Determination of Hydrolysable Nitrogen in Soil Samples by Alkaline Hydrolysis Diffusion Separation Acid-base Titration Based on a Polypropylene Diffusion Dish
-
摘要:
传统的碱解扩散分离-酸碱滴定法测定土壤样品中的水解性氮,通常采用玻璃扩散皿进行碱解扩散分离。但是使用该法对样品进行前处理和碱解扩散分离过程中,操作者常会面临如下三种困扰:一是玻璃扩散皿内室溶液极易被氢氧化钠溶液和碱性胶液污染;二是玻璃扩散皿和盖子之间容易出现氨气泄漏,而且发现时往往无法解决;三是玻璃扩散皿比较笨重易碎,实验操作不方便;最终导致测定结果不稳定性和操作者对该法体验不佳。本文采用聚丙烯扩散皿,通过改进扩散皿清洗方法和提升扩散皿密封性、统一还原剂加入量和氢氧化钠溶液浓度(1.8mol/L)、适当增加氢氧化钠溶液的加入体积和降低盐酸标准溶液浓度,提高了水解性氮测定的稳定性和准确性。该方法中发生的污染明显降低,避免了发生氨气泄漏,操作便捷。应用于分析土壤有效态标准物质的测定值与标准值一致,如水解性氮测定值< 50mg/kg的标准物质GBW07416a,其绝对偏差为0.2~1.8mg/kg;水解性氮测定值在50~200mg/kg的标准物质GBW07415a、NSA-1、NSA-4、NSA-5、NSA-6,其绝对偏差为0~4.0mg/kg。还原剂对硝态氮转化为铵态氮的加标回收率在89.6%~96.4%之间。该方法可满足测定土壤样品中水解性氮含量的要求。
Abstract:BACKGROUND The traditional alkaline hydrolysis diffusion separation acid-base titration method is used to determine the hydrolysable nitrogen in soil samples. Usually, a glass diffusion dish is used for alkaline hydrolysis diffusion separation. However, during sample pretreatment and alkaline hydrolysis diffusion separation, the operator often faces the following three problems. First, the solution in the inner chamber of the glass diffusion dish is very easily polluted by sodium hydroxide solution and alkaline glue solution. Second, ammonia leakage occurs easily between the glass diffusion dish and the cover, and it is often not possible to remedy when it is found. Third, the glass diffusion dish is bulky and fragile, and the experimental operation is inconvenient, all of which lead to the instability of measurement results due to inexperience of the operator.
OBJECTIVES To establish a new method for the determination of hydrolysable nitrogen in soil samples by alkaline hydrolysis diffusion separation acid-base titration based on polypropylene diffusion dish.
METHODS A polypropylene diffusion dish was used instead of a glass diffusion dish in the alkaline hydrolysis of hydrolysable nitrogen. The cleaning method and the sealing of the diffusion dish were improved. The addition amount of reducing agent and the concentration of sodium hydroxide solution (1.8mol/L) were unified. The addition volume of sodium hydroxide solution was appropriately increased, and the concentration of hydrochloric acid standard solution was reduced.
RESULTS The absolute deviation of reference materials GBW07416a with the measured value of hydrolysable nitrogen < 50mg/kg was 0.2-1.8mg/kg. The absolute deviation of reference materials GBW07415a, NSA-1, NSA-4, NSA-5 and NSA-6 with the measured value of hydrolysable nitrogen of 50-200mg/kg was 0-4.0mg/kg. The recovery rate of nitrate nitrogen converted to ammonium nitrogen by reducing agent was 89.6%-96.4%. The measured value of soil available reference materials was consistent with the standard value.
CONCLUSIONS The stability and accuracy of hydrolysable nitrogen determination are improved. The pollution in this method is significantly reduced, ammonia leakage is avoided, and the operation is convenient. The method meets the requirements for determining the content of hydrolysable nitrogen in soil samples.
