A Review of Progress in Microbeam Lu-Hf Isotopic Analysis on Minerals
-
摘要:
矿物微区Lu-Hf同位素分析技术为了解岩浆活动和变质反应的微观过程以及示踪沉积物源信息提供了重要手段,极大地促进了岩石地球化学等领域学科发展。本文评价了176Yb和176Lu同质异位素、稀土元素氧化物以及富Ta基体等对微区Hf同位素测量精度和准确度的影响方式、校正策略和应对方案,总结了针对锆石、斜锆石、钙钛锆石、钛锆钍矿、异性石、金红石、锡石和铌铁矿等富铪矿物的微区Lu-Hf同位素分析方法、适用对象以及相关标样特征。富镥矿物的微钻/微锯Lu-Hf同位素等时线定年具有高精度的特点,可精确限定多期造山作用和矿物生长持续时间等。利用激光剥蚀电感耦合等离子体三重四极杆串级质谱(LA-ICP-Q-MS/MS)可以实现对石榴石等富镥矿物微米尺度高空间分辨率的微区Lu-Hf单点/等时线定年。该方法依赖Hf与NH3的碰撞反应实现Lu和Hf的在线分离,达到同步测量176Lu/177Hf和176Hf/177Hf比值的目的。新一代带碰撞/反应池的多接收串级磁式质谱具有高稳定性和高灵敏度特性,可在消除多离子(团)干扰的同时实现高精度Hf同位素分析,是未来微区Lu-Hf同位素分析发展的重要方向。
-
关键词:
- Lu-Hf同位素 /
- LA-MC-ICPMS /
- 锆石 /
- 石榴石 /
- 微区分析
Abstract:BACKGROUND Mircobeam Lu-Hf isotopic analysis on minerals provides an important means to understand the microscopic process of magmatic activity and metamorphic reaction and to trace provenance of sediment, which greatly promotes the development of petrogeochemistry. Many methods were provided to obtain accurate and precise microbeam Lu-Hf isotopic data, and many mineral standards for microbeam Lu-Hf isotopic analysis were developed.
OBJECTIVES To review and understand the microbeam methods for Lu-Hf isotopic analysis.
METHODS Systematic compilations of published data of standards and discussion on the different methods for microbeam Lu-Hf isotopic analysis.
RESULTS The development history of microbeam Lu-Hf isotopic analysis in the past 30 years is reviewed, and the influence of 176Yb and 176Lu isobars, REE oxides, and Ta-rich matrices on the precision and accuracy of Hf isotope measurement is systematically evaluated as well as the different correction strategies and programs provided in previous studies. In addition, a comprehensive compilation of the different Yb and Lu isotopic compositions reported in references and the different methods of microbeam Lu-Hf isotopic analyses on various Hf-rich minerals such as zircon, baddeleyite, zirconolite, zirkelite, calzirtite, eudialyte, rutile, cassiterite, and columbite-group minerals is made. The micro-drill/micro-saw sampling Lu-Hf isotopic analysis of Lu-rich minerals has played an important role in revealing the multi-stage orogenic process and the duration of mineral growth. The advent of laser ablation inductively coupled plasma triple quadrupole mass spectrometry (LA-ICP-Q-MS/MS) has increased the spatial resolution of Lu-Hf single-spot/isochron dating analysis of Lu-rich minerals to the micrometer scale. This method relies on the collision reaction of Hf and NH3 to realize the online separation of Hf from Lu, and achieves the purpose of synchronous measurement of 176Lu/177Hf and 176Hf/177Hf ratios, which is introduced in detail.
CONCLUSIONS The new generation of tandem multi-collector sector field mass spectrometer with collision/reaction cell has high stability and sensitivity, which can be used to determine online separation of Hf from REEs, produce high-precision Hf isotope measurements for high Yb/Hf or Ta-rich minerals under high spatial resolution conditions, and significantly improve the precision and accuracy of microbeam Lu-Hf isotopic analysis. This deserves extensive attention in the future.
-
Key words:
- Lu-Hf isotope /
- LA-MC-ICPMS /
- zircon /
- garnet /
- microbeam analysis
-
图 1 文献报道的自然界Yb同位素组成(数据见表 1)
Figure 1.
图 2 (a) 主要富铪矿物标样176Hf/177Hf-年龄相关图;(b)主要富铪矿物标样176Yb/177Hf-176Lu/177Hf相关图(数据来源见表 2)
Figure 2.
表 1 不同文献报道的自然界Yb-Lu同位素组成
Table 1. Natural Yb and Lu isotopic compositions reported in different references
测量方式 172Yb/171Yb 173Yb/171Yb 174Yb/171Yb 176Yb/171Yb 176Yb/172Yb 176Yb/173Yb 173Yb/172Yb 174Yb/172Yb 176Lu/175Lu 文献来源 TIMS 1.526374 1.124778 2.216312 0.885860 0.580369 0.787586 0.736896 1.452011 - [67] TIMS+MC-ICPMS 1.526400 1.124800 2.216300 0.885900 0.580385 0.787607 0.736897 1.451979 0.02656 [6] TIMS 1.532075 1.132685 2.242466 0.901821 0.588627 0.796180 0.739314 1.463679 0.02655 [61] MC-ICPMS 1.532227 1.132685 2.242716 0.901864 0.588597 0.796218 0.739241 1.463697 - [61] MC-ICPMS 1.530570 1.130172 2.235486 0.897145 0.586151 0.793813 0.738400 1.460558 - [66] TIMS - - - - - 0.795200 - - 0.02656 [68] TIMS 1.525914 1.123456 2.215594 0.884110 0.579397 0.786956 0.736251 1.451979 0.02645 [63] MC-ICPMS 1.526049 1.123575 2.215790 0.884081 0.579327 0.786847 0.736264 1.451979 0.02645 [63] TIMS 1.529607 1.129197 2.232678 0.895504 0.585447 0.793045 0.738227 1.459642 0.02655 [65] TIMS 1.531736 1.132338 2.241970 0.901691 0.588673 0.796310 0.739251 1.463679 0.02655 [65] TIMS 1.532105 1.132554 2.242509 0.901976 0.588717 0.796409 0.739215 1.463679 - [69] MC-ICPMS 1.530245 1.131999 2.238963 0.900121 0.588220 0.795161 0.739750 1.463140 - [70] MC-ICPMS - - - - 0.587150 - - 1.461820 - [62] MC-ICPMS - 1.132685 - - - 0.796390 - - - [71] 注:“-”代表无数据。 表 2 主要富铪矿物标样的REE-Hf同位素组成特征
Table 2. REE-Hf isotopic compositions of Hf-rich mineral standards
