Pretreatment Method for Determination of Kalium and Phosphorus in High Oil and Grease and Non-oil Plant Samples by Inductively Coupled Plasma-Optical Emission Spectrometry
-
摘要:
测定植物样品中的钾和磷,通常采用高压密闭微波消解-电感耦合等离子体发射光谱法(ICP-OES),但复杂的基质会增加消解难度,如花生、核桃等含有高油脂类大分子聚合物的样品难以快速消解彻底,易使测定结果偏低。为了提高植物中钾和磷的检测效率,本文采用硫酸-过氧化氢消解法和高压密闭微波消解处理样品,将待测元素磷转化成磷酸盐,钾成为游离的钾离子,形成单相单价态消解溶液,通过对比实验确定了应用ICP-OES快速、准确测定不同类型样品中钾和磷含量的前处理方法。经实际样品分析验证表明:①对于高油脂类样品,硫酸-过氧化氢消解法通过强酸破坏植物外层结构,使有机物快速炭化,随后滴加过氧化氢快速消解(约2.5h),能直接消解样品,且消解更安全和彻底;而高压密闭微波消解法耗时较长(约4.5h);与大多学者研究结果对比,硫酸-过氧化氢消解法准确度优于高压密闭微波消解法,建议优先采用。②对于非油脂类样品,2种处理方式均适宜,钾和磷测定结果无显著性差异,并且与目前大多学者的研究结果较为一致,其中高压密闭微波消解法试剂消耗少、空白值低、操作简便,建议优先采用。③硫酸-过氧化氢消解法测定钾和磷的方法检出限分别为0.006mg/L和0.001mg/L,对于高油脂类样品RSD在1.32%~1.98%之间,相对误差在-0.007%~-0.025%之间,重复性r在2.92%~8.21%之间;对于非油脂类样品RSD在0.51%~0.87%之间,相对误差在-0.002%~0.010%之间,重复性r在0.770%~5.08%之间;高压密闭微波消解法测定钾和磷的方法检出限分别为0.005mg/L和0.001mg/L,对于高油脂类样品中钾和磷的相对误差在-0.012%~-0.028%之间,非油脂类样品中钾和磷的相对误差在-0.010%~0.001%之间。④硫酸-过氧化氢消解法能够快速消解高油脂类植物样品,但湿法消解仍然受样品性质的复杂程度以及消解的外部环境等因素影响。
Abstract:BACKGROUND The determination of kalium and phosphorus in plant samples is usually carried out by high-pressure sealed microwave digestion-inductively coupled plasma-optical emission spectrometry (ICP-OES).However, complex matrices can increase the difficulty of digestion, such as peanuts, walnuts, and other samples containing high oil and grease macromolecular polymers, which are difficult to digest quickly and thoroughly, easily leading to low results.
OBJECTIVES To improve the efficiency for the determination of kalium and phosphorus in plants.
METHODS Sulphuric acid-hydrogen peroxide digestion and high pressure sealed microwave digestion were used to convert the elemental phosphorus into phosphate and the kalium into free potassium ions to form a single-phase monovalent digestion solution.
RESULTS Validation of the actual sample analysis showed that: (1) For high oil and grease samples, the sulphuric acid-hydrogen peroxide digestion method can directly digest the sample by destroying the outer layer structure of the plant by strong acid, causing rapid charring of the organic matter, followed by rapid digestion (about 2.5h) by dropwise addition of hydrogen peroxide, which is safer and more thorough; whereas the high-pressure sealed microwave digestion method is more time-consuming (about 4.5h).Compared with the results of most scholars, the sulphuric acid-hydrogen peroxide method is recommended, because its accuracy is better than that of the high-pressure sealed microwave method.(2) For non-oil samples, both treatments are suitable and there is no significant difference between the results of kalium and phosphorus determination, with the high-pressure sealed microwave digestion method being recommended for its low reagent consumption, low blank value and ease of operation.The results of the two methods are in good agreement with the experimental results of most scholars.(3) The limits of detection for kalium and phosphorus by the sulfuric acid-hydrogen peroxide digestion method were 0.006mg/L and 0.001mg/L, respectively.For the high oil and grease samples, the RSD ranged from 1.32% to 1.98%, the repeatability r ranged from 2.90% to 8.21% and the error of determination ranged from-0.007% to-0.025%.For the non-oil samples, the RSD ranged from 0.51% to 0.87%, the repeatability r ranged from 0.77% to 5.08%, and the error of determination ranged from-0.002% to 0.010%.The limits of detection for kalium and phosphorus by high pressure sealed microwave digestion were 0.005mg/L and 0.001mg/L, respectively.For the high oil and grease samples, the error of determination for kalium and phosphorus ranged from-0.012% to-0.028%;for the non-oil samples, and the error of determination for kalium and phosphorus ranged from-0.010% to 0.001%.
