中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究

崔婷, 叶欣, 朱霞萍, 李军亚, 徐欢. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167-176. doi: 10.15898/j.cnki.11-2131/td.202111250187
引用本文: 崔婷, 叶欣, 朱霞萍, 李军亚, 徐欢. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167-176. doi: 10.15898/j.cnki.11-2131/td.202111250187
CUI Ting, YE Xin, ZHU Xiaping, LI Junya, XU Huan. Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167-176. doi: 10.15898/j.cnki.11-2131/td.202111250187
Citation: CUI Ting, YE Xin, ZHU Xiaping, LI Junya, XU Huan. Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167-176. doi: 10.15898/j.cnki.11-2131/td.202111250187

土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究

  • 基金项目:
    国家自然科学基金项目(42267007);四川省地质矿产勘查开发局四〇五地质队创新基金项目(KJCX-2020-007)
详细信息
    作者简介: 崔婷,硕士研究生,主要从事土壤重金属污染研究。E-mail: 852020419@qq.com
    通讯作者: 朱霞萍,教授,主要从事土壤、水体环境污染防控及修复技术研究。E-mail: zhuxiaping@cdut.edu.cn 李军亚,工程师,从事地质环境保护与修复工作。E-mail:1092956259@qq.com
  • 中图分类号: S151.93;O657.31

Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil

More Information
  • 研究影响土壤吸附Sb(Ⅲ)的主控因子对土壤锑污染的评价、预警及修复具有重要意义。本文采用化学法、电感耦合等离子体发射光谱法和原子荧光光谱法测定了10个不同地区土壤的理化性质和机械组成、主要化学组成,采用原子吸收光谱法测定了土壤铁锰氧化物的不同形态以及土壤对Sb(Ⅲ)的饱和吸附容量, 并开展了土壤对Sb(Ⅲ)的饱和吸附容量和土壤理化性质、机械组成、铁锰氧化物及其形态的相关性分析、主成分分析和因子分析。在研究土壤吸附Sb(Ⅲ)的影响因素基础上,进一步研究其主控因子。结果表明,10个不同性质的土壤对Sb(Ⅲ)饱和吸附容量介于0.63~3.98mg/g之间,与土壤类型有关,其大小顺序为:红壤>棕壤>黄壤>褐土>沙土。土壤对Sb(Ⅲ)饱和吸附容量与阳离子交换容量(CEC)、氧化铁总量、无定形铁含量呈极显著正相关,与游离铁含量、无定形锰含量以及游离锰含量呈显著正相关。主成分分析和因子分析结果表明土壤中6个因子是影响土壤吸附Sb(Ⅲ)的主控因子,影响力大小为:氧化铁总量>CEC>无定形铁含量>游离铁含量>无定形锰含量>游离锰含量。铁锰氧化物及其形态显著影响土壤吸附Sb(Ⅲ)。

  • 加载中
  • 图 1  10种土壤对Sb(Ⅲ)的饱和吸附容量

    Figure 1. 

    表 1  土壤信息

    Table 1.  Soil information

    样品编号 土壤类型 采集地 土壤利用类型
    1# 褐土 天津市和平区蒙古路滨府里小区 城市绿地
    2# 棕壤 河北省邯郸市磁县贾壁乡中贾壁村 菜地
    3# 棕壤 广东省肇庆市金利镇梓里一工业区 绿地
    4# 黄壤 湖南省株洲市渌口区渌湘大道 城市绿地
    5# 褐土 甘肃省兰州市城关区骆驼滩村 绿地
    6# 褐土 山东省德州市德新区新华街道 城市绿地
    7# 棕壤 四川省眉山市丹棱县扬场镇 水稻土
    8# 黄壤 江西省萍乡市芦溪镇温埠村 菜地
    9# 沙土 四川省阿坝州诺尔盖 裸沙地
    10# 红壤 四川省攀枝花市二滩水电站 果园地
    下载: 导出CSV

    表 2  土壤的理化性质

    Table 2.  Physical and chemical properties of soils

    样品编号 pH SOM
    (mg/g)
    CEC
    (cmol/kg)
    机械组成(%)
    黏粒(mm) 粉粒(mm) 砂粒(mm)
    < 0.005 0.005~0.01 0.01~0.05 0.05~0.075 0.075~0.25 0.25~0.5 0.5~1.0
    1# 7.76 8.59 22.2 20.3 11.3 51.2 7.90 6.50 1.70 1.10
    2# 8.12 6.44 29.5 18.3 9.30 56.9 6.20 5.00 1.60 2.70
    3# 6.81 7.81 22.6 23.7 14.2 53.4 5.10 2.40 0.70 0.50
    4# 6.53 1.33 17.4 37.3 10.9 26.0 5.20 12.80 2.90 4.90
    5# 7.72 2.33 13.6 20.3 2.50 66.5 8.40 1.70 0.30 0.30
    6# 8.57 2.67 19.8 16.1 10.0 40.1 24.9 5.40 1.40 2.10
    7# 6.59 14.5 15.1 34.4 10.9 34.9 1.00 13.5 3.60 1.70
    8# 5.04 5.09 12.9 43.1 11.1 28.8 5.60 9.40 0.90 1.10
    9# 7.67 1.43 7.10 2.20 97.8
    10# 7.09 4.76 32.5 36.2 3.90 10.1 2.10 22.6 10.6 14.5
    下载: 导出CSV

