.60 48.95 49.03 Na2O 0.23 0.13 0.26 0.14 0.15 K2O - - - - - Σ 99.74 99.75 100.08 99.99 99.96 以6个氧原子为基准计算的阳离子数 Si 1.96 1.97 1.98 1.97 1.96 AlⅣ 0.01 0.01 0.00 0.00 0.00 AlⅥ 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.00 0.00 0.00 Cr 0.00 0.00 0.01 0.01 0.00 Fe3+ 0.11 0.08 0.08 0.09 0.10 Fe2+ 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.01 0.00 0.00 0.00 Ca 2.05 2.03 2.02 2.04 2.05 Na 0.02 0.01 0.02 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 端元组分(%) Wo 99.14 99.04 99.04 99.37 99.36 En 0.00 0.34 0.00 0.11 0.00 Fs 0.02 0.14 0.00 0.00 0.09 Ac 0.84 0.48 0.96 0.51 0.55 注:端元组分由Geokit软件计算得出,“-”表示实验结果未达到检测线。Wo—硅灰石;En—顽火辉石;Fs—斜方铁辉石; Ac—阳起石。 表 3 绿泥石电子探针分析数据
Table 3. Electron probe microanalysis data of chlorite
组分 含量(w/%) AHTL-Chl1 AHTL-Chl2 AHTL-Chl3 AHTL-Chl4 AHTL-Chl5 SiO2 26.39 26.06 25.82 25.62 25.36 Al2O3 19.63 19.96 20.00 20.14 19.93 Cr2O3 0.37 0.23 0.28 0.08 0.05 TFeO 24.34 26.99 27.80 27.60 27.55 MnO 0.20 0.35 0.37 0.36 0.41 MgO 15.91 13.62 13.43 13.16 13.05 P2O5 0.07 0.07 0.14 0.02 0.18 CaO 0.06 0.05 0.11 0.07 0.13 Na2O 0.41 0.37 0.30 0.26 0.23 Σ 87.54 87.93 88.26 87.64 87.07 表 4 绿帘石电子探针分析数据
Table 4. Electron probe microanalysis data of epidote
组分 含量(w/%) AHTL-Ep1 AHTL-Ep2 AHTL-Ep3 AHTL-Ep4 AHTL-Ep5 Si2O 37.87 38.05 37.84 37.69 38.14 TiO2 - 0.13 - - 0.07 Al2O3 18.42 18.28 18.07 18.57 18.31 Cr2O3 0.17 - 0.07 0.11 0.03 TFeO 17.14 16.46 17.16 16.84 16.57 MnO 0.26 0.12 0.11 0.43 0.11 MgO - - 0.08 - 0.02 CaO 22.58 23.32 23.15 22.62 23.14 Na2O 0.12 0.10 0.07 0.05 0.09 K2O - 0.03 0.02 0.03 - Σ 96.56 96.49 96.57 96.34 96.48 注:“-”表示实验结果未达到检测线。 -
[1] Burt D M. Skarn deposits historical bibliography through 1970[J]. Economic Geology, 1982, 77(4): 755-763. doi: 10.2113/gsecongeo.77.4.755
[2] Meinert L D, Dipple G M, Nicolescu S. World skarn deposits[J]. Economic Geology (100th Anniversary Volume), 2005: 299-336.
[3] Somarin A K. Garnet composition as an indicator of Cu mineralization: Evidence from skarn deposits of NW Iran[J]. Journal of Geochemical Exploration, 2004, 81(1): 47-57.
[4] Titley S R. "Pyrometasomatic": An alteration type[J]. Economic Geology, 1973, 68(8): 1326-1329. doi: 10.2113/gsecongeo.68.8.1326
[5] 王伟, 王敏芳, 刘坤, 等. 矽卡岩中石榴子石在示踪热液流体演化和矿化分带中的研究现状及其展望[J]. 岩石矿物学杂志, 2016, 35(1): 147-161. doi: 10.3969/j.issn.1000-6524.2016.01.011
Wang W, Wang M F, Liu K, et al. The current status and prospects of the study of garnet in skarn for hydrothermal fluid evolution tracing and mineralization zoning[J]. Acta Petrologica et Mineralogica, 2016, 35(1): 147-161. doi: 10.3969/j.issn.1000-6524.2016.01.011
[6] Nakano T, Yoshino T, Shimazaki H, et al. Pyroxene composition as an indicator in the classification of skarn deposits[J]. Economic Geology, 1994, 89(7): 1567-1580. doi: 10.2113/gsecongeo.89.7.1567
[7] Zhang S T, Xiao B, Long X P, et al. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu-Au-Fe skarn deposit, eastern China[J]. Ore Geology Reviews, 2020, 126: 1-14.