-
-
表 1 不同类型土壤有效态标准物质中硝态氮的加标回收率(n=6)
Table 1. Recovery rate of nitrate nitrogen in available reference materials of different types of soil (n=6)
样品名称 水解性氮标准值(mg/kg) 未加标样品水解性氮测定值(mg/kg) 加标量(以硝酸钾中氮元素含量计,μg) 加标样品水解性氮测定值(mg/kg) 加标回收率(%) GBW07415a(水稻土) 165±10 168 166 321 92.2 NSA-1(黑土) 166±7 166 166 326 96.4 NSA-4(紫色土) 64±4 63.9 69.2 130 95.5 NSA-6(红壤) 96±7 95.5 111 195 89.6 表 2 不同浓度盐酸标准溶液的滴定结果及对应的方法特性指标
Table 2. Titration results of different concentrations of hydroric acid standard solutions and corresponding method characteristic indexes
盐酸标准溶液浓度(mol/L) 可滴定水解性氮最大含量wN(mg/kg) 方法检出限MDL(mg/kg) 测定下限(mg/kg) 0.002 476 0.74 2.94 0.005 1190 1.84 7.35 0.01 2380 3.68 14.7 表 3 土壤有效态标准物质水解性氮测定结果的绝对偏差和允许偏差
Table 3. Absolute deviation and allowable deviation of determination results of hydrolysable nitrogen in soil available standard materials
标准物质编号 土壤类型 水解性氮标准值(mg/kg) 水解性氮测定值(mg/kg) 水解性氮测定平均值(mg/kg) 绝对偏差(mg/kg) LY/T 1228—2015允许偏差(mg/kg) GBW07415a 水稻土 165±10 169 167 2.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 166 1.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 171 4.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 164 3.0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 167 0 绝对偏差10~2.5 GBW07415a 水稻土 165±10 165 2.0 绝对偏差10~2.5 GBW07416a 红壤 44±4 42.9 43.4 0.5 绝对偏差 < 2.5 GBW07416a 红壤 44±4 42.7 0.7 绝对偏差 < 2.5 GBW07416a 红壤 44±4 45.2 1.8 绝对偏差 < 2.5 GBW07416a 红壤 44±4 43.8 0.4 绝对偏差 < 2.5 GBW07416a 红壤 44±4 43.2 0.2 绝对偏差 < 2.5 GBW07416a 红壤 44±4 42.5 0.9 绝对偏差 < 2.5 NSA-1 黑土 166±7 163 163 0 绝对偏差10~2.5 NSA-1 黑土 166±7 167 4.0 绝对偏差10~2.5 NSA-1 黑土 166±7 165 2.0 绝对偏差10~2.5 NSA-1 黑土 166±7 162 1.0 绝对偏差10~2.5 NSA-1 黑土 166±7 159 4.0 绝对偏差10~2.5 NSA-1 黑土 166±7 163 0 绝对偏差10~2.5 NSA-4 紫色土 64±4 62.5 62.2 0.3 绝对偏差10~2.5 NSA-4 紫色土 64±4 64.2 2.0 绝对偏差10~2.5 NSA-4 紫色土 64±4 61.7 0.5 绝对偏差10~2.5 NSA-4 紫色土 64±4 61.4 0.8 绝对偏差10~2.5 NSA-4 紫色土 64±4 62.2 0 绝对偏差10~2.5 NSA-4 紫色土 64±4 60.9 1.3 绝对偏差10~2.5 NSA-5 水稻土 180±10 174 176 2.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 178 2.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 176 0 绝对偏差10~2.5 NSA-5 水稻土 180±10 175 1.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 175 1.0 绝对偏差10~2.5 NSA-5 水稻土 180±10 179 3.0 绝对偏差10~2.5 NSA-6 红壤 96±7 97.3 98.2 0.9 绝对偏差10~2.5 NSA-6 红壤 96±7 99.2 1.0 绝对偏差10~2.5 NSA-6 红壤 96±7 98.8 0.6 绝对偏差10~2.5 NSA-6 红壤 96±7 100 1.8 绝对偏差10~2.5 NSA-6 红壤 96±7 94.4 3.8 绝对偏差10~2.5 NSA-6 红壤 96±7 99.5 1.3 绝对偏差10~2.5 表 4 土壤中水解性氮测定的不同测定方法比对与综合评价
Table 4. Comparison and comprehensive evaluation of different methods used in determination of hydrolysable nitrogen in soil
测定方法名称 相对标准偏差RSD(%) 相对误差(%) 方法优势 存在问题 参考文献 基于塑料带孔扩散皿的碱解扩散分离-酸碱滴定法 1.63~3.19 0~2.28 无碱性胶液,精密度和准确度好 碱解过程中,如果发生氨气泄漏无法被发现 [24] 基于玻璃扩散皿的碱解扩散分离-酸碱滴定法 3.09~5.47 1.23~2.42 准确度好 扩散皿内室容易被污染,密封性不强,测定结果不够稳定 [20] 基于乳胶塞注射式玻璃扩散皿的碱解扩散分离-酸碱滴定法 1.97~2.84 0.61~2.46 精密度和准确度好,密封性好 扩散皿内室容易被污染,需额外操作注射器 [26] 基于FOSS Kjeltec 8400凯氏定氮仪碱解蒸馏-酸碱滴定法 1.10~2.13 3.40~7.33 操作简单,精密度较高,抗污染能力强 高温蒸馏,测定结果可能偏高 [17] 基于聚丙烯扩散皿的碱解扩散分离-酸碱滴定法(本文方法) 1.56~2.30 1.21~1.40 精密度和准确度好,密封性好 流程偏长 本文 -
[1] 吴昊, 朱红霞, 袁懋, 等. 气相分子吸收光谱法测定土壤中铵态氮和硝态氮[J]. 岩矿测试, 2021, 40(1): 165-171. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202003100029
Wu H, Zhu H X, Yuan M, et al. Determination of ammonium nitrogen and nitrate in soil by gas phase molecular absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165-171. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202003100029