标准溶液 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 JMC475 - - - - - - 0.282160 - - [4, 83-84] 锆石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 Zr 2-1 0 - 0.000001 0.000005 0.000002 0.000000 0.282209±9 6105 330 [85] Zr 3-1 0 - 0.000001 0.000006 0.001997 0.000504 0.282213±8 6819 382 [85] Zr 3-2 0 - 0.000001 0.000005 0.002283 0.000568 0.282210±10 7598 304 [85] Zr 4-1 0 - 0.000012 0.000003 0.001426 0.000356 0.282230±7 10011 300 [85] Zr 4-2 0 - 0.000010 0.000004 0.002033 0.000524 0.282234±8 8648 796 [85] MUNZirc 0 0 - - - 0.000130±65 0.000007±4 0.282135±7 - - [58] MUNZirc 1 0 - 0.000534 0.004097 0.029±13 0.00147±67 0.282135±7 8933 - [58] MUNZirc 2 0 - 0.000282 0.002999 0.078±37 0.0029±12 0.282135±7 10415 - [58] MUNZirc 3 0 - 0.001090 0.010273 0.109±29 0.0044±15 0.282135±7 9232 751 [58] MUNZirc 4 0 - 0.005968 0.037853 0.321±64 0.0127±24 0.282135±7 11790 601 [58] FM0411 1.2±0.1L 206Pb/238U 0.0006 0.0027 0.0058±13 0.00017±2 0.282983±4 9323 422 [20, 86-87] 61.308A 2.488±0.004 206Pb/238U - - 0.030697 0.00186 0.282977±14 5780 - [88] 61.308B 2.508±0.002 206Pb/238U - - 0.030772 0.00228 0.282977±6 5537 - [88] Penglai 4.4±0.1 206Pb/238U 0.0019 0.0059 0.0140±80 0.00038±20 0.282906±10 5152 355 [86, 89-90] FCT 28.402±0.023 206Pb/238U 0.0036 0.0109 0.055±11 0.00210±43 0.282538±16 10773 1055 [91-92] SK10-2 32.10±0.49L 206Pb/238U - - - - 0.282752±53 - - [44, 93-94] GHR1 48.106±0.023 206Pb/238U - - 0.048±30 0.0019±12 0.283050±17 - - [95] Monastery 90.1±0.5 206Pb/238U - - 0.00061±16 0.000009 0.282738±8 - - [45, 96-99] KIM-5 90±3S 206Pb/238U 0.0001 0.0004 0.000430 0.000015±4 0.282660±24 9114 192 [100-102] Jilin 117.63±0.04 206Pb/238U 0.0054 0.0140 0.0310±14 0.00082±35 0.282926±14 9135 510 [103] Qinghu 159.38±0.12 206Pb/238U 0.0019 0.0063 0.026±13 0.00068±21 0.283002±4 11750 802 [104-105] LV-11 ~290 206Pb/238U - - 0.166±11 0.0026±2 0.282837±28 - - [106] Plesovice 337.13±0.37 206Pb/238U 0.0018 0.0061 0.005107 0.000125 0.282482±12 11167 - [98-99, 107] TEMORA-1 416.75±0.24 206Pb/238U 0.0039 0.0173 0.032±15 0.00110±30 0.282685±11 7801 - [20, 38, 51, 108-110] TEMORA-2 418.37±0.14
416.78±0.33206Pb/238U 0.0020 0.0078 0.035±14 0.00109 0.282686±8 9362 239 [97-98, 109, 111-112] R33 419.26±0.39
420.53±0.16206Pb/238U 0.0047 0.0184 0.070±29 0.001990±87 0.282764±14 9764 1373 [50-51, 98, 109, 111] M127 524.36±0.16 206Pb/238U 0.0017 0.0060 0.0177±14 0.000654±64 0.282396±4 12400 500 [113] GZ7 530.26±0.05 206Pb/238U 0.0020 0.0059 0.012528 0.00049 0.281666±4 10060 290 [114] SA01 535.08±0.32 206Pb/238U 0.0031 0.0055 0.0127±87 0.00045±28 0.282293±7 9797 563 [115] SA02 535.10±0.24 206Pb/238U 0.0148 0.0205 0.0203±62 0.00064±17 0.282287±16 8976 507 [116] GZ8 543.92±0.06 206Pb/238U 0.0010 0.0036 0.006325 0.00024 0.281662±5 11600 240 [114] BB12 557.4±6.8 206Pb/238U 0.0005 0.0011 0.007068 0.000062 0.281677±11 6177 - [117] BR266
Z6266559.0±0.2
559.27±0.11206Pb/238U 0.0007 0.0025 0.004910 0.000217 0.281630±10 8778 258 [97, 118-121] BB17 559.2±6.0 206Pb/238U 0.0013 0.0032 0.010624 0.000141 0.281677±6 8085.5 - [117] BB9 560.2±4.7 206Pb/238U 0.0005 0.0011 0.006797 0.000052 0.281675±14 6008 - [117] M257 561.3±0.3 206Pb/238U 0.0005 0.0013 0.002986 0.000096 0.281518±11
0.281544±1810610 - [35, 49, 110, 122] BB16 562±3L 206Pb/238U 0.0002 0.0006 0.00134±47 0.000050±17 0.281669±12 8807 - [123-124] CZ3 563.9±1.3 206Pb/238U 0.0001 0.0004 0.00098±1 0.000034±1 0.281732±7 12980 250 [20, 34, 121, 125-126] Peixe 564±4 206Pb/238U 0.0016 0.0069 0.022229 0.000835 0.281944±29 4958 201 [50, 127-128] Tanz 566.16±0.78 206Pb/238U - - - - 0.281820±7 - - [129] SL7 569±3S 206Pb/238U - - - - 0.281620±30 - - [13] LKZ-1 570.0±2.5 206Pb/238U 0.0003 0.0011 0.00358±35 0.000104±1 0.281794±16 7740 310 [130] GJ-1 601.86±0.37 206Pb/238U 0.0013 0.0033 0.00590±42 0.000238±5 0.282000±5 6681 57 [51, 131-134] Mud tank 731.65±0.49 206Pb/238U 0.0011 0.0034 0.003204 0.000093 0.282507±6 11800 - [97-98, 100, 132, 135] WJS810 816.88±0.49 206Pb/238U - - 0.017655 0.000779 0.282534±6 9671 - [136] 91500 1065.4±0.3
1066.4±0.3
1066.01±0.61207Pb/206Pb 0.0005 0.0023 0.00739±45 0.00031±14 0.282308±6 5900 300 [20, 38, 51, 88, 119, 132, 137-138] FC-1
AS3
AS571099±0.6
1099.1±0.5
1098.6±0.3
1098.47±0.16
1098.70±0.16
1099.96±0.58207Pb/206Pb 0.0054 0.0201 0.0450±19 0.001262 0.282184±16 11031 1222 [97-99, 111, 119, 139-144] CN92-1UQ-Z1 1142.8±0.8 207Pb/206Pb - - 0.020±10 0.00080±12 0.282172±16 - - [20, 145] LH94-15 1830.3±1.9 207Pb/206Pb - - - - 0.281730±6 - - [146-147] QGNG 1851.6±0.6
1851.5±0.3207Pb/206Pb - - 0.0181±48 0.000731 0.281612±4 - - [51, 97-99, 119, 148] Phalaborwa 2052.2±0.8 207Pb/206Pb - - 0.014±11 0.0004±3 0.281234±11 - - [20, 149] KV01 EKC02-51 3227.2±0.2 207Pb/206Pb 0.0019 0.0066 0.0149±42 0.00068±17 0.280810±13 10410 675 [119, 150] OG1 3465.4±0.6
3466.09±0.33207Pb/206Pb 0.0037 0.0096 0.033±13 0.00119±26 0.280633±34 9346 641 [99, 151-153] 斜锆石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 SK10-2 32.9±0.5S 206Pb/238U - - 0.0063±13
