Characteristics of Heavy Metal Pollution and Health Risk Assessment of the Long-term Livestock Wastewater Irrigated Soils in Jiangxi Province
-
摘要:
Cu、Pb、Zn、As等作为饲料添加剂的普遍使用,使集约化养殖场废水中重金属含量较高,养殖场废水作为有机肥还田后可能引起土壤重金属的累积。为了解养殖场废水灌溉地土壤重金属污染特征及其健康风险,本文选择了江西抚州市某养殖场(养猪)废水(含粪便)灌溉地为研究对象,采集了11块地块样品,采用微波消解、电感耦合等离子体质谱法(ICP-MS)测定了样品中Cr、Cu、Zn、As、Cd及Pb共6种重金属含量,运用污染负荷指数(PLI)、潜在生态风险指数(RI)和健康风险评价模型评价了土壤重金属污染程度、潜在生态风险和健康风险。结果表明: ①Cr、Cu、Zn及As平均含量分别为75.8、32.8、93.7及21.3mg/kg,明显高于其背景值;Cd平均含量为0.09mg/kg,接近于其背景值;Pb平均含量为15.2mg/kg,低于其背景值。②Cr出现轻度污染,Pb没有发生污染;大部分采样点出现As中度污染,Cu和Zn轻度污染;而绝大部分采样点没有发生Cd污染。6种重金属平均PLI为1.22,总体上属于轻度污染。③各重金属均呈低生态风险,平均RI为66.26,综合生态风险呈低生态风险。④研究区土壤重金属儿童和成人非致癌风险指数分别为0.06和0.12,致癌风险指数分别为1.65×10-5和3.67×10-5,均在可接受范围内。综上,研究区土壤重金属呈轻度污染,但大部分点位As存在中度污染需引起关注,后续还需加强对灌溉土壤重金属含量的监测。
Abstract:BACKGROUND Cu, Pb, Zn and As were widely used as feed additives in the study area. However, the absorption rate of heavy metals by livestock and poultry was low. The concentration of heavy metals in livestock wastewater was high. The livestock wastewater as organic fertilizer may lead to the accumulation of heavy metals in the soil.
OBJECTIVES To evaluate the pollution degree, the potential ecological risk and health risk of heavy metals from the long-term swine manure irrigated vegetable soils in Fuzhou City of Jiangxi Province, China.
METHODS Eleven topsoil samples were obtained from the long-term swine manure irrigated vegetable soils in Fuzhou City of Jiangxi Province, China. The concentrations of As, Cd, Cr, Cu, Pb and Zn were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). The degree of pollution and the potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and the potential ecological risk index (RI), respectively. The health risk was evaluated by a health risk assessment model.
RESULTS The average concentrations of Cu, Zn, As and Cr are 75.8, 32.8, 93.7, and 21.3mg/kg, respectively, which were higher than the soil background values of Fuzhou City. The average concentration of Cd (0.09mg/kg) was very close to the background value, and the average concentration of Pb (15.2mg/kg) was lower than the soil background value. The pollution load index indicated that the moderate pollution of As occurred in the researched soils, and there was slight pollution of Cu and Zn, and no pollution of Cd in the majority of the sampling sites. There was no pollution of Pb and slight pollution of Cr in all sampling sites. The average PLI of the six heavy metals from all sampling sites was 1.22, which was categorized as slight pollution. Low potential ecological risk was posed by the six heavy metals. The mean RI was 66.26 which represented a low ecological risk. The annual child and adult non-carcinogenic risk index was 0.06 and 0.12, respectively. The annual child and adult carcinogenic risk index was 1.65×10-5 and 3.67×10-5, respectively. Non-carcinogenic and carcinogenic health risks of adults and children in the soil were acceptable.
CONCLUSIONS There was generally slight pollution of heavy metal in the study area but it was moderately polluted by As in most sampling points. However, due to the accumulative effect of heavy metals in the soil, close attention must be paid to changes in the concentration of heavy metals in the irrigated soil in the future, to prevent the risk caused by heavy metals pollution.