CONCLUSIONS The sulphuric acid-hydrogen peroxide digestion method is capable of rapidly digesting high oil and grease macromolecular polymers, but it is affected by the complexity of the samples and the external environment.With the development of science and technology, direct solid injection with artificial intelligence will be the future trend.
-
-
表 1 标准物质样品检测结果
Table 1. Detection results of plant reference materials
样品消解方法 样品名称 钾 磷 测定值
(%)标准值
(%)相对误差
(%)测定值
(%)标准值
(%)相对误差
(%)硫酸-过氧化氢消解法 空白-1 0.0005 / / 0.0003 / / 空白-2 0.0006 / / 0.0002 / / GBW10010(大米) 0.134 0.138±0.007 -0.004 0.135 0.136±0.006 0.001 GBW10052(绿茶) 1.56 1.55±0.07 0.010 0.279 0.28±0.01 -0.001 GBW(E)100718(花生) 0.862 0.87±0.03 -0.008 0.539 / / 核桃(GBW10206) 0.385 0.39±0.031 -0.005 0.357 0.361±0.018 -0.003 高压密闭微波消解法 空白-3 0.0004 / / 0.0002 / / 空白-4 0.0004 / / 0.0001 / / GBW10010(大米) 0.135 0.138±0.007 -0.003 0.136 0.136±0.006 0 GBW10052(绿茶) 1.54 1.55±0.07 -0.010 0.281 0.28±0.01 0.001 GBW(E)100718(花生) 0.843 0.87±0.03 -0.027 0.528 / / GBW10206(核桃) 0.369 0.39±0.031 -0.021 0.345 0.361±0.018 -0.016 表 2 方法检出限
Table 2. Detection limits of the method
消解方法 分析元素 空白样品7次平行测定值
(mg/L)平均值
(mg/L)标准偏差
(mg/L)检出限
(mg/L)硫酸-过氧化氢消解法 钾 0.011 0.007 0.008 0.007 0.005 0.007 0.006 0.007 0.002 0.006 磷 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.0004 0.001 高压密闭微波消解法 钾 0.008 0.009 0.009 0.007 0.010 0.009 0.005 0.008 0.002 0.005 磷 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.0005 0.001 表 3 方法精密度和准确度
Table 3. Precision and accuracy tests of the method
标准物质名称 分析元素 7次平行测定值(%) 标准值
(%)算术平均值
(%)RSD
(%)相对误差
(%)重复性
r(%)大米
(GBW10010)钾 0.139 0.141 0.139 0.138 0.141 0.139 0.140 0.138±0.007 0.139 0.72 0.001 2.16 磷 0.138 0.140 0.139 0.140 0.140 0.139 0.140 0.136±0.006 0.139 0.62 0.003 2.88 玉米
(GBW10012)钾 0.129 0.128 0.130 0.130 0.130 0.130 0.130 0.129±0.007 0.130 0.51 0.001 0.77 磷 0.058 0.058 0.058 0.058 0.058 0.059 0.059 0.061±0.003 0.059 0.87 -0.002 5.08 绿茶
(GBW10052)钾 1.56 1.56 1.56 1.58 1.56 1.55 1.55 1.55±0.07 1.56 0.57 0.010 1.92 磷 0.285 0.285 0.283 0.290 0.286 0.283 0.285 0.28±0.01 0.285 0.82 0.005 3.51 核桃
(GBW10206)钾 0.380 0.360 0.361 0.361 0.364 0.369 0.363 0.39±0.031 0.365 1.98 -0.025 8.21 磷 0.365 0.355 0.352 0.344 0.353 0.354 0.355 0.361±0.017 0.354 1.75 -0.007 4.80 花生
(GBW(E)100718)钾 0.846 0.857 0.859 0.845 0.850 0.878 0.855 0.87±0.025 0.856 1.32 -0.014 2.92 磷 0.513 0.519 0.540 0.528 0.533 0.545 0.532 / 0.530 2.12 / / 注:精密度(重复性r)为获得的独立性测试结果最大误差占算术平均值的百分比。 表 4 两种消解方法植物样品检测结果
Table 4. Analytical results of plant samples digested by two pretreatment methods
样品消解方法 样品名称 钾 磷 测定值
(%)标准值
(%)相对误差
(%)重复性
r(%)测定值
(%)标准值
(%)相对误差
(%)重复性