0.0206±950.00023±4 0.282739±13 - - [20, 64, 154] Kovdor 378.54±0.23
378.5±1.4206Pb/238U 0.0003 0.0005 0.000772 0.000025 0.282767±5 7806 319 [64, 155-157] OG-1 411.91±0.25 206Pb/238U - - 0.0036±13 0.000067±11 0.282694±7 - - [64] Karlshamn 954.2±1.1 207Pb/206Pb - - - 0.000113 0.282228±5 - - [1] FC-1
FC-4b1101.41±0.50
1099.6±1.5207Pb/206Pb - - 0.0073±23 0.000109±28 0.282167±5 - - [64, 144, 156] SA003 1256.2±1.4 207Pb/206Pb - - 0.049±17 0.00067±14 0.282167±5 - - [64] Sorkka 1256.2±1.4 207Pb/206Pb - - 0.056±36 0.00066 0.282149±10 - - [1, 64] Phalaborwa 2059.60±0.35 207Pb/206Pb 0.0002 0.0002 0.000078±33
0.000102±120.0000027±8
0.00000467±1
0.0000033±60.281229±11
0.281206±19
0.281187±1413224 450 [2, 20, 158] 钛锆钍矿 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 Phala-ZrkA 1937±32S 207Pb/206Pb 0.5824 0.3145 0.024362 0.000424±9 0.281296±5 4364 - [159] 异性石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 LV01 376±6L 206Pb/238U - - 0.092430 0.00277 0.282761±18 2986 - [160] 金红石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 SR-1 0 - - - - - 0.281879±8 42500 710 [161] SR-2 0 - - - - - 0.281888±7 3990 280 [161] SR-2B 0 - - - - - 0.281874±9 2790 81 [161] SR-3 0 - - - - - 0.281877±23 388 45 [161] SR-3A 0 - - - - - 0.281882±26 416 45 [161] R19 489.4±3.3 206Pb/238U - - - 0.002089 0.282163±17 8.645 - [162-163] JDX 509±8S 206Pb/238U - - 0.00020±15 0.000018±4 0.281795±15 50.1 0.7 [164-165] R10/R10b 1090±5
1089.23±0.96207Pb/206Pb - - 0.00038±48 0.000026±81 0.282178±12 38.8 1.5 [162, 165-166] Sugluk-4 1720.8±4.7 207Pb/206Pb - - 0.00008±39 0.000003±16 0.281172±107 51.3 9.3 [165-166] RMJG 1751.5±4.3 207Pb/206Pb - - 0.000017 0.000001 0.281652±6 103 17 [167] PCA-S207 1865.0±7.5 207Pb/206Pb - - 0.0006±17 0.000019±49 0.281246±146 37 13 [165-166] Diss - - - - - - 0.283258±17 5.081 0.049 [162] R1 - - - - - 0.000013 0.283097±8 49 9 [161] 铌铁矿族矿物 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 713-79 218±2L 206Pb/238U - - 0.000017 0.000001 0.282749±28 712 - [74, 168] NP-2 380.3±2.4 206Pb/238U - - 0.005372 0.000239 0.282169±32 211 - [74, 169] Coltan139 505.4±1.0 206Pb/238U - - 0.147949 0.003503 0.281991±3 454 - [74, 170] U-3 966±12L 206Pb/238U - - 0.000040 0.000002 0.281703±26 1430 - [74] U-1 971±12L 206Pb/238U - - 0.000725 0.000021 0.281845±38 469 - [74] 注:上标L代表LA-ICPMS,上标S代表SIMS,“-”代表暂无数据。 -
[1] Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3-4): 311-324. doi: 10.1016/S0012-821X(04)00012-3
[2] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530): 683-687. doi: 10.1126/science.1061372
[3] Vockenhuber C, Oberli F, Bichler M, et al. New half-life measurement of 182Hf: Improved chronometer for the early Solar system[J]. Physical Review Letters, 2004, 93(17): 172501. doi: 10.1103/PhysRevLett.93.172501
[4] Patchett P J, Tatsumoto M. A routine high-precision method for Lu-Hf isotope geochemistry and chronology[J]. Contributions to Mineralogy and Petrology, 1980, 75(3): 263-267.
[5] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 533-556. doi: 10.1016/S0016-7037(98)00274-9
[6] Blichert-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology, 1997, 127(3): 248-260. doi: 10.1007/s004100050278
[7] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[8] Cheng H, Liu X C, Vervoort J D, et al. Micro-sampling Lu-Hf geochronology reveals episodic garnet growth and multiple high-P metamorphic events[J]. Journal of Metamorphic Geology, 2016, 34(4): 363-377. doi: 10.1111/jmg.12185
[9] Cheng H, Zhou Y, Du K, et al. Microsampling Lu-Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt[J]. Journal of Metamorphic Geology, 2018, 36(8): 987-1008. doi: 10.1111/jmg.12424
[10] Barfod G H, Otero O, Albarède F. Phosphate Lu-Hf geochronology[J]. Chemical Geology, 2003, 200(3): 241-253.
[11] Herwartz D, Nagel T J, Muenker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience, 2011, 4(3): 178-183. doi: 10.1038/ngeo1060
[12] Blichert-Toft J, Arndt N T, Wilson A, et al. Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa[J]. American Mineralogist, 2015, 100(11-12): 2396-2411. doi: 10.2138/am-2015-5325
[13] Kinny P D, Compston W, Williams I S. A reconnaissance ion-probe study of hafnium isotopes in zircons[J]. Geochimica et Cosmochimica Acta, 1991, 55(3): 849-859. doi: 10.1016/0016-7037(91)90346-7
[14] Walder A J, Abell I D, Platzner I, et al. Lead isotope ratio measurement of NIST610 glass by laser ablation inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1993, 48(3): 397-402. doi: 10.1016/0584-8547(93)80044-U
[15] Thirlwall M F, Walder A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry[J]. Chemical Geology, 1995, 122(1): 241-247.
[16] Halliday A N, Lee D C, Christensen J N, et al. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 146-147: 21-33. doi: 10.1016/0168-1176(95)04200-5
[17] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf- isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 209(1): 121-135.