[8] 赵一鸣, 丰成友, 李大新. 中国矽卡岩矿床找矿新进展和时空分布规律[J]. 矿床地质, 2017, 36(3): 519-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201703001.htm
Zhao Y M, Feng C Y, Li D X. New progress in prospecting for shark deposits and spatial-teporal distribution of skarn deposits in China[J]. Mineral Deposits, 2017, 36(5): 519-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201703001.htm
[9] 应立娟, 陈毓川, 王登红, 等. 中国铜矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2216-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412006.htm
Ying L J, Chen Y C, Wang D H, et al. Metallogenic regularity of copper ore in China[J]. Acta Geologica Sinica, 2014, 88(12): 2216-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412006.htm
[10] 徐旸, 尹京武, 安博博, 等. 阿合塔拉铜矿床石榴石特征的研究[J]. 电子显微学报, 2018, 37(4): 339-347. doi: 10.3969/j.issn.1000-6281.2018.04.007
Xu Y, Yin J W, An B B, et al. Study on the characteristics of garnets in Ahetala copper deposit[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(4): 339-347. doi: 10.3969/j.issn.1000-6281.2018.04.007
[11] Morimoto N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 39(1): 55-76. doi: 10.1007/BF01226262
[12] Einaudi M T, Burt D M. Introduction, terminology, classification, and composition of skarn deposits[J]. Economic Geology, 1982, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745
[13] 赵一鸣, 林文蔚, 毕承思, 等. 中国矽卡岩矿床[M]. 北京: 地质出版社, 1990: 164-171.
Zhao Y M, Lin W W, Bi C S. Skarn deposits in China[M]. Beijing: Geological Publishing House, 1990: 164-171.
[14] 吕书君, 杨富全, 柴凤梅, 等. 新疆准噶尔北缘托斯巴斯套铁铜金矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J]. 岩矿测试, 2013, 32(3): 510-520. doi: 10.3969/j.issn.0254-5357.2013.03.027 http://www.ykcs.ac.cn/cn/article/id/91a4e16f-fcdd-41db-bbbf-a88e5fe3a88c
Lyu S J, Yang F Q, Chai F M, et al. Mineralogical characteristics of skarn in Tuosibasitao iron-copper-gold deposits of the northern margin of Junggar, Xinjiang, and their geological significance[J]. Rock and Mineral Analysis, 2013, 32(3): 510-520. doi: 10.3969/j.issn.0254-5357.2013.03.027 http://www.ykcs.ac.cn/cn/article/id/91a4e16f-fcdd-41db-bbbf-a88e5fe3a88c
[15] 李壮, 唐菊兴, 王立强, 等. 西藏列廷冈铁多金属矿床矽卡岩矿物学特征及其地质意义[J]. 矿床地质, 2017, 36(6): 1289-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706003.htm
Li Z, Tang J X, Wang L Q, et al. Mineralogical characteristics of skarn in Lietinggang iron polymetallic deposit, Tibet and their geological significance[J]. Mineral Deposits, 2017, 36(6): 1289-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706003.htm
[16] 林文蔚, 赵一鸣, 蒋崇俊. 矽卡岩矿床中共生单斜辉石-石榴子石特征及其地质意义[J]. 矿床地质, 1990, 9(3): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199003000.htm
Lin W W, Zhao Y M, Jiang C J. Characteristics of paragenetic clinopyro-xene-garnet pairs in skarn deposits and their geological significance[J]. Mineral Deposits, 1990, 9(3): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199003000.htm
[17] 艾永富, 金玲年. 石榴石成分与矿化关系的初步研究[J]. 北京大学学报(自然科学版), 1981(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198101009.htm
Ai Y F, Jin L N. The study of the relationship between the mineralization and the garnet in the skarn ore deposites[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1981(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198101009.htm
[18] 赵一鸣, 张轶男, 林文蔚. 我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J]. 矿床地质, 1997, 16(4): 318-325. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.003.htm
Zhao Y M, Zhang Y N, Lin W W. Characteristics of pyroxenes and pyroxenoids in skarn deposits of China and their relationship with metallization[J]. Mineral Deposits, 1997, 16(4): 318-325. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.003.htm
[19] Foster M D. Interpretation of the composition and classi-fication of the chlorites[R]. Washington: United States Government Printing Office, 1962, 414A: 1-33.
[20] Inoue A. Formation of clay minerals in hydrothermal environments[M]//Origin and Mineralogy of Clays. 1995: 268-330.