r(%)硫酸-过氧化氢消解法 白菜 7.84,7.69 / / 1.97 0.546,0.588 / / 7.39 茶叶 2.06,1.94 / / 6.00 0.344,0.361 / / 4.82 大米 0.080,0.080 / / 0.36 0.083,0.083 / / 0.56 玉米 0.379,0.394 / / 3.88 0.289,0.298 / / 3.07 辣椒 2.77,2.76 / / 0.36 0.418,0.432 / / 3.29 油菜籽 1.01,1.02 / / 1.58 0.950,0.972 / / 2.37 花生 0.935,0.950 / / 1.57 0.582,0.594 / / 2.02 GBW10010(大米) 0.132 0.138 -0.006 / 0.136 0.136 0 / GBW10052(绿茶) 1.57 1.55 0.020 / 0.274 0.28 -0.006 / GBW(E)100718(花生) 0.85 0.87 -0.020 / 0.533 / / / GBW10206(核桃) 0.369 0.39 -0.021 / 0.354 0.361 -0.007 / 高压密闭微波消解法 白菜 7.82,7.48 / / 4.44 0.568,0.577 / / 1.63 茶叶 1.95,1.89 / / 3.13 0.349,0.352 / / 0.86 大米 0.079,0.079 / / 0.030 0.078,0.080 / / 2.91 玉米 0.379,0.358, / / 5.70 0.289,0.294 / / 1.72 辣椒 2.72,2.72 / / 0.00 0.426,0.456 / / 6.80 油菜籽 0.997,0.990 / / 0.65 0.973,0.948 / / 2.61 花生 0.811,0.821 / / 1.57 0.564,0.558 / / 2.02 GBW10010(大米) 0.139 0.138 0.001 / 0.135 0.136 -0.001 / GBW10052(绿茶) 1.54 1.55 -0.010 / 0.283 0.28 -0.003 / GBW(E)100718(花生) 0.848 0.870 -0.028 / 0.528 / / / GBW10206(核桃) 0.365 0.390 -0.025 / 0.349 0.361 -0.012 / -
[1] SouzaI, Arruda A, Silva A, et al. Identification of macroelements and microelements in the leaves of the synadenium grantii hook used as medicinal plant in the Brazil[J]. International Archives of Medicine, 2017, 10(58): 1-12.
[2] King T, Sheridan R. Determination of 27 elements in animal feed by inductively coupled plasma-mass spectrometry[J]. Journal of AOAC International, 2019, 102(2): 434-444. doi: 10.5740/jaoacint.18-0198
[3] 张文学, 李殿荣. 高产田氮磷钾肥对油菜产量性状的效应[J]. 中国农学通报, 2021, 37(6): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202106006.htm
Zang W X, Li D R. N, P, K Fertilizer in high yield field: Effect on rapeseed yield characters[J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202106006.htm
[4] 邓小强, 范贵国, 刘中祥. 氮磷钾配施对糯玉米农艺性状、产量与养分吸收利用的影响[J]. 耕作与栽培, 2019(5): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GZZP201905003.htm
Deng X Q, Fan G G, Liu Z X. Application of N, P, K combined application to agronomic traits, yield and nutrient absorption and utilization of waxy maize influences[J]. Tillage and Cultivation, 2019(5): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GZZP201905003.htm
[5] 朱彩云, 张炜, 颜培敏. 氮磷钾平衡施肥对水稻产量和植株性状的影响[J]. 现代农业科技, 2014(1): 23-25. doi: 10.3969/j.issn.1007-5739.2014.01.009
Zhu C Y, Zhang W, Yan P M. Effect of N, P, K balanced fertilization on yield and plant traits of rice[J]. Modern Agricultural Science and Technology, 2014(1): 23-25. doi: 10.3969/j.issn.1007-5739.2014.01.009
[6] 司贤宗, 张翔, 索炎炎, 等. 潮土区不同品种花生的干物质积累与氮磷钾养分需求的差异分析[J]. 农学学报, 2020, 10(6): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XKKJ202006008.htm
Si X Z, Zhang X, Suo Y Y, et al. Peanut varieties in fluvo-aquic soil area: Dry matter accumulation and nitrogen, phosphorus and potassium requirement[J]. Journal of Agriculture, 2020, 10(6): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XKKJ202006008.htm
[7] 宋妮泽, 徐丹先. 云南省文山州新鲜三七中钾, 磷含量分布调查[J]. 食品安全质量检测学报, 2019, 10(20): 6991-6996. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201920045.htm
Song N Z, Xu D X. Investigation on the distribution of potassium and phosphorus in fresh panax notoginseng in Wenshan Prefecture, Yunnan Province[J]. Journal of Food Safety and Quality, 2019, 10(20): 6991-6996. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201920045.htm
[8] 骆娟, 耿静, 王宏信. 五种滨海沙生植物氮磷钾化学计量特征分析[J]. 现代农业科技, 2020(10): 144-145, 150. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE202010093.htm
