中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

页岩纳米有机孔结构表征技术研究进展

陈维堃, 腾格尔, 张春贺, 方镕慧, 张聪, 白名岗, 王梓, 夏响华. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906-919. doi: 10.15898/j.cnki.11-2131/td.202111170175
引用本文: 陈维堃, 腾格尔, 张春贺, 方镕慧, 张聪, 白名岗, 王梓, 夏响华. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906-919. doi: 10.15898/j.cnki.11-2131/td.202111170175
CHEN Weikun, Tenger, ZHANG Chunhe, FANG Ronghui, ZHANG Cong, BAI Minggang, WANG Zi, XIA Xianghua. A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. doi: 10.15898/j.cnki.11-2131/td.202111170175
Citation: CHEN Weikun, Tenger, ZHANG Chunhe, FANG Ronghui, ZHANG Cong, BAI Minggang, WANG Zi, XIA Xianghua. A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. doi: 10.15898/j.cnki.11-2131/td.202111170175

页岩纳米有机孔结构表征技术研究进展

  • 基金项目:
    国家自然科学基金项目“FIB-TEM-ASM原位研究页岩有机质结构演化与成孔机制”(42172171)
详细信息
    作者简介: 陈维堃,硕士,助理工程师,主要从事沉积储层方面的实验分析和研究工作。E-mail: 1059687070@qq.com
    通讯作者: 腾格尔,博士,研究员,主要从事地球化学与石油地质综合研究和实验地质研究。E-mail: tenggeer@mail.cgs.gov.cn
  • 中图分类号: O657.31

A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale

More Information
  • 页岩气开发利用已成为保障国家能源安全和实现全球碳中和目标的重要路径。页岩气储层是页岩气勘探开发的直接目的层,是以有机孔为主的纳米孔隙系统,具有源储一体、低孔低渗和非达西流动等特性,对其评价需要突破传统的无机孔隙评价思路的束缚和纳米尺度表征技术的瓶颈,采用更高精度、高分辨率的实验技术表征纳米孔隙并刻画有机孔,已成为页岩气储层研究和实验技术攻关的焦点。有机孔于2009年在北美Barnett页岩中首次发现以来,对其表征技术和发育特征研究进展显著:①建立了多尺度多类型的纳米孔隙表征技术,其中以压汞-吸附联合测定法和脉冲衰减法为主的微观结构定量表征技术,可准确获得孔径为0.35~10000nm、渗透率<1μD范围内页岩物性和全孔径分布的定量参数;以场发射扫描电镜和显微计算机断层扫描(CT)技术为主的高分辨率显微镜扫描则形成了纳米孔隙的多尺度结构重构技术,可提供二维-三维图像信息;②有机孔的形成演化受有机质类型和成岩演化等诸多因素协同控制,揭示各影响因素间的内在联系及有机质分子结构的物理演化规律是查明页岩储层非均质性的关键,初步认为有机孔形成与保持的实质在于成烃过程中分解与缩合反应竞争的空间效应;③前人建立了一系列干酪根和沥青结构模型,为分子层面上研究有机孔成因机制和演化规律提供了理论基础,透射电镜、原子力显微镜能够立体观测分子空间排列和微观结构内部形态,从纳米尺度上认识有机孔形成与保存机制成为可能;④原位结构成像与成分扫描技术联用,储层描述、成分分析与数字岩心融合,向结构与成分、孔渗性与脆延性一体化动态评价发展,实现微观结构分析到宏观大数据预测的跨越,以满足页岩气地质-工程一体化高效勘探开发的需要。

  • 加载中
  • 图 1  多尺度、多类型的页岩物性及微观结构实验分析技术系列

    Figure 1. 

    图 2  页岩孔隙结构的(a)FIB-SEM三维重构与(b)定量分析

    Figure 2. 