[18] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[19] Iizuka T, Hirata T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220(1): 121-137.
[20] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003
[21] Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology, 2007, 153(2): 177-190.
[22] Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 2005, 240(2): 378-400. doi: 10.1016/j.epsl.2005.09.025
[23] Wang H, Wu Y B, Gao S, et al. Continental growth through accreted oceanic arc: Zircon Hf-O isotope evidence for granitoids from the Qinling orogen[J]. Geochimica et Cosmochimica Acta, 2016, 182: 109-130. doi: 10.1016/j.gca.2016.03.016
[24] Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019-1031. doi: 10.1111/j.1525-1314.2011.00955.x
[25] Boudin A, Deutsch S. Geochronology: Recent development in the lutetium-176/hafnium-176 dating method[J]. Science, 1970, 168(3936): 1219-1220. doi: 10.1126/science.168.3936.1219
[26] Patchett P J. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution[J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 81-91. doi: 10.1016/0016-7037(83)90092-3
[27] 杨岳衡, 张宏福, 谢烈文, 等. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展[J]. 岩矿测试, 2006, 25(2): 151-158. doi: 10.3969/j.issn.0254-5357.2006.02.013 http://www.ykcs.ac.cn/cn/article/id/ykcs_20060253
Yang Y H, Zhang H F, Xie L W, et al. Progresses in chemical separation and mass spectrometric measure-ment for Lu-Hf isotopic system in natural geological samples[J]. Rock and Mineral Analysis, 2006, 25(2): 151-158. doi: 10.3969/j.issn.0254-5357.2006.02.013 http://www.ykcs.ac.cn/cn/article/id/ykcs_20060253
[28] Blichert-Toft J. On the Lu-Hf isotope geochemistry of silicate rocks[J]. Geostandards Newsletter, 2001, 25(1): 41-56. doi: 10.1111/j.1751-908X.2001.tb00786.x
[29] Walder A J, Freedman P A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source[J]. Journal of Analytical Atomic Spectrometry, 1992, 7(3): 571-575. doi: 10.1039/ja9920700571
[30] Walder A J, Platzner I, Freedman P A. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 19-23. doi: 10.1039/JA9930800019
[31] Zheng J P, Griffin W L, O'Reilly S Y, et al. 3.6Ga lower crust in central China: New evidence on the assembly of the North China craton[J]. Geology, 2004, 32(3): 229-232. doi: 10.1130/G20133.1
[32] Wang X, Griffin W L, Wang Z C, et al. Hf isotope composition of zircons and implication for the petrogenesis of Yajiangqiao granite, Hunan Province, China[J]. Chinese Science Bulletin, 2003, 48(10): 995-998. doi: 10.1007/BF03184214
[33] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
[34] Kemp A I S, Foster G L, Scherstén A, et al. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas[J]. Chemical Geology, 2009, 261(3): 244-260.
[35] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. doi: 10.1039/c2ja30078h
[36] Kemp A I S, Wormald R J, Whitehouse M J, et al. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia[J]. Geology, 2005, 33(10): 797-800. doi: 10.1130/G21706.1
[37] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3): 144-162.
[38] Harrison T M, Blichert-Toft J, Muller W, et al. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5Ga[J]. Science, 2005, 310(5756): 1947-1950. doi: 10.1126/science.1117926
[39] Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany[J]. Earth and Planetary Science Letters, 2006, 249(1): 47-61.
[40] 李献华, 梁细荣, 韦刚健, 等. 锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J]. 地球化学, 2003, 32(1): 86-90. doi: 10.3321/j.issn:0379-1726.2003.01.012
Li X H, Liang X R, Wei G J, et al. Precise analysis of zircon Hf isotopes by LAM-MC-ICPMS[J]. Geochimica, 2003, 32(1): 86-90. doi: 10.3321/j.issn:0379-1726.2003.01.012
[41] Xu P, Wu F Y, Xie L W, et al. Hf isotopic compositions of the standard zircons for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(15): 1642-1648. doi: 10.1007/BF03184136
[42] Yang J H, Wu F Y, Chung S L, et al. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, East China and their relationship to lithospheric thinning[J]. Chemical Geology, 2005, 222(3-4): 200-231. doi: 10.1016/j.chemgeo.2005.07.006
[43] Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
[44] Xie L W, Zhang Y B, Zhang H H, et al. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 2008, 53(10): 1565-1573.
[45] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003
[46] 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
Geng J Z, Li H K, Zhang J, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
[47] Xia X P, Sun M, Geng H Y, et al. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1868-1871. doi: 10.1039/c1ja10116a
[48] Gu H, Sun H, Wang F, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223-1232. doi: 10.1039/C9JA00024K
[49] Tollstrup D L, Xie L, Wimpenny J B, et al. A trio of laser ablation in concert with two ICP-MSs: Simultaneous, pulse-by-pulse determination of U-Pb discordant ages and a single spot Hf isotope ratio analysis in complex zircons from petrographic thin sections[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q3017, 10-1029.
[50] Kylander-Clark A R C, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99-112. doi: 10.1016/j.chemgeo.2013.02.019
[51] Fisher C M, Vervoort J D, Dufrane S A. Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(1): 121-139. doi: 10.1002/2013GC004962
[52] 李献华, 祁昌实, 刘颖, 等. 岩石样品快速Hf分离与MC-ICPMS同位素分析: 一个改进的单柱提取色谱方法[J]. 地球化学, 2005, 34(2): 109-114. doi: 10.3321/j.issn:0379-1726.2005.02.002
Li X H, Qi C S, Liu Y, et al. Rapid separation of Hf from rock samples for isotope analysis by MC-ICPMS: A modified single-column extraction chromatography method[J]. Geochimica, 2005, 34(2): 109-114. doi: 10.3321/j.issn:0379-1726.2005.02.002
[53] 杨岳衡, 张宏福, 刘颖, 等. 地质样品的一次阴离子色谱法Hf分离及其MC-ICP-MS分析[J]. 岩石学报, 2007, 23(2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702004.htm
Yang Y H, Zhang H F, Liu Y, et al. One column procedure for Hf purification in geological samples using anion exchange chromatography and its isotopic analyses by MC-ICP-MS[J]. Acta Petrologica Sinica, 23(2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702004.htm
[54] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202012150166
Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202012150166
[55] Zhang W, Hu Z. A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 171: 105929. doi: 10.1016/j.sab.2020.105929
[56] Russell W A, Papanastassiou D A, Tombrello T A. Ca isotope fractionation on the Earth and other Solar system materials[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1075-1090. doi: 10.1016/0016-7037(78)90105-9
[57] Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on geochemistry. Oxford: Pergamon, 2003: 1-64.
[58] Fisher C M, Hanchar J M, Samson S D, et al. Synthetic zircon doped with hafnium and rare earth elements: A reference material for in situ hafnium isotope analysis[J]. Chemical Geology, 2011, 286(1): 32-47.