Luo J, Geng J, Wang H X. Analysis on stoichiometric characteristics of N, P, K of five coastal sandy plants[J]. Modern Agricultural Science and Technology, 2020(10): 144-145, 150. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE202010093.htm
[9] 冯永明, 邢应香, 刘洪青, 等. 微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J]. 岩矿测试, 2014, 33(1): 34-39. http://www.ykcs.ac.cn/cn/article/id/00a7dfe7-2a17-45e5-ada2-503f476cc501
Feng Y M, Xing Y X, Liu H Q, et al. Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(1): 34-39. http://www.ykcs.ac.cn/cn/article/id/00a7dfe7-2a17-45e5-ada2-503f476cc501
[10] 刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681-693. http://www.ykcs.ac.cn/cn/article/id/be7f4a99-23f3-461f-bea1-ac90d0835111
Liu Y X, Li X J, Bai J F, et al. Review on sample pretreatment methods and determination techniques for inorganic elements in plant samples[J]. Rock and Mineral Analysis, 2013, 32(5): 681-693. http://www.ykcs.ac.cn/cn/article/id/be7f4a99-23f3-461f-bea1-ac90d0835111
[11] Caroline D A T, Fernanda D S D, Filipe B S, et al. Multielement determination in medicinal plants and herbal medicines containing Cynara scolymus L., Harpagophytum procumbens D.C., and Maytenus ilifolia (Mart. ) ex reiss from brazil using ICP-OES[J]. Biological Trace Element Research, 2021, 199(6): 2330-2341.
[12] 董丹丹, 周谦, 张宜明, 等. 基于电感耦合等离子体质谱检测市售大米中22种元素[J]. 安徽农业科学, 2020, 48(5): 201-205. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202005057.htm
Dong D D, Zhou Q, Zhang Y M, et al. Detection of 22 elements in rice marketed based on inductively coupled plasma mass spectrometry[J]. Journal of Anhui Agricultural Sciences, 2020, 48(5): 201-205. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202005057.htm
[13] 晏凯, 刘晓彤, 于磊, 等. 食品中磷国标检测方法的研究与改进[J]. 食品安全质量检测学报, 2020, 11(2): 574-578. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202002044.htm
Yan K, Liu X T, Yu L, et al. Research and improvement of national standard detection method for phosphorus in food[J]. Journal of Food Safety & Quality, 2020, 11(2): 574-578. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202002044.htm
[14] 陶曙华, 龚浩如, 陈祖武, 等. 微波消解-火焰光度法测定植物中全钾[J]. 湖北农业科学, 2019, 58(10): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201910034.htm
Tao S H, Gong H R, Chen Z W, et al. Determination of total potassium in plants samples by microwave digestion-flame photometry[J]. Hubei Agricultural Sciences, 2019, 58(10): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201910034.htm
[15] 唐永, 梁慧, 姚晓青. 四种坚果中有益元素的微波消解-FAAS法的测定[J]. 广东石油化工学院学报, 2016, 26(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD201601009.htm
Tang Y, Liang H, Yao X Q. Content detection of beneficial elements in four cuts by means of microwave digestion-FAAS[J]. Journal of Guangdong University of Petrochemical Technology, 2016, 26(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD201601009.htm
[16] 饶书恺, 崔姗姗, 胡容, 等. 微波消解-ICP-MS法测定植株中全磷的方法研究[J]. 福建质量管理, 2020(11): 292-294.