[2] 李义纯, 王艳红, 陈勇, 等. 基于土壤质量的改良剂修复镉污染稻田综合效果评价[J]. 农业环境科学学报, 2021, 40(6): 1219-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202106012.htm
Li Y C, Wang Y H, Chen Y, et al. A comprehensive evaluation of remediation effects on cadmium contamination in paddy fields based on soil quality[J]. Journal of Agro-Environment Science, 2021, 40(6): 1219-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202106012.htm
[3] 王红, 徐静, 谢晓金, 等. 南京市绿地土壤养分特征及空间分布[J]. 江苏农业科学, 2021, 49(6): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202106039.htm
Wang H, Xu J, Xie X J, et al. Characteristics and spatial distribution of soil nutrients in green space in Nanjing City[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202106039.htm
[4] 程晓月, 许宏刚, 朱亚灵, 等. 兰州市中心城区道路绿地土壤pH和养分特征[J]. 草业科学, 2021, 38(3): 468-479. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX202103007.htm
Cheng X Y, Xu H G, Zhu Y L, et al. Study on soil pH and nutrients in a roadside green belt in a central urban area of Lanzhou[J]. Pratacultural Science, 2021, 38(3): 468-479. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX202103007.htm
[5] 代杰瑞, 庞绪贵, 刘华峰, 等. 山东省东部地区农业生态地球化学调查及生态问题浅析[J]. 岩矿测试, 2012, 31(1): 189-197. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120128
Dai J R, Pang X G, Liu H F, et al. Agro-ecological geochemical survey and evaluation of eastern Shandong Province[J]. Rock and Mineral Analysis, 2012, 31(1): 189-197. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120128
[6] 贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901080003
He L, Sun B B, Wu C, et al. Assessment of soil environment quality and ecological risk for kiwifruit orchards in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901080003
[7] 王杰, 张春燕, 卢加文, 等. 广安区柑橘土壤养分状况及综合肥力评价[J]. 土壤通报, 2021, 52(6): 1360-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202106011.htm
Wang J, Zhang C Y, Lu J W, et al. Nutrient status and comprehensive fertility evaluation of the citrus soil in Guang'an District[J]. Chinese Journal of Soil Science, 2021, 52(6): 1360-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202106011.htm
[8] 曹胜, 周卫军, 刘沛, 等. 冰糖橙果园土壤养分与果实品质关系的多元分析及优化方案[J]. 土壤, 2021, 53(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202101013.htm
Cao S, Zhou W J, Liu P, et al. Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis(L. ) osbeck orchard[J]. Soils, 2021, 53(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202101013.htm
[9] 邓小华, 何铭钰, 陈金, 等. 山地酸性土壤耕层重构的理化性状及酶活性动态变化[J]. 中国烟草科学, 2021, 42(4): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202104003.htm
Deng X H, He M Y, Chen J, et al. Dynamic of soil physi-chemical properties and enzymatic activities after restructured arable layer of mountainous acidic soil[J]. Chinese Tobacco Science, 2021, 42(4): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202104003.htm
[10] 高宏艳, 索全义, 郑海春, 等. 基于GIS和丰缺指标法的区域施肥管理体系的构建[J]. 植物营养与肥料学报, 2021, 27(9): 1648-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202109015.htm
Gao H Y, Suo Q Y, Zheng H C, et al. Construction of regional fertilization system based on GIS and nutrient abundance index[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1648-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202109015.htm
[11] 冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源分析[J]. 岩矿测试, 2019, 38(6): 693-704. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201905270071