-
表 1 各重金属健康风险评价参考剂量(RfD)和致癌斜率因子(SF)
Table 1. Reference dose (RfD) and carcinogenic slope factor (SF) for health risk assessment of heavy metals
重金属元素 参考剂量RfD[mg/(kg·d)] 致癌斜率因子SF(kg·d/mg) 经口摄入 呼吸吸入(成人) 呼吸吸入(儿童) 皮肤接触 经口摄入 呼吸吸入 皮肤接触 Cr 3.0×10-3 2.35×10-5 3.91×10-5 7.5×10-5 / / / Cu 4.0×10-2 / / 4.0×10-2 / / / Zn 3.0×10-1 / / 3.0×10-1 / / / As 3.0×10-4 3.52×10-6 5.86×10-6 3.0×10-4 1.5 4.3×10-3 1.5 Cd 1.0×10-3 2.35×10-6 3.91×10-6 2.5×10-5 6.1 6.3 6.1 Pb 3.5×10-3 8.21×10-5 1.37×10-4 5.3×10-4 / / / 注:“/”表示中国《污染场地风险评估技术导则》(HJ25.3—2014)和US EPA中均没有给出这些数据。 表 2 重金属健康风险评估的暴露参数
Table 2. Exposure parameters for health risk assessment of heavy metals
暴露参数 具体含义 单位 儿童参考值 成人参考值 ED 暴露期 a 6 24 BW 平均体重 kg 15.9 56.8 EF 暴露频率 d/a 350 350 AT 平均暴露时间 d 致癌26280 致癌26280 非致癌2190 非致癌2190 IngR 每日摄入土壤量 mg/d 200 100 InhR 每日空气呼吸量 mg/d 7.5 14.5 SA 暴露皮肤表面积 cm2 2848.01 5373.99 SL 皮肤黏附系数 mg/(cm2·d) 0.2 0.07 PEF 地表排放因子 m3/kg 1.36×109 1.36×109 ABS 皮肤吸收因子 - Cr: 0.001; Cu: 0.06; Zn: 0.02; Pb: 0.006; As: 0.03: Cd: 0.001 表 3 土壤重金属非致癌平均日暴露量
Table 3. Non-carcinogenic average daily exposure doses for heavy metals in soil
人群 不同途径健康风险参数 重金属元素非致癌日均暴露量 ADD[mg/(kg·d)] Cr Cu Zn As Cd Pb 儿童 ADDing 3.71×10-5 1.65×10-5 4.71×10-5 1.07×10-5 4.50×10-8 7.62×10-6 1.19×10-4 ADDinh 3.96×10-9 1.76×10-9 5.02×10-9 1.14×10-9 4.80×10-12 8.12×10-10 1.27×10-8 ADDderm 2.11×10-7 5.64×10-6 5.36×10-6 1.83×10-6 1.54×10-8 2.60×10-7 1.33×10-5 ADDc 3.73×10-5 2.21×10-5 5.24×10-5 1.26×10-5 6.04×10-8 7.88×10-6 1.32×10-4 成人 ADDing 8.21×10-5 3.95×10-5 1.17×10-4 2.87×10-5 1.00×10-7 1.80×10-5 2.85×10-4 ADDinh 2.65×10-9 1.02×10-9 2.91×10-9 6.62×10-10 2.78×10-12 4.70×10-10 7.71×10-9 ADDderm 1.56×10-7 4.17×10-6 3.97×10-6 1.36×10-6 1.14×10-8 1.93×10-7 9.85×10-6 ADDa 8.23×10-5 4.37×10-5 1.21×10-4 3.00×10-5 1.12×10-7 1.82×10-5 2.95×10-4 表 4 土壤重金属非致癌平均健康风险指数
Table 4. Non-carcinogenic mean health risk index of heavy metals in soil
重金属元素 人群 HQing HQinh HQderm HQi Cr 儿童 1.24×10-2 1.01×10-4 2.82×10-3 1.53×10-2 成人 2.77×10-2 1.13×10-4 2.08×10-3 2.99×10-2 Cu 儿童 4.13×10-4 / 1.41×10-4 5.54×10-4 成人 9.24×10-4 / 1.04×10-4 1.03×10-3 Zn 儿童 1.57×10-4 / 1.79×10-5 1.75×10-4 成人 3.51×10-4 / 1.32×10-5 3.65×10-4 As 儿童 3.57×10-2 1.95×10-4 6.11×10-3 4.20×10-2 成人 8.01×10-2 1.88×10-4 4.52×10-3 8.48×10-2 Cd 儿童 4.50×10-5 1.23×10-6 6.15×10-4 6.61×10-4 成人 1.01×10-4 1.18×10-6 4.55×10-4 5.57×10-4 Pb 儿童 2.18×10-3 5.93×10-6 4.91×10-4 2.67×10-3 成人 4.87×10-3 5.73×10-6 3.63×10-4 5.24×10-3 注:“/”表示无相关数据。 -
[1] Liu W R, Zeng D, She L, et al. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China[J]. Science of the Total Environment, 2020, 734: 139023-139035. doi: 10.1016/j.scitotenv.2020.139023
[2] Kamilaris A, Engelbrecht A, Pitsillides A, et al. Transfer of manure as fertilizer from livestock farms to crop fields: The case of Catalonia[J]. Computers and Electronics in Agriculture, 2020, 175: 105550. doi: 10.1016/j.compag.2020.105550
[3] 刘春, 刘晨阳, 王济民, 等. 我国畜禽粪便资源化利用现状与对策建议[J]. 中国农业资源与区划, 2021, 42(2): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ202102006.htm
Liu C, Liu C Y, Wang J M, et al. The current situation of resource utilization of livestock and poultry manure in China and the countermeasures and suggestions[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ202102006.htm