  • [1]

    金之钧. 页岩革命及其意义[J]. 经济导刊, 2019(10): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDK201910012.htm

    Jin Z J. Shale revolution and its significance[J]. Economic Herald, 2019(10): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDK201910012.htm

    [2]

    Jarvie D M. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068

    [3]

    马永生, 蔡勋育, 赵培荣, 等. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    Ma Y S, Cai X Y, Zhao P R, et al. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    [4]

    邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 31(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm

    Zou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm

    [5]

    Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79: 848-861. doi: 10.2110/jsr.2009.092

    [6]

    Ambrose R J, Hartman R C, Diaz-Campos M, et al. New pore-scale considerations for shale gas in place calculations[C]//Proceedings of Unconventional Gas Conference. Pittsburgh, Pennsylvania: Society of Petroleum Engineers, 2010.

    [7]

    Milner M, Mclin R, Petriello J, et al. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ionmilled backscatter SEM methods[C]//Proceedings of Canadian Unconventional Resources & Intemational Petroleum Conference. Alberta: Society of Petroleum Engineers, 2010.

    [8]

    徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001002.htm

    Xu X H, Shen B J, Li Z M, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001002.htm

    [9]

    王红岩, 周尚文, 刘德勋, 等. 页岩气地质评价关键实验技术的进展与展望[J]. 天然气工业, 2020, 40(6): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006001.htm

    Wang H Y, Zhou S W, Liu D X, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation[J]. Natural Gas Industry, 2020, 40 (6): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006001.htm

    [10]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

    [11]

    Zhang W T, Hu W X, Borjigin T, et al. Pore charac-teristics of different organic matter in black shale: A case study of the Wufeng—Longmaxi Formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43. doi: 10.1016/j.marpetgeo.2019.08.010

    [12]

    马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

    Ma X H, Xie J, Yong R, et al. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

    [13]

    Curis M E, Cardott B J, Sondergeld C H, et al. Devel-opment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004

    [14]

    腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    Tenger, Lu L F, Yu L J, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48 (4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    [15]

    姜振学, 李鑫, 王幸蒙, 等. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101005.htm

    Jiang Z X, Li X, Wang X M, et al. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil & Gas Geology, 2021, 42(1): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101005.htm

    [16]

    魏志红. 富有机质页岩有机质孔发育差异性探讨——以四川盆地五峰组—龙马溪组笔石页岩为例[J]. 成都理工大学学报(自然科学版), 2015, 42(3): 361-365. doi: 10.3969/j.issn.1671-9727.2015.03.13

    Wei Z H. Difference of organic pores in organic matter: A cace from graptolite shales of Wufeng—Longmaxi Formation in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(3): 361-365. doi: 10.3969/j.issn.1671-9727.2015.03.13

    [17]

    宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(21): 1501-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012005.htm

    Song Y, Gao F L, Tang X L, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acat Petrolei Sinica, 2020, 41(21): 1501-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012005.htm

    [18]

    何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    He Z L, Nie H K, Hu D F, et al. Geological problems hindering effective development of deep shale gas: Taking Upper Ordovician Wufeng—Lower Silurian Longmaxi Formations in Sichuan Basin and its periphery as an example[J]. Acta Petrolei Sinica, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    [19]

    田华, 柳少波, 洪峰, 等. 关于页岩孔隙度与渗透率测定国家标准(GB/T 34533—2017)的思考与建议[J]. 中国标准化, 2018, 12(增刊): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ2018S1007.htm

    Tian H, Liu S B, Hong F, et al. Consideration and suggestion on shale porosity and permeability measurement standard (GB/T 34533—2017)[J]. China Standardization, 2018, 12(Supplement): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ2018S1007.htm

    [20]

    陈思宇, 田华, 柳少波, 等. 致密储层样品体积测量对孔隙度误差的影响[J]. 石油实验地质, 2016, 38(6): 850-856. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606021.htm

    Chen S Y, Tian H, Liu S B, et al. Influence of bulk volume measurement on porosity error in tight reservoir core plug analysis[J]. Petroleum Geology & Experiment, 2016, 38(6): 850-856. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606021.htm

    [21]

    Sun W J B, Zuo Y J, Wu Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou Province: Investigations using NMR, SEM and image analyses[J]. Marine and Petroleum Geology, 2019, 99: 416-428. doi: 10.1016/j.marpetgeo.2018.10.042

    [22]

    孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J/OL]. 石油实验地质, 2022(5): 930-940.

    Sun Z L, Li Z M, Shen B J, et al. NMR technology in reservoir evaluation for shale oil and shale gas[J/OL]. Petroleum Geology & Experiment, 2022(5): 930-940.