[59] Debievre P, Taylor P D P. Table of the isotopic com-positions of the elements[J]. International Journal of Mass Spectrometry and Ion Processes, 1993, 123(2): 149-166. doi: 10.1016/0168-1176(93)87009-H
[60] Machado N, Simonetti A. U-Pb dating and Hf isotopic composition of zircon by laser-ablation-MC-ICP-MS[M]//Laser ablation-ICPMS in the Earth sciences: Principles and applications, 2001: 121-146.
[61] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(12): 1567-1574. doi: 10.1039/b206707b
[62] Elburg M A, Andersen T, Bons P D, et al. New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia[J]. Gondwana Research, 2013, 24(2): 700-712. doi: 10.1016/j.gr.2012.12.017
[63] Thirlwall M F, Anczkiewicz R. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios[J]. International Journal of Mass Spectrometry, 2004, 235(1): 59-81. doi: 10.1016/j.ijms.2004.04.002
[64] Ibanez-Mejia M, Gehrels G E, Ruiz J, et al. Small-volume baddeleyite (ZrO2) U-Pb geochronology and Lu-Hf isotope geochemistry by LA-ICP-MS: Techniques and applications[J]. Chemical Geology, 2014, 384: 149-167. doi: 10.1016/j.chemgeo.2014.07.011
[65] Vervoort J D, Patchett P J, Soderlund U, et al. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2004, 5: Q11002, 10-1029.
[66] Segal I, Halicz L, Platzner I T. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(10): 1217-1223. doi: 10.1039/b307016f
[67] Mcculloch M T, Rosman K J R, de Laeter J R. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples[J]. Geochimica et Cosmochimica Acta, 1977, 41(12): 1703-1707. doi: 10.1016/0016-7037(77)90202-2
[68] Lapen T J, Mahlen N J, Johnson C M, et al. High precision Lu and Hf isotope analyses of both spiked and unspiked samples: A new approach[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(1): Q1010.
[69] Amelin Y, Davis W J. Geochemical test for branching decay of 176Lu[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 465-473. doi: 10.1016/j.gca.2004.04.028
[70] Wang J, Ren T, Lu H, et al. The absolute isotopic composition and atomic weight of ytterbium using multi-collector inductively coupled plasma mass spectrometry and development of an SI-traceable ytterbium isotopic certified reference material[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 1377-1385. doi: 10.1039/C5JA00054H
[71] Fisher C M, Vervoort J D, Hanchar J M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data[J]. Chemical Geology, 2014, 363: 125-133. doi: 10.1016/j.chemgeo.2013.10.019
[72] Payne J L, Pearson N J, Grant K J, et al. Reassessment of relative oxide formation rates and molecular interfer-ences on in situ lutetium-hafnium analysis with laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(7): 1068-1079. doi: 10.1039/c3ja50090j
[73] Bauer A M, Horstwood M S A. Small-volume Lu-Hf and U-Pb isotope determination of complex zircons by solution and laser ablation MC-ICP-MS[J]. Chemical Geology, 2018, 476: 85-99. doi: 10.1016/j.chemgeo.2017.11.007
[74] Tang Z, Che X, Yang Y, et al. Precise and accurate Lu-Hf isotope analysis of columbite-group minerals by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1643-1656. doi: 10.1039/D1JA00125F
[75] 杨明, 王浩, 吴石头, 等. 钨矿床地球化学研究进展: 以黑钨矿U-Pb、Sm-Nd、Lu-Hf同位素年代学与微量元素为例[J]. 高校地质学报, 2021, 27(3): 249-263. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103003.htm
Yang M, Wang H, Wu S T, et al. Research progress of geochemistry in tungsten deposit: Based on the wolframite U-Pb, Sm-Nd, Lu-Hf isotope geochronlogy and trace element characterics[J]. Geological Journal of China Universities, 2021, 27(3): 249-263. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103003.htm
[76] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122
[77] Wang H, Wu Y B, Yang J H, et al. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China[J]. Lithos, 2017, 282-283: 298-315. doi: 10.1016/j.lithos.2017.03.014
[78] 叶亚康, 周家云, 周雄. 川西塔公松林口岩体LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩矿测试, 2020, 39(6): 921-933. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060008
Ye Y K, Zhou J Y, Zhou X. Zircon LA-ICP-MS U-Pb age and geochemical features of the Songlinkou pluton, western Sichuan[J]. Rock and Mineral Analysis, 2020, 39(6): 921-933. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060008
[79] Wang H, Yang J H, Kröner A, et al. Non-subduction origin for 3.2Ga high-pressure metamorphic rocks in the Barberton granitoid-greenstone terrane, South Africa[J]. Terra Nova, 2019, 31(4): 373-380.
[80] Wang H, Yang J H, Kröner A, et al. Extensive magmatism and metamorphism at ca. 3.2Ga in the eastern Kaapvaal Craton[J]. Precambrian Research, 2020, 351: 105952. doi: 10.1016/j.precamres.2020.105952
[81] Liu X C, Wu Y B, Fisher C M, et al. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers[J]. Geology, 2017, 45(2): 103-106. doi: 10.1130/G38720.1
[82] Wang H, Yang J H, Zhu Y S, et al. Archean crustal growth and reworking revealed by combined U-Pb-Hf-O isotope and trace element data of detrital zircons from ancient and modern river sediments of the eastern Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2022, 320: 79-104. doi: 10.1016/j.gca.2021.12.025
[83] Stevenson R K, Patchett P J. Implications for the evo-lution of continental crust from Hf isotope systematics of Archean detrital zircons[J]. Geochimica et Cosmochimica Acta, 1990, 54(6): 1683-1697. doi: 10.1016/0016-7037(90)90400-F
[84] Weis D, Kieffer B, Hanano D, et al. Hf isotope compositions of U.S. Geological Survey reference materials[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(6): Q6006.