Feng H, Zhang X J, Zhang Q, et al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201905270071
[12] 顾涛, 朱晓华, 赵信文, 等. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109290136
Gu T, Zhu X H, Zhao X W, et al. Relationship between lotus root quality and geochemical conditions in the Xinken lotus root producing area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109290136
[13] 周启龙. 藏西沙化草地根系分布与土壤理化性质的关系[J]. 水土保持通报, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101001.htm
Zhou Q L. Relation between root distribution character-istics and soil physical and chemical properties in desertification grassland in western Tibet[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101001.htm
[14] 粮农组织.《世界粮食和农业领域土地及水资源状况: 系统濒临极限》2021年概要报告[R/OL]. https://doi.org/10.4060/cb7654en.
Food and Agriculture Organization.The state of the world's land and water resources for food and agriculture-systems at breaking point.Synthesis Report 2021.Rome[R/OL]. https://doi.org/10.4060/cb7654en.
[15] 吴金卓, 孔琳琳, 李颖, 等. 近红外光谱法测定土壤全氮和碱解氮含量[J]. 湖南农业大学学报(自然科学版), 2016, 42(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HNND201601019.htm
Wu J Z, Kong L L, Li Y, et al. Prediction models of total and available soil nitrogen based on near-infrared spectroscopy[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HNND201601019.htm
[16] 彭海根, 金楹, 詹莜国, 等. 近红外光谱技术结合竞争自适应重加权采样变量选择算法快速测定土壤水解性氮含量[J]. 分析测试学报, 2020, 39(10): 1305-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202010021.htm
Peng H G, Jin Y, Zhan Y G, et al. Quantitative determination of hydrolytic nitrogen content in soil by near infrared spectroscopy combined with competitive adaptive reweighted sampling variable selection algorithm[J]. Journal of Instrumental Analysis, 2020, 39(10): 1305-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202010021.htm
[17] 石欣. 凯氏定氮仪测定土壤中水解性氮含量[J]. 宁夏农林科技, 2018, 59(11): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201811020.htm
Shi X. Determination of hydrolytic nitrogen content in soil by Kjeltec nitrogen analyzer[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(11): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201811020.htm
[18] 王晓岚, 卡丽毕努尔, 杨文念. 土壤碱解氮测定方法比较[J]. 北京师范大学学报(自然科学版), 2010, 46(1): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201001021.htm
Wang X L, Ka L B N E, Yang W N. Comparison of methods for determining alkali-hydrolyzed nitrogen in soil[J]. Journal of Beijing Normal University (Natural Science), 2010, 46(1): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201001021.htm
[19] 莎娜, 张三粉, 骆洪, 等. 两种土壤碱解氮测定方法的比较[J]. 内蒙古农业科技, 2014(6): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGN201406013.htm
Sha N, Zhang S F, Luo H, et al. Comparison two kinds of determination method of soil alkaline hydrolysis nitrogen[J]. Inner Mongolia Agricultural Science and Technology, 2014(6): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGN201406013.htm
[20] 魏娜. 两种土壤碱解氮测定方法比较[J]. 西藏农业科技, 2014, 36(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XZNY201401008.htm
Wei N. Comparison between two methods of available nitrogen in soil[J]. Tibet Journal of Agricultural Sciences, 2014, 36(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XZNY201401008.htm
[21] 孔凡伟. 简述土壤水解氮的测定方法[J]. 黑龙江农业科学, 2010(4): 159-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201004059.htm