[21] Heinrich C A. The chemistry of hydrothermal tin (tungsten) ore deposition[J]. Economic Geology, 1990, 85(3): 457-481. doi: 10.2113/gsecongeo.85.3.457
[22] Muller B, Frischknecht R, Seward T, et al. A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia), using LA-ICP-MS microanalysis[J]. Mineralium Deposita, 2001, 36(7): 680-688. doi: 10.1007/s001260100195
[23] 赵斌, 李统锦, 李昭平. 夕卡岩形成的物理化学条件实验研究[J]. 地球化学, 1983(3): 256-267. doi: 10.3321/j.issn:0379-1726.1983.03.005
Zhao B, Lin T J, Li Z P. Experimental study of physico-chemical conditions of the formation of skarns[J]. Geochemica, 1983(3): 256-267. doi: 10.3321/j.issn:0379-1726.1983.03.005
[24] 梁祥济. 钙铝-钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 1994, 13(4): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.007.htm
Liang X J. Garnets of grossular-andraditend series: Their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica, 1994, 13(4): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.007.htm
[25] Gaspar M, Knaack C, Lawrence D, et al. REE in skarn systems: A LA-ICP-MS study of garnets from the crown jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033
[26] Jamtveit B, Ragnarsdottir K V, Wood B J. On the origin of zoned grossular-andradite garnets in hydrothermal systems[J]. European Journal of Mineralogy, 1995, 7(6): 1399-1410. doi: 10.1127/ejm/7/6/1399
[27] 聂潇, 尹京武, 陈浦浦, 等. 河南栾川三道庄钼钨矿床石榴石的矿物学特征研究[J]. 电子显微学报, 2014, 32(2): 108-116. doi: 10.3969/j.1000-6281.2014.02.003
Nie X, Yin J W, Chen P P, et al. Skarn mineral characteristics of Sandaozhuang Mo-W deposit and their geological significance[J]. Journal of Chinese Electron Microscopy Society, 2014, 32(2): 108-116. doi: 10.3969/j.1000-6281.2014.02.003
[28] 于淼, 丰成友, 保广英, 等. 青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J]. 矿床地质, 2013, 32(1): 55-76. doi: 10.3969/j.issn.0258-7106.2013.01.004
Yu M, Feng C Y, Bao G Y, et al. Characteristics and zonation of skarn minerals in Galinge iron deposit, Qinghai Province[J]. Mineral Deposits, 2013, 32(1): 55-76. doi: 10.3969/j.issn.0258-7106.2013.01.004
[29] 张志欣, 杨富全, 罗五仓, 等. 新疆阿尔泰乌吐布拉克铁矿床矽卡岩矿物特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2): 267-280. doi: 10.3969/j.issn.1000-6524.2011.02.011
Zhang Z X, Yang F Q, Luo W C, et al. Skarn mineral characteristics Wutubulake iron deposit Altay, Xinjiang, and geological significance[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 267-280. doi: 10.3969/j.issn.1000-6524.2011.02.011
[30] Berman R G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2[J]. Journal of Petrology, 1988(2): 445-522.
[31] Perkins E H, Brown T H, Berman R G. PTX-SYSTEM: Three programs for calculation of pressure-temperature-composition phase diagrams[J]. Computers and Geoscience, 1986, 12: 749-755. doi: 10.1016/0098-3004(86)90028-2
[32] 赵一鸣, 林文蔚, 张德全, 等. 交代成矿作用及其找矿意义——几个重要含矿交代建造的研究[M]. 北京: 北京科学技术出版社, 1992: 1-47.
Zhao Y M, Lin W W, Zhang D Q, et al. Metasomatism and its prospecting significances—Study on several important ore-bearing metasomatism formations[M]. Beijing: Beijing Science and Technology Publishing Co., Ltd., 1992: 1-47.
[33] Hezarkhami A, Williams-Jones A E, Gammons C H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 1999, 34(8): 770-783. doi: 10.1007/s001260050237
[34] 于玉帅, 杨竹森, 刘英超, 等. 西藏尼雄矿田日阿铜矿床矽卡岩矿物学特征及地质意义[J]. 矿床地质, 2012, 31(4): 775-790. doi: 10.3969/j.issn.0258-7106.2012.04.009
Yu Y S, Yang Z S, Liu Y C, et al. Mineralogical characteristics of skarn in Ri'a copper deposit of Nixiong orefield, Tibet, and their geological significance[J]. Mineral Deposits, 2012, 31(4): 775-790. doi: 10.3969/j.issn.0258-7106.2012.04.009
[35] Somarin A K. Garnetization as a ground preparation process for copper mineralization: Evidence from the Mazraeh sharn deposit, Iran[J]. International Journal of Earth Sciences, 2010, 99(2): 343-356. doi: 10.1007/s00531-008-0394-0