[85] 陈开运, 袁洪林, 包志安, 等. 人工合成锆石Lu-Hf同位素标样方法研究[J]. 岩石矿物学杂志, 2012, 31(2): 279-288. doi: 10.3969/j.issn.1000-6524.2012.02.016
Chen K Y, Yuan H L, Bao Z A, et al. A preliminary study of the method for synthetic zircon Lu-Hf isotopic standard[J]. Acta Petrologica et Mineralogica, 2012, 31(2): 279-288. doi: 10.3969/j.issn.1000-6524.2012.02.016
[86] Yu Y, Xu X, Chen X. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China[J]. Mineralogy and Petrology, 2010, 100(1): 75-94. doi: 10.3969/j.issn.1001-6872.2010.01.013
[87] Yang Y, Wu F, Wilde S A, et al. A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards[J]. International Journal of Mass Spectrometry, 2011, 299(1): 47-52. doi: 10.1016/j.ijms.2010.09.016
[88] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
[89] Li X H, Long W G, Li Q L, et al. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 117-134. doi: 10.1111/j.1751-908X.2010.00036.x
[90] Yu S, Sun J, Evans N J, et al. Further evaluation of Penglai zircon megacrysts as a reference material for (U-Th)/He dating[J]. Geostandards and Geoanalytical Research, 2020, 44(4): 763-783. doi: 10.1111/ggr.12331
[91] Schmitz M D, Bowring S A. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: An assessment of high-precision U-Pb geochronology and its appli-cation to young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2571-2587. doi: 10.1016/S0016-7037(01)00616-0
[92] Wotzlaw J, Schaltegger U, Frick D A, et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption[J]. Geology, 2013, 41(8): 867-870. doi: 10.1130/G34366.1
[93] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
[94] Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size[J]. Chinese Science Bulletin, 2007, 52(9): 1257-1264. doi: 10.1007/s11434-007-0160-x
[95] Eddy M P, Ibañez-Mejia M, Burgess S D, et al. GHR1 zircon—A new Eocene natural reference material for microbeam U-Pb geochronology and Hf isotopic analysis of zircon[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 113-132. doi: 10.1111/ggr.12246
[96] Zartman R E, Richardson S H, Gurney J J, et al. U-Th-Pb age of megacrysts zircon from the Monastery kimberlite, free state, South Africa[C]// Proceedings of International Kimberlite Conference: Extended Abstracts, 1998, 7(1): 989-991.
[97] Woodhead J D, Hergt J M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination[J]. Geostandards and Geoanalytical Research, 2005, 29(2): 183-195. doi: 10.1111/j.1751-908X.2005.tb00891.x
[98] Ali S A, Ismail S A, Nutman A P, et al. The intra-oceanic Cretaceous (~108Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure[J]. Lithos, 2016, 260: 154-163. doi: 10.1016/j.lithos.2016.05.027
[99] Ávila J N, Ireland T R, Holden P, et al. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 85-102. doi: 10.1111/ggr.12298
[100] Valley J W. Oxygen isotopes in zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 343-385. doi: 10.2113/0530343
[101] Cavosie A J, Valley J W, Wilde S A, et al. Magmatic δ18O in 4400-3900Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean[J]. Earth and Planetary Science Letters, 2005, 235(3): 663-681.
[102] Fu B, Valley J W, Kita N T, et al. Multiple origins of zircons in jadeitite[J]. Contributions to Mineralogy and Petrology, 2010, 159(6): 769-780. doi: 10.1007/s00410-009-0453-y
[103] Luo T, Li Q, Ling X, et al. Jilin zircon—A new natural reference material for microbeam U-Pb geochronology and Hf-O isotopic analysis[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2216-2226. doi: 10.1039/D1JA00258A
[104] Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q4010, 10-1029.
[105] Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654. doi: 10.1007/s11434-013-5932-x
[106] Heinonen A P, Andersen T, Rämö O T. Re-evaluation of rapakivi petrogenesis: Source constraints from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland[J]. Journal of Petrology, 2010, 51(8): 1687-1709. doi: 10.1093/petrology/egq035
[107] Slama J, Kosler J, Condon D J, et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
[108] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1-2): 155-170. doi: 10.1016/S0009-2541(03)00165-7
[109] Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology, 2004, 205(1-2): 115-140. doi: 10.1016/j.chemgeo.2004.01.003
[110] Liu Y, Li Q, Tang G, et al. Concurrent determination of U-Pb age and REE mass fractions of zircon by high mass resolution SIMS[J]. Geostandards and Geoanalytical Research, 2020, 44(3): 421-437. doi: 10.1111/ggr.12344
[111] Mattinson J M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples[J]. Chemical Geology, 2010, 275(3-4): 186-198. doi: 10.1016/j.chemgeo.2010.05.007
[112] Buret Y, von Quadt A, Heinrich C, et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)[J]. Earth and Planetary Science Letters, 2016, 450: 120-131. doi: 10.1016/j.epsl.2016.06.017
[113] Nasdala L, Corfu F, Valley J W, et al. Zircon M127—A homogeneous reference material for SIMS U-Pb geochronology combined with hafnium, oxygen and, potentially, lithium isotope analysis[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 457-475. doi: 10.1111/ggr.12123
[114] Nasdala L, Corfu F, Schoene B, et al. GZ7 and GZ8—Two zircon reference materials for SIMS U-Pb geochronology[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 431-457. doi: 10.1111/ggr.12239
[115] Huang C, Wang H, Yang J, et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 103-123. doi: 10.1111/ggr.12307
[116] Huang C, Wang H, Yang J H, et al. Characterization of the potential reference material SA02 for micro-beam U-Pb geochronology and Hf-O isotopic composition analysis of zircon[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 368-374. doi: 10.1039/D0JA00409J
[117] Santos M M, Lana C, Scholz R, et al. A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing[J]. Geostandards and Geoanalytical Research, 2017, 41(3): 335-358. doi: 10.1111/ggr.12167
[118] Stern R A, Amelin Y. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM610 glass[J]. Chemical Geology, 2003, 197(1): 111-142.
[119] Schoene B, Crowley J L, Condon D J, et al. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 426-445. doi: 10.1016/j.gca.2005.09.007
[120] Zi J, Cawood P A, Fan W, et al. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys[J]. Lithos, 2012, 140: 166-182.
[121] Coble M A, Vazquez J A, Barth A P, et al. Trace element characterisation of MAD-559 zircon reference material for ion microprobe analysis[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 481-497. doi: 10.1111/ggr.12238
[122] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257— A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x
[123] Lana C, Farina F, Gerdes A, et al. Characterization of zircon reference materials via high precision U-Pb LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 2011-2023. doi: 10.1039/C7JA00167C
[124] Huang C, Wang H, Yang J, et al. Further characterization of the BB Zircon via SIMS and MC-ICP-MS for Li, O, and Hf isotopic compositions[J]. Minerals, 2019, 9(12): 774, 10-3390. doi: 10.3390/min9120774
[125] Nasdala L, Reiners P W, Garver J I, et al. Incomplete retention of radiation damage in zircon from Sri Lanka[J]. American Mineralogist, 2004, 89(1): 219-231. doi: 10.2138/am-2004-0126
[126] Cavosie A J, Valley J W, Kita N T, et al. The origin of high δ18O zircons: Marbles, megacrysts, and metamorphism[J]. Contributions to Mineralogy and Petrology, 2011, 162(5): 961-974. doi: 10.1007/s00410-011-0634-3
[127] Chang Z, Vervoort J D, Mcclelland W C, et al. U-Pb dating of zircon by LA-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(5): Q5009.
[128] Bahlburg H, Vervoort J D, Du Frane S A, et al. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America[J]. Earth-Science Reviews, 2009, 97(1): 215-241.
[129] Hu Z C, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2715-2734. doi: 10.1039/D1JA00311A
[130] Cheong A C, Jeong Y, Lee S, et al. LKZ-1: A new zircon working standard for the in situ determination of U-Pb age, O-Hf isotopes, and trace element composition[J]. Minerals, 2019, 9(325): 10-3390.