    [23]

    Jones S C. A technique for faster pulse-decay permea-bility measurements in tight rocks[J]. SPE Formation Evaluation, 1997, 12(1): 19-25. doi: 10.2118/28450-PA

    [24]

    Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194

    [25]

    俞凌杰, 范明. 中国石化无锡石油地质研究所实验地质技术之脉冲衰减法超低渗透率测试技术[J]. 石油实验地质, 2015, 37(3): 264. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201503001.htm

    Yu L J, Fan M. Pulse attenuation method for ultra low permeability testing technology of experimental geology technology of Sinopec Wuxi Petroleum Geology Institute[J]. Petroleum Geology & Experiment, 2015, 37(3): 264. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201503001.htm

    [26]

    腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    Tenger, Shen B J, Yu L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng—Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    [27]

    魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702002.htm

    Wei X F, Li Y P, Wei Z H, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702002.htm

    [28]

    田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm

    Tian H, Zhang S C, Liu S B, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption method[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm

    [29]

    马真乾, 王英滨, 于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究[J]. 岩矿测试, 2018, 37(3): 244-255. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201801090003

    Ma Z Q, Wang Y B, Yu B S. Study on analytical method for pore size distribution of the Lower Cambrian Niutitang Formation shale in southeastern Chongqing[J]. Rock and Mineral Analysis, 2018, 37(3): 244-255. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201801090003

    [30]

    马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37 (1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501019.htm

    Ma Y, Zhong N N, Cheng L J, et al. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from focused ion beam scanning electron microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501019.htm

    [31]

    白名岗, 夏响华, 张聪, 等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试, 2018, 37(3): 225-234. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201803260030

    Bai M G, Xia X H, Zhang C, et al. Study on shale organic porosity in the Longmaxi Formation, AnYe-1 well using field emission-scanning electron microscopy and PerGeos system[J]. Rock and Mineral Analysis, 2018, 37(3): 225-234. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201803260030

    [32]

    戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901160008

    Qi M H, Li J J, Cao Q. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901160008

    [33]

    Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337.

    [34]

    王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235-243. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201612210188

    Wang Y, Wang L H, Wang J Q, et al. Three-dimension characterization of organic matter pore structures of shale using focused ion beam-scanning electron microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235-243. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201612210188

    [35]

    苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法研究——以JY-1井为例[J]. 石油学报, 2018, 39(11): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811005.htm

    Gou Q Y, Xu S, Hao F, et al. CharacterIzation method of shale pore structure based on nano-CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39 (11): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811005.htm

    [36]

    李磊, 郝景宇, 肖继林, 等. 微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征[J]. 岩矿测试, 2020, 39(3): 362-372. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202001150011

    Li L, Hao J Y, Xiao J L, et al. Quantitative characterization of chale micro-fracture in the Yuanba area of the Sichuan Basin by micro X-ray tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 362-372. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202001150011

    [37]

    王羽, 汪丽华, 王建强, 等. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(4): 566-577. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202003110030

    Wang Y, Wang L H, Wang J Q, et al. Investigation on pore structures of Yanchang Formation shale using micro X-ray microscopy[J]. Rock and Mineral Analysis, 2020, 39(4): 566-577. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202003110030

    [38]

    朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018, 43(5): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805038.htm

    Zhu R K, Jin X, Wang X Q, et al. Multi-scale digital rock evaluation on complex reservoir[J]. Earth Science, 2018, 43(5): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805038.htm

    [39]

    宋土顺, 李轩, 张颖, 等. QEMSCAN矿物定量分析技术在成岩作用研究中的运用: 以扶余油层致密砂岩为例[J]. 地质科技情报, 2016, 35(3): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603025.htm

    Song T S, Li X, Zhang Y, et al. QEMSCAN mineral quantitative anlysis of tight sandstone diagenesis in Fuyu oil layer, Daqing placanticline[J]. Geological Science and Technology Information, 2016, 35(3): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603025.htm

    [40]

    马晓潇, 黎茂稳, 庞雄奇, 等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质, 2016, 38(2): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602021.htm

    Ma X X, Li M W, Pang X Q, et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(2): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602021.htm

    [41]

    陈康, 纪广轩, 朱有峰, 等. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060005

    Chen K, Ji G X, Zhu Y F, et al. Study on alteration characteristics of the Chengmenshan Tielukan copper deposit by a hyperspectral core scanning system[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060005

    [42]

    Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74(4): 599-603.