Rao S K, Cui S S, Hu R, et al. Study on determination of total phosphorus in plants by MD-ICP-MS[J]. Fujian Quality Management, 2020(11): 292-294.
[17] Chevallier E, Chekri R, Zinck J, et al. Simultaneous deter-mination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation based on the accuracy profile[J]. Journal of Food Composition and Analysis, 2015, 41: 35-41.
[18] 谢显莉, 刘琪, 张利, 等. 火焰原子发射光谱法测定鼠尾草属植物中钾和钠的含量[J]. 安徽农业科学, 2010, 38(27): 14929-14931. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201027045.htm
Xie X L, Liu Q, Zhang L, et al. Determination on potassium and sodium contents in salvia plants by using flame atomic emission spectrophotometry[J]. Journal of Anhui Agricultural Sciences, 2010, 38(27): 14929-14931. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201027045.htm
[19] 叶陆芳, 宋小华, 余代顺, 等. 固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓[J]. 岩矿测试, 2020, 39(2): 243-250. http://www.ykcs.ac.cn/cn/article/id/be7f4a99-23f3-461f-bea1-ac90d0835111
Ye L F, Song X H, Yu D S, et al. Determination of trace Ga in water and plant samples by O2-doped air-acetylene FAAS with solid phase extraction preconcentration[J]. Rock and Mineral Analysis, 2020, 39(2): 243-250. http://www.ykcs.ac.cn/cn/article/id/be7f4a99-23f3-461f-bea1-ac90d0835111
[20] 唐兴敏, 任小荣, 方雅琴. 微波消解-ICP-OES法测定植物样品中磷锌钡铁锰镁钙锶等八项微量元素[J]. 资源环境与工程, 2013, 27(6): 831-834. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201306025.htm
Tang X M, Ren X R, Fang Y Q. Determination of eight trace elements of P, Zn, Ba, Fe, Mn, Mg, Ca, Sr in plants by ICP-OES with microwave digestion[J]. Resources Environment & Engineering, 2013, 27(6): 831-834. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201306025.htm
[21] Chaves E S, Santos E, Araujo R, et al. Metals and pho-sphorus determination in vegetable seeds used in the production of biodiesel by ICP-OES and ICP-MS[J]. Microchemical Journal, 2010, 96(1): 71-76.
[22] 李艳华, 刘军, 李鹏程, 等. 高压密闭消解-氢化物发生原子荧光光谱法测定植物样品中的汞[J]. 当代化工, 2020, 49(11): 2588-2591. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202011077.htm
Li X H, Liu J, Li P C, et al. Determination of Hg in plant samples by high pressure closed digestion-hydride generation atomic fluorescence spectrometry[J]. Contemporary Chemical Industry, 2020, 49(11): 2588-2591. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202011077.htm
[23] 武巍, 蔡玉红, 樊慧梅, 等. 磷钼蓝分光光度法测定玉米籽粒中磷含量的不确定度评估[J]. 东北农业科学, 2020, 45(4): 101-104, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK202004024.htm
Wu W, Cai Y H, Fan H M, et al. Evaluation on uncertainty of measuring the phosphorus in maize grain by spectrophotometry with phosphorus molybdenum blue[J]. Journal of Northeast Agricultural Sciences, 2020, 45(4): 101-104, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNK202004024.htm
[24] 李洁, 陈俊秀, 农蕊瑜, 等. 电感耦合等离子体质谱法测定云南市售大米中4种有益元素[J]. 食品安全质量检测学报, 2021, 12(1): 303-308. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202101057.htm
Li J, Chen J X, Nong R Y, et al. Determination of 4 beneficial elements in Yunnan commercial rice by inductively coupled plasma mass spectrometry[J]. Journal of Food Safety & Quality, 2021, 12(1): 303-308. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202101057.htm
[25] Juan A B, Alex V, Daniela S, et al. Determination of ultra-trace levels of Mo in plants by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS)[J]. Microchemical Journal, 2017, 96(1): 567-571.