[4] Li Q, Liao J, Lei C, et al. Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112040-112048. doi: 10.1016/j.ecoenv.2021.112040
[5] 姚丽贤, 黄连喜, 蒋宗勇, 等. 动物饲料中砷、铜和锌调查及分析[J]. 环境科学, 2013, 34(2): 732-739. doi: 10.13227/j.hjkx.2013.02.015
Yao L X, Huang L X, Jiang Z Y. Investigation of As, Cu and Zn species and concentrations in animal feeds[J]. Environmental Science, 2013, 34(2): 732-739. doi: 10.13227/j.hjkx.2013.02.015
[6] 任玉琴, 黄娟, 饶凤琴, 等. 浙江省重点地区猪粪中重金属含量及安全施用评估[J]. 植物营养与肥料学报, 2018, 24(3): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201803016.htm
Ren Y Q, Huang J, Rao F Q, et al. Heavy metal contents in swine feces from key areas of Zhejiang Province and their risk evaluation for soil application[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201803016.htm
[7] 沈丰菊, 韩建华, 赵润, 等. 猪粪中重金属元素含量及其变化特征分析[J]. 农业资源与环境学报, 2021, 38(3): 466-474. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ202103014.htm
Shen F J, Han J H, Zhao R, et al. Research on the contents and change characteristics of heavy metals in swine manure[J]. Journal of Agricultural Resources and Environment, 2021, 38(3): 466-474. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ202103014.htm
[8] 杨潞, 张玉, 张智, 等. 规模化猪场灌区土壤重金属污染特征及风险评价——以重庆市某种猪场为例[J]. 农业环境科学学报, 2018, 37(10): 2166-2174. doi: 10.11654/jaes.2017-1775
Yang L, Zhang Y, Zhang Z, et al. Characteristics and risk of heavy metals pollution in soils of the irrigation area of a large-scale pig farm: A case study of a pig farm in Chongqing, China[J]. Journal of Agro-Environment Science, 2018, 37(10): 2166-2174. doi: 10.11654/jaes.2017-1775
[9] 穆虹宇, 庄重, 李彦明, 等. 我国畜禽粪便重金属含量特征及土壤累积风险分析[J]. 环境科学, 2020, 41(2): 986-996. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202002058.htm
Mu H Y, Zhuang Z, Li Y M, et al. Heavy metal contents in animal manure in China and the related soil accumulation risks[J]. Environmental Science, 2020, 41(2): 986-996. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202002058.htm
[10] Huang Q Q, Yu Y, Wan Y N, et al. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L. )[J]. Journal of Environmental Management, 2018, 215: 13-21.
[11] Wan Y, Huang Q, Wang Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure[J]. Journal of Hazardous Materials, 2020, 384: 121293-121302. doi: 10.1016/j.jhazmat.2019.121293
[12] Gan Y, Huang X, Li S, et al. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta[J]. Journal of Cleaner Production, 2019, 221: 98-107. doi: 10.1016/j.jclepro.2019.02.157
[13] 夏文建, 徐昌旭, 刘增兵, 等. 江西省农田重金属污染现状及防治对策研究[J]. 江西农业学报, 2015, 27(1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201501023.htm
Xia W J, Xu C X, Liu Z B, et al. Status of heavy metal pollution in farmland soil of Jiangxi province and its control countermeasures[J]. Acta Agriculturae Jiangxi, 2015, 27(1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201501023.htm
[14] Yu Y, Wang H, Li Q, et al. Exposure risk of rural residents to copper in the Le'an River Basin, Jiangxi Province, China[J]. Science of the Total Environment, 2016, 548-549: 402-407.