    [43]

    Hickey J J, Hen K B. Lithofacies summary of the Mississippian Barnett shale, mitchell 2 SIMS well T P, Wise Country, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.

    [44]

    邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27 (6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    [45]

    琚宜文, 黄骋, 孙岩, 等. 纳米地球科学: 内涵与意义[J]. 地球科学, 2018, 43(5): 1367-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805002.htm

    Ju Y W, Huang P, Sun Y, et al. Nanogeoscience: Connotation and significance[J]. Earth Science, 2018, 43(5): 1367-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805002.htm

    [46]

    邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm

    Zou C N, Yang Z, Tao S Z, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm

    [47]

    卢双舫, 张亚念, 李俊乾, 等. 纳米技术在非常规油气勘探开发中的应用[J]. 矿物岩石地球化学通报, 2016, 35(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201601008.htm

    Lu S F, Zhang Y N, Li J Q, et al. Nanotechnology and its application in the exploration and development of unconventional oil and gas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201601008.htm

    [48]

    Brydson R, Brown A, Benning L G, et al. Analytical transmission electron microscopy[J]//Henderson G S, Neuville D R, Downs R T. Spectroscopic methods in mineralogy and materials sciences[J]. Reviews in Mineralogy & Geochemistry, 2014, 78: 219-269.

    [49]

    李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学: 地球科学, 2015, 45(9): 1359-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509010.htm

    Li J H, Pan Y X. Applications of transmission electron microscopy in the Earth sciences[J]. Scientia Sinica Terrae, 2015, 45(9): 1359-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509010.htm

    [50]

    傅家谟, 秦匡宗. 干酪根地球化学[M]. 广州: 广州科技出版社, 1995: 375-441.

    Fu J M, Qin K Z. Kerogen geochemistry[M]. Guangzhou: Guangzhou Science and Technology Press, 1995: 375-441.

    [51]

    王飞宇, 傅家谟, 刘德汉, 等. 煤和烃源岩镜质体中超微类脂体检出及意义[J]. 科学通报, 1993, 38(2): 151-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199302016.htm

    Wang F Y, Fu J M, Liu D H, et al. Detection and significance of ultramicro liposomes in vitrinite of coal and source rock[J]. Chinese Science Bulletin, 1993, 38(2): 151-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199302016.htm

    [52]

    Sharma A, Kyotani T, Tomita A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy & Fuels, 2000, 14(6): 1219-1225. http://www.onacademic.com/detail/journal_1000035826446310_b3a9.html

    [53]

    Burlingame A L, Haug P A, Schnoes H K, et al. Fatty acids derived from the Green River Formation oil shale by extractions and oxidations—A review[C]//Schenck P A, Havenaar I. Advances in organic geochemistry. Oxford: Pergamon Press, 1969: 85-129.

    [54]

    Behar F, Vandenbroucke M. Chemical modeling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.

    [55]

    Largeau C, Derenne S, Casadevall E, et al. Occurrence and origin of ultralaminar structures in amorphous kerogens of various source rocks and oil shales[J]. Organic Geochemistry, 1990, 16(4/6): 889-895.

    [56]

    于冰, 曹庆英, 张井, 等. 干酪根类型划分及评价的TEM新技术[J]. 电子显微学报, 1993(2): 184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV199302074.htm

    Yu B, Cao Q Y, Zhang J, et al. New TEM technology for classification and evaluation of kerogen types[J]. Journal of Chinese Electron Microscopy Society, 1993(2): 184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV199302074.htm

    [57]

    Benitez J J, Matas A J, Heredia A. Molecular characteri-zation of the plant biopolyester cutin by AFM and spectroscopic techniques[J]. Journal of Structural Biology, 2004, 147: 179-184.