Kong F W. The determination method briefly introduced of soil hydrolyzed nitrogen[J]. Heilongjiang Agricultural Sciences, 2010(4): 159-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201004059.htm
[22] 贺毅. 扩散法测定土壤中的水解性氮[J]. 华北自然资源, 2020(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT202002036.htm
He Y. Determination of hydrolytic nitrogen in soil by diffusion method[J]. Huabei Natural Resources, 2020(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT202002036.htm
[23] 施畅, 万秋月, 秦冲, 等. 塑料密封盒-滴定法测定土壤中碱解氮[J]. 中国无机分析化学, 2017, 7(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201703011.htm
Shi C, Wan Q Y, Qin C, et al. Determination of alkali-hydrolyzable nitrogen in soil by titration with a sealed plastic box[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201703011.htm
[24] 杨清华. 森林土壤中水解性氮测定方法改进研究[J]. 现代农业科技, 2018(18): 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201818078.htm
Yang Q H. Improvement of determination method of hydrolytic nitrogen in forest soil[J]. Modern Agricultural Science and Technology, 2018(18): 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201818078.htm
[25] 周剑. 塑料扩散皿在土壤水解性氮测定中的应用[J]. 福建地质, 2021, 40(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202101009.htm
Zhou J. Application of plastic diffusion dish in determination of hydrolytic in soil[J]. Geology of Fujian, 2021, 40(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202101009.htm
[26] 侯建伟, 邢存芳, 杨莉琳. 土壤碱解氮测定方法优化改革[J]. 西南师范大学学报(自然科学版), 2021, 46(7): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202107006.htm
Hou J W, Xing C F, Yang L L. Optimization reform of soil available nitrogen determination method[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(7): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202107006.htm
[27] 童娟, 谢春梅. 碱解扩散法测定土壤水解性氮影响因素分析[J]. 宁夏农林科技, 2011, 52(9): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201109030.htm
Tong J, Xie C M. Analysis on influencing factors of soil hydrolytic nitrogen determination by alkaline hydrolysis diffusion method[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011, 52(9): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-NXNL201109030.htm
[28] 林晓峰. 土壤水解性氮含量的测定方法及注意事项[J]. 江西农业, 2017(11): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNG201711019.htm
Lin X F. Determination method and precautions of soil hydrolytic nitrogen content[J]. Jiangxi Agriculture, 2017(11): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNG201711019.htm
[29] 张英利, 马爱生, 杨岩荣, 等. 不同还原剂对土壤碱解氮测定结果的影响[J]. 干旱地区农业研究, 2002, 20(2): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200202009.htm
Zhang Y L, Ma A S, Yang Y R, et al. Effect of different reductive on analysis results of soil available nitrogen[J]. Agricultural Research in the Arid Areas, 2002, 20(2): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200202009.htm
[30] 刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536-544. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110503
Liu M, Gu T X, Cheng Z Z, et al. Ten reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536-544. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110503
[31] 李星, 郭小彪, 张墨. 土壤中水解性氮的测定条件选择[J]. 北京农业, 2015(24): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-BJNY201524040.htm
Li X, Guo X B, Zhang M. Selection of determination conditions of hydrolytic nitrogen in soil[J]. Beijing Agriculture, 2015(24): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-BJNY201524040.htm
-