[26] 马娜, 顾雪, 张灵火, 等. 微波消解-原子荧光光谱法测定植物样品中的砷和硒[J]. 化学分析计量, 2020, 29(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202001010.htm
Ma N, Gu X, Zhang L H, et al. Determination of As and Se in plant samples by microwave digestion-atomic fluorescent spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202001010.htm
[27] 韩张雄, 马娅妮, 刘琦, 等. 微波消解-离子选择电极法测定植物样品中氟离子的实验条件优化[J]. 岩矿测试, 2016, 35(4): 397-401. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.010
Han Z X, Ma Y N, Liu Q, et al. Optimal conditions for determination of F in plant samples by microwave digestion coupled with ion selective electrode method[J]. Rock and Mineral Analysis, 2016, 35(4): 397-401. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.010
[28] 邓建, 李浩洋, 李蓉, 等. ICP-AES和ICP-MS测定稻壳中的14种化学元素[J]. 食品工业, 2017, 38(7): 301-304. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201707085.htm
Deng J, Li H Y, Li R, et al. Determination of 14 chemical elements in rice husk by ICP-AES and ICP-MS[J]. Food Industry, 2017, 38(7): 301-304. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201707085.htm
[29] 楼逸扬, 楼舸. 电感耦合等离子体质谱法(ICP-MS)测定北京地区常见野菜重金属含量[J]. 计量与测试技术, 2020, 47(7): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS202007031.htm
Lou Y Y, Lou G. Use inductively coupled plasma mass spectrometry (ICP-MS) to determine the heavy metal content of common potherbs in Beijing area[J]. Metrology and Testing Technology, 2020, 47(7): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS202007031.htm
[30] 袁建民, 何璐, 杨晓琼, 等. 微波消解ICP-OES法同时测定香茅草中11种微量元素[J]. 中国农学通报, 2020, 36(14): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202014013.htm
Yuan J M, He L, Yang X Q, et al. Simultaneous determination of 11 trace elements in cymbopogon citratus by ICP-OES with microwave digestion[J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202014013.htm
[31] 魏琳丰. 不同消解方法在测定样品中重金属含量的应用[J]. 河南化工, 2016, 33(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201603005.htm
Wei L F. Application of different digestion methods in the determination of heavy metal content in samples[J]. Henan Chemical Industry, 2016, 33(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201603005.htm
[32] 吴刚, 张兆法, 宋凡, 等. 石墨消解仪-自动定氮法测定植物果实中的全氮[J]. 岩矿测试, 2020, 39(2): 311-317. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201903260037
Wu G, Zhang Z F, Song F, et al. Determination of total nitrogen in plant fruits by graphite digestion apparatus and automatic azotometer[J]. Rock and Mineral Analysis, 2020, 39(2): 311-317. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201903260037
[33] 沈明丽, 许丽梅, 字肖萌, 等. 电感耦合等离子体发射光谱法测定茶叶中的微量元素[J]. 中国农学通报, 2018, 34(31): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201831013.htm
Shen M L, Xu L M, Zi X M, et al. Determination of trace elements in tea by ICP-AES[J]. Chinese Agricultural Science Bulletin, 2018, 34(31): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201831013.htm
[34] 庞夙, 陶晓秋, 黄玫, 等. 电感耦合等离子体发射光谱检测烟叶样品中的钠钾钙镁[J]. 分析仪器, 2020(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ202001009.htm
Pang S, Tao X Q, Huang M, et al. Rapid determination of sodium, potassium, calcium, magnesium in tobacco leaves by ICP-OES[J]. Analytical Instruments, 2020(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ202001009.htm
[35] 谢晓岚, 王文芳, 汪永顺, 等. ICP-AES法测定7种高原野生蜂蜜的矿质元素含量[J]. 矿产勘查, 2019, 10(3): 700-704. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201903039.htm
Xie X L, Wang W F, Wang Y S, et al. Analysis of trace elements in seven kinds of highland wild honey by ICP-AES[J]. Mineral Exploration, 2019, 10(3): 700-704. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201903039.htm
-