    [58]

    姚素平, 焦堃, 张科, 等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报, 2011, 56(22): 1820-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201122011.htm

    Yao S P, Jiao K, Zhang K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201122011.htm

    [59]

    杨起, 潘治贵, 汤达祯, 等. 煤结构的STM和AFM研究[J]. 科学通报, 1994, 39(7): 633-635. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199407017.htm

    Yang Q, Pan Z G, Tang D Z, et al. STM and AFM study on coal structure[J]. Chinese Science Bulletin, 1994, 39(7): 633-635. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199407017.htm

    [60]

    Loeber L, Sutton O, Morel J, et al. New direct obser-vations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39.

    [61]

    Golubev Y A, Kovaleva O V, Yushkin N P. Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy[J]. Fuel, 2008, 87(1): 32-38.

    [62]

    Hirono T, Lin W, Nakashima S. Pore space visualization of rocks using an atomic force microscope[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 317-320.

    [63]

    王坤阳, 杜谷. 利用原子力显微镜与能谱-扫描电镜研究页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(6): 839-846. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202004180053

    Wang K Y, Du G. Study on the pore structure charact-eristics of shale by atomic force microscope and energy spectrum-scanning electron microscope[J]. Rock and Mineral Analysis, 2020, 39(6): 839-846. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202004180053

    [64]

    Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261: 217-229.

    [65]

    Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia shale[J]. Marine and Petroleum Geology, 2012, 31: 70-89.

    [66]

    Sisk C, Diaz E, Walls J, et al. 3D visualization and classification of pore structure and pore filling in gas shale[C]//SPE Annual Technical Conference and Exhibition Florence. Italy: Society of Petroleum Engineers, 2010: 1-4.

    [67]

    王玉满, 李新景, 陈波海, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm

    Wang Y M, Li X J, Chen B H, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm

    [68]

    高玉巧, 蔡潇, 何希鹏, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版), 2020, 50(2): 662-674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002031.htm

    Gao Y Q, Cai X, He X P, et al. Relationship between shale pressure system and organic pore development in Wufeng—Longmaxi Formation of basin margin transition zone in southeast Chongqing[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 662-674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002031.htm

    [69]

    卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003008.htm

    Lu L F, Liu W X, Yu L J, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003008.htm

    [70]

    朱洪建, 琚宜文, 孙岩, 等. 构造变形作用下页岩孔裂隙结构演化特征及其模式——以四川盆地及其周缘下古生界海相页岩为例[J]. 石油与天然气地质. 2021, 42(1): 186-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101017.htm

    Zhu H J, Ju Y W, Sun Y, et al. Evolution characteristics and models of shale pores and fractures under tectonic deformation: A case study of the Lower Paleozoic marine shale in the Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 186-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101017.htm

    [71]

    郭旭升, 胡东风, 黄仁春, 等. 四川盆地深层-超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5): 1-14.

    Guo X S, Hu D F, Huang R C, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect[J]. Natural Gas Industry, 2020, 40(5): 1-14.

    [72]

    郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    Guo X S, Li Y P, Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Wufeng—Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    [73]

    卢龙飞, 刘伟新, 魏志红, 等. 四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制[J]. 沉积学报, 2022, 40(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202201006.htm

    Lu L F, Liu W X, Wei Z H, et al. Diagenesis of the Silurian shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202201006.htm

    [74]

    Tissot B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J]. AAPG Bulletin, 1984, 68(5): 545-563.

    [75]

    Faulon J L, Vandenbroucke M, Drappier J M, et al. 3D chemical model for geological macromolecules[C]//Durand B, Behar F. Advances in Organic Geochemistry. Oxford: Pergamon Press, 1990: 981-993.

    [76]

    Vandenbroucke M. Kerogen: From types to models of chem-ical structure[J]. Oil & Gas Science and Technology-Revue de L' Institut Francais Du Petrole, 2003, 58(2): 243-269.

    [77]

    腾格尔, 陶成, 胡广, 等. 排烃效率对页岩气形成与富集的影响[J]. 石油实验地质, 2020, 42(3): 325-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003004.htm

    Tenger, Tao C, Hu G, et al. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. Petroleum Geology & Experiment, 2020, 42(3): 325-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003004.htm

  • 加载中

(2)

计量
  • 文章访问数:  3076
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2021-11-17
修回日期:  2022-02-18
录用日期:  2022-03-13
刊出日期:  2022-11-28

目录