[131] Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255(1-2): 231-235. doi: 10.1016/j.chemgeo.2008.06.040
[132] Horstwood M S A, Košler J, Gehrels G, et al. Community -derived standards for LA-ICP-MS U-(Th-)Pb geochronology—Uncertainty propagation, age interpretation and data reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 311-332. doi: 10.1111/j.1751-908X.2016.00379.x
[133] Piazolo S, Belousova E, la Fontaine A, et al. Trace element homogeneity from micron- to atomic scale: Implication for the suitability of the zircon GJ-1 as a trace element reference material[J]. Chemical Geology, 2017, 456: 10-18. doi: 10.1016/j.chemgeo.2017.03.001
[134] Xia X, Cui Z, Li W, et al. Zircon water content: Reference material development and simultaneous measurement of oxygen isotopes by SIMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1088-1097. doi: 10.1039/C9JA00073A
[135] Gain S E M, Gréau Y, Henry H, et al. Mud Tank zircon: Long-term evaluation of a reference material for U-Pb dating, Hf-isotope analysis and trace element analysis[J]. Geostandards and Geoanalytical Research, 2019, 43(3): 339-354. doi: 10.1111/ggr.12265
[136] 周红英, 李怀坤, 耿建珍, 等. 一件可能的Hf同位素测定标准锆石[J]. 地质学报, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm
Zhou H Y, Li H K, Geng J Z, et al. A potential standard zircon for Hf isotopic analysis[J]. Acta Geological Sinica, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm
[137] Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9-39. doi: 10.1111/j.1751-908X.2004.tb01041.x
[138] Blichert-Toft J. The Hf isotopic composition of zircon reference material 91500[J]. Chemical Geology, 2008, 253(3): 252-257.
[139] Paces J B, Miller J D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1Ga Midcontinent rift system[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B8): 13997-14013. doi: 10.1029/93JB01159
[140] Schmitz M D, Bowring S A, Ireland T R. Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: New high-precision isotope dilution thermal ionization mass spectrometry results[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3665-3672. doi: 10.1016/S0016-7037(03)00200-X
[141] Booth A L, Kolodny Y, Chamberlain C P, et al. Oxygen isotopic composition and U-Pb discordance in zircon[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4895-4905. doi: 10.1016/j.gca.2005.05.013
[142] Trail D, Mojzsis S J, Harrison T M, et al. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements[J]. Geochemistry, Geophysics, Geosystems, 2007, 8: Q6014.
[143] Takehara M, Horie K, Hokada T, et al. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth Gabbro[J]. Chemical Geology, 2018, 484: 168-178. doi: 10.1016/j.chemgeo.2018.01.028
[144] Ibañez-Mejia M, Tissot F L H. Extreme Zr stable isotope fractionation during magmatic fractional crystallization[J]. Science Advances, 2019, 5(12): x8648. doi: 10.1126/sciadv.aax8648
[145] Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 5063-5073. doi: 10.1016/S0016-7037(96)00287-6
[146] Ashton K E, Heaman L M, Lewry J F, et al. Age and origin of the Jan Lake Complex: A glimpse at the buried Archean craton of the Trans-Hudson Orogen[J]. Canadian Journal of Earth Sciences, 1999, 36(2): 185-208. doi: 10.1139/e98-038
[147] Silva A J C A, Simões L S A, Dufrane S A, et al. U-Pb ages of detrital zircon grains for the Canastra Group and Passos Nappe units and U-Pb and Lu-Hf isotope analyses from orthogneisses: Provenance and tectonic implications, southern Brasília Belt, Brazil[J]. Precambrian Research, 2020, 346: 105771. doi: 10.1016/j.precamres.2020.105771
[148] Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1-2): 171-188. doi: 10.1016/S0009-2541(03)00166-9
[149] Kröner A, Willner A P. Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany[J]. Contributions to Mineralogy and Petrology, 1998, 132(1): 1-20. doi: 10.1007/s004100050401
[150] Wei Q D, Wang H, Yang Y H, et al. KV01 zircon— A potential new Archean reference material for microbeam U-Pb age and Hf-O isotope determinations[J]. Science China Earth Sciences, 2020, 63(11): 1780-1790. doi: 10.1007/s11430-019-9638-y
[151] Stern R A, Bodorkos S, Kamo S L, et al. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating[J]. Geostandards and Geoanalytical Research, 2009, 33(2): 145-168. doi: 10.1111/j.1751-908X.2009.00023.x
[152] Kemp A I S, Vervoort J D, Bjorkman K E, et al. Hafnium isotope characteristics of Palaeoarchaean zircon OG1/OGC from the Owens Gully diorite, Pilbara Craton, western Australia[J]. Geostandards and Geoanalytical Research, 2017, 41(4): 659-673. doi: 10.1111/ggr.12182
[153] Laurent O, Björnsen J, Wotzlaw J, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 13(2): 163-169. doi: 10.1038/s41561-019-0520-6
[154] Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1107-1113. doi: 10.1039/b923444f
[155] Amelin Y, Zaitsev A N. Precise geochronology of pho-scorites and carbonatites: The critical role of U-series disequilibrium in age interpretations[J]. Geochimica et Cosmochimica Acta, 2002, 66(13): 2399-2419. doi: 10.1016/S0016-7037(02)00831-1
[156] Schmitt A K, Chamberlain K R, Swapp S M, et al. In situ U-Pb dating of micro-baddeleyite by secondary ion mass spectrometry[J]. Chemical Geology, 2010, 269(3): 386-395.
[157] Rodionov N V, Belyatsky B V, Antonov A V, et al. Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-ultramafic complex, Kola Peninsula, Russia[J]. Gondwana Research, 2012, 21(4): 728-744. doi: 10.1016/j.gr.2011.10.005
[158] Heaman L M. The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards[J]. Chemical Geology, 2009, 261(1-2): 42-51.
[159] Wu F, Yang Y, Mitchell R H, et al. In situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite[J]. Chemical Geology, 2010, 277(1): 178-195.
[160] Wu F, Yang Y, Marks M A W, et al. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 2010, 273(1): 8-34.
[161] Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA-MC-ICPMS: Protocol and applications[J]. Chemical Geology, 2011, 281(1): 72-82.
[162] Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261(3): 346-369.
[163] Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530. doi: 10.1007/s00410-011-0609-4
[164] Li Q, Lin W, Su W, et al. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China[J]. Lithos, 2011, 122(1): 76-86.