[15] 林小兵, 武琳, 王惠明, 等. 不同功能区蔬菜地土壤重金属污染特征及其风险评价[J]. 生态环境学报, 2020, 29(11): 2296-2306.
Lin X B, Wu L, Wang H M, et al. Heavy metals pollution characteristics and risk assessment of vegetable soil in different functional areas[J]. Ecology and Environmental Sciences, 2020, 29(11): 2296-2306.
[16] 张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911050152
Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911050152
[17] 姜萍, 金盛杨, 郝秀珍, 等. 重金属在猪饲料—粪便—土壤—蔬菜中的分布特征研究[J]. 农业环境科学学报, 2010, 29(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201005024.htm
Jiang P, Jin S Y, Hao X Z, et al. Distribution characteristics of heavy metals in feeds, pig manures, soils and vegetables[J]. Journal of Agro-Environment Science, 2010, 29(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201005024.htm
[18] 王毛兰, 赖劲虎, 倪妍, 等. 微波消解-GFAAS测定浅水湖泊底泥中重金属元素[J]. 分析试验室, 2012, 31(2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201202016.htm
Wang M L, Lai J H, Ni Y, et al. A microwave digestion method for determination of heavy metals in shallow lake sediments by graphite furnace atomic absorption spectrometry[J]. Chinese Journal of Analysis Laboratory, 2012, 31(2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201202016.htm
[19] 何纪力, 徐光炎, 朱惠民, 等. 江西省土壤环境背景值研究[M]. 北京: 中国环境科学出版社, 2006: 35-47.
He J L, Xu G Y, Zhu H M, et al. Study on the background value of soil environment in Jiangxi Province[M]. Beijing: China Environmental Science Press, 2006: 35-47.
[20] 于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408-424. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011300154
Yu F, Wang W, Yu Y, et al. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011300154
[21] Häkanson L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14: 975-1001.
[22] 王玉, 辛存林, 于奭, 等. 南方丘陵区土壤重金属含量、来源及潜在生态风险评价: 以江西省兴国县西北部为例[J/OL]. 环境科学, 2022, https://doi.org/10.13227/j.hjkx.202110172.
Wang Y, Xin C L, Yu S, et al. Assessment of soil heavy metal content, sources and potential ecological risk in hilly region of southern China: A case study of northwestern Xingguo County, Jiangxi Province[J/OL]. Environmental Science, 2022, https://doi.org/10.13227/j.hjkx.202110172.
[23] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202101055.htm
Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science, 2021, 41(1): 431-441. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202101055.htm
[24] Nargis A, Habib A, Islam M N, et al. Source identi-fication, contamination status and health risk assessment of heavy metals from road dusts in Dhaka, Bangladesh[J]. Journal of Environmental Sciences, 2022, 121: 159-174.
[25] Zeng X B, Li L F, Mei X R. Heavy metal content in Chinese vegetable plantation land soils and related source analysis[J]. Agricultural Sciences in China, 2008, 7(9): 1115-1126.
[26] Wang Y C, Qiao M, Liu Y X, et al. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing—Tianjin City Cluster, China[J]. Journal of Environmental Sciences, 2012, 24(4): 690-698.
[27] Li P J, Wang X, Allinson G, et al. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China[J]. Journal of Hazardous Materials, 2009, 161(1): 516-521.
[28] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 395-407. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101260016
He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101260016
[29] 范明毅, 杨皓, 黄先飞, 等. 典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J]. 中国环境科学, 2016, 36(8): 2425-2436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201608030.htm
Fan M Y, Yang H, Huang X F, et al. Chemical forms and risk assessment of heavy metals in soils around a typical coal-fired power plant located in the mountainous area[J]. China Environmental Science, 2016, 36(8): 2425-2436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201608030.htm
[30] Geng A, Wang X, Wu L, et al. Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil[J]. Ecotoxicology and Environmental Safety, 2017, 137: 172-178.
[31] Gupta S K, Le X C, Kachanosky G, et al. Transfer of arsenic from poultry feed to poultry litter: A mass balance study[J]. Science of the Total Environment, 2018, 630: 302-307.
[32] Garbarino J R, Bednar A J, Rutherford D W, et al. Envi-ronmental fate of roxarsone in Poultry litter. Ⅰ. Degradation of roxarsone during composting[J]. Environmental Science & Technology, 2003, 37(8): 1509-1514.