[165] Li Y, Yang Y, Jiao S, et al. In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS[J]. Science China: Earth Sciences, 2015, 58(12): 2134-2144. doi: 10.1007/s11430-015-5215-2
[166] Bracciali L, Parrish R R, Horstwood M S A, et al. U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance[J]. Chemical Geology, 2013, 347: 82-101. doi: 10.1016/j.chemgeo.2013.03.013
[167] Zhang L, Wu J, Tu J, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133-145. doi: 10.1111/ggr.12304
[168] Che X, Wu F, Wang R, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989. doi: 10.1016/j.oregeorev.2014.07.008
[169] Legros H, Mercadier J, Villeneuve J, et al. U-Pb isotopic dating of columbite-tantalite minerals: Development of reference materials and in situ applications by ion microprobe[J]. Chemical Geology, 2019, 512: 69-84. doi: 10.1016/j.chemgeo.2019.03.001
[170] Melcher F, Graupner T, Gäbler H, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719. doi: 10.1016/j.oregeorev.2013.09.003
[171] Kamenov G D, Mueller P A, Mazdab F K. Using synthetic zircons to test the reliability of the Lu-Yb isobaric interference correction of Hf isotopic measurements during laser ablation MC-ICP-MS analyses[C]. 2008.
[172] Taylor D J, Mckeegan K D, Harrison T M, et al. LA-MC-ICPMS Lu-Hf isotopes in lunar zircons: Reliability of peak stripping protocol[C]. 2008.
[173] Zhou G, Wu Y, Fu B, et al. Genesis of baddeleyite and high δ 18O zircon in impure marble from the Tongbai orogen, central China: Insights from petrochronology and Hf-O isotope compositions[J]. Contributions to Mineralogy and Petrology, 2020, 175(8): 75. doi: 10.1007/s00410-020-01714-z
[174] Zhu Y S, Yang J H, Wang H, et al. Mesoproterozoic (~1.32Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent[J]. Precambrian Research, 2020, 342: 105674. doi: 10.1016/j.precamres.2020.105674
[175] Williams C T, Gieré R. Zirconolite: A review of localities worldwide, and a compilation of its chemical compositions[J]. Bulletin of the Natural History Museum London, 1996, 52(1): 1.
[176] Schilling J, Wu F Y, Mccammon C, et al. The composi-tional variability of eudialyte-group minerals[J]. Mineralogical Magazine, 2011, 75(1): 87-115. doi: 10.1180/minmag.2011.075.1.87
[177] Busche F D, Prinz M, Keil K, et al. Lunar zirkelite: A uranium-bearing phase[J]. Earth and Planetary Science Letters, 1972, 14(3): 313-321. doi: 10.1016/0012-821X(72)90130-6
[178] Rasmussen B, Fletcher I R. Zirconolite: A new U-Pb chronometer for mafic igneous rocks[J]. Geology, 2004, 32(9): 785-788. doi: 10.1130/G20658.1
[179] Kogarko L N, Lahaye Y, Brey G P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics[J]. Mineralogy and Petrology, 2010, 98(1): 197-208.
[180] Huang C, Yang Y, Yang J, et al. In situ simultaneous measurement of Rb-Sr/Sm-Nd or Sm-Nd/Lu-Hf isotopes in natural minerals using laser ablation multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 994-1000. doi: 10.1039/C4JA00449C
[181] Axelsson E, Pape J, Berndt J, et al. Rutile R632—A new natural reference material for U-Pb and Zr determination[J]. Geostandards and Geoanalytical Research, 2018, 42(3): 319-338. doi: 10.1111/ggr.12213
[182] Choukroun M, O'Reilly S Y, Griffin W L, et al. Hf iso-topes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J]. Geology, 2005, 33(1): 45-48. doi: 10.1130/G21084.1
[183] Aulbach S O, Reilly S Y, Griffin W L, et al. Subcon-tinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, 1(7): 468-472. doi: 10.1038/ngeo226
[184] Yuan S, Peng J, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews, 2011, 43(1): 235-242. doi: 10.1016/j.oregeorev.2011.08.002
[185] Kendall-Langley L A, Kemp A I S, Grigson J L, et al. U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of western Australia[J]. Lithos, 2020, 352-353: 105231. doi: 10.1016/j.lithos.2019.105231
[186] Linnen R L, van Lichtervelde M, Cerny P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275
[187] Smith S R, Foster G L, Romer R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and laser ablation-multi collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147(5): 549-564. doi: 10.1007/s00410-003-0538-y
[188] 贾玉衡, 钱建平. 电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征[J]. 岩矿测试, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060007
Jia Y H, Qian J P. Study on REE distribution and mineralogical characteristics of different garnets by electron probe and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060007
[189] Mulcahy S R, King R L, Vervoort J D. Lawsonite Lu-Hf geochronology: A new geochronometer for subduction zone processes[J]. Geology, 2009, 37(11): 987-990. doi: 10.1130/G30292A.1
[190] Scherer E E, Cameron K L, Blichert-Toft J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3413-3432. doi: 10.1016/S0016-7037(00)00440-3
[191] Schmidt A, Pourteau A, Candan O, et al. Lu-Hf geochro-nology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey)[J]. Earth and Planetary Science Letters, 2015, 432: 24-35. doi: 10.1016/j.epsl.2015.09.015
[192] Nesheim T O, Vervoort J D, Mcclelland W C, et al. Mesoproterozoic syntectonic garnet within belt super-group metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia[J]. Lithos, 2012, 134-135: 91-107. doi: 10.1016/j.lithos.2011.12.008
[193] Ma Q, Yang M, Zhao H, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1256-1262. doi: 10.1039/C9JA00034H
[194] Woods G. Resolution of 176Yb and 176Lu interferences on 176Hf to enable accurate 176Hf/177Hf isotope ratio analysis using an Agilent 8800 ICP-QQQ with MS/MS[R]. Agilent Application Note, 2016.
[195] Zack T, Hogmalm K J. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell[J]. Chemical Geology, 2016, 437: 120-133. doi: 10.1016/j.chemgeo.2016.05.027
[196] Hogmalm K J, Zack T, Karlsson A K O, et al. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: An evaluation of N2O and SF6 as reaction gases[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(2): 305-313. doi: 10.1039/C6JA00362A
[197] Hogmalm K J, Dahlgren I, Fridolfsson I, et al. First in situ Re-Os dating of molybdenite by LA-ICP-MS/MS[J]. Mineralium Deposita, 2019, 54(6): 821-828. doi: 10.1007/s00126-019-00889-1
[198] Tamblyn R, Hand M, Simpson A, et al. In situ laser ablation Lu-Hf geochronology of garnet across the western Gneiss Region: Campaign-style dating of metamorphism[J]. Journal of the Geological Society, 2022(4): 179.
[199] Simpson A, Gilbert S, Tamblyn R, et al. In-situ Lu-Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS[J]. Chemical Geology, 2021, 577: 120299. doi: 10.1016/j.chemgeo.2021.120299
[200] Craig G, Managh A J, Stremtan C, et al. Doubling sensitivity in multicollector ICPMS using high-efficiency, rapid response laser ablation technology[J]. Analytical Chemistry, 2018, 90(19): 11564-11571. doi: 10.1021/acs.analchem.8b02896