    表 3  土壤的主要化学成分及锑的含量

    Table 3.  Main chemical composition and Sb content of soils

    样品编号 SiO2
    (%)
    Al2O3
    (%)
    Fe2O3
    (%)
    MnO2
    (%)
    CaO
    (%)
    MgO
    (%)
    K2O
    (%)
    Na2O
    (%)
    Sb
    (mg/kg)
    1# 71.5 11.6 2.75 0.086 5.99 2.60 3.67 0.72 1.52
    2# 70.6 13.9 5.12 0.093 3.31 1.25 4.21 0.77 1.46
    3# 77.1 13.0 5.47 0.066 0.22 0.40 3.15 0.16 2.94
    4# 58.2 20.4 3.34 0.062 0.46 0.64 4.47 0.30 2.91
    5# 44.3 12.1 2.69 0.094 6.78 2.38 2.38 0.88 1.24
    6# 59.4 6.63 1.95 0.101 5.73 1.98 2.05 0.51 1.28
    7# 73.2 10.2 3.60 0.048 0.53 0.83 2.14 0.25 1.85
    8# 50.3 14.2 2.71 0.020 0.14 0.47 16.65 0.19 1.26
    9# 85.8 6.76 2.09 0.036 1.43 0.28 1.72 0.68 0.94
    10# 53.5 22.2 12.3 0.048 0.37 0.39 0.80 0.18 1.97
    下载: 导出CSV

    表 4  土壤中不同形态铁锰氧化物的含量

    Table 4.  Content of iron and manganese oxide forms in soils

    样品编号 游离铁
    (mg/g)
    无定形铁
    (mg/g)
    络合铁
    (mg/kg)
    游离锰
    (mg/kg)
    无定形锰
    (mg/kg)
    络合锰
    (mg/kg)
    1# 5.00 3.19 89.0 315 277 27.1
    2# 4.99 2.12 38.0 261 192 14.5
    3# 12.7 2.50 127 328 249 112
    4# 23.8 1.98 58.5 99.0 65.5 8.70
    5# 2.56 1.61 32.5 171 82.0 9.40
    6# 3.64 1.80 38.5 256 115 9.30
    7# 9.97 5.91 479 193 187 94.0
    8# 15.8 2.87 229 189 27.0 4.60
    9# 3.06 0.82 29.5 54.0 94.0 12.4
    10# 36.5 8.24 53.5 285 212 19.0
    下载: 导出CSV

    表 5  土壤对Sb(Ⅲ)饱和吸附容量与土壤理化性质及各形态铁锰含量的相关性

    Table 5.  Correlation between soil with saturated adsorption capacity for Sb(Ⅲ) and soil physical and chemical properties, various forms of iron and manganese content

    参数 氧化铁 氧化锰 游离铁 无定形铁 络合铁 游离锰 无定形锰
    土壤对Sb(Ⅲ)饱和吸附容量 0.828** -0.052 0.685* 0.833** 0.052 0.645* 0.643*
    参数 pH 络合锰 SOM CEC 黏粒 粉粒 砂粒
    土壤对Sb(Ⅲ)饱和吸附容量 -0.08 0.131 0.363 0.815** 0.234 -0.114 -0.101
    注:“*”表示在0.05水平上显著相关; “**”表示在0.01水平上显著相关。
    下载: 导出CSV

    表 6  主成分分析特征值及其贡献率

    Table 6.  Eigenvalues and proportion of principal component analysis

    成分 解释的总方差(初始特征值) 解释的总方差
    (提取平方和载入)
    合计 方差
    (%)
    累积
    (%)
    合计 方差
    (%)
    累积
    (%)
    1 5.28 35.17 35.17 5.28 35.17 35.17
    2 3.30 21.96 57.13 3.29 21.96 57.14
    3 2.59 17.23 74.36 2.59 17.23 74.37
    4 1.81 12.07 86.43 1.81 12.07 86.44
    5 0.98 6.54 92.98
    6 0.46 3.10 96.07
    7 0.25 1.68 97.76
    8 0.19 1.30 99.05
    9 0.14 0.95 100
    10 1×10-13 1×10-13 100
    11 1×10-13 1×10-13 100
    12 1×10-13 1×10-13 100
    13 -1×10-13 -1×10-13 100
    14 -1×10-13 -1×10-13 100
    15 -1×10-13 -1×10-13 100
    下载: 导出CSV

    表 7  最大方差法旋转成分矩阵

    Table 7.  Component matrix with maximum variance rotation method

    因子 F1
    (主成分1)
    F2
    (主成分2)
    F3
    (主成分3)
    F4
    (主成分4)
    饱和吸附容量 0.959 0.074 -0.015 0.168
    氧化铁总量 0.933 -0.158 -0.095 -0.035
    CEC 0.866 0.375 0.156 -0.150
    无定形铁含量 0.790 -0.146 -0.209 0.447
    游离铁含量 0.751 -0.265 -0.549 -0.081
    砂粒 -0.014 -0.959 0.171 -0.148
    粉粒 -0.172 0.947 0.213 0.043
    游离锰含量 0.626 0.603 0.010 0.229
    氧化锰总量 0.017 0.468 0.428 -0.235
    pH -0.029 0.149 0.888 -0.177
    黏粒 0.386 0.240 -0.827 0.249
    无定形锰含量 0.694 0.198 0.596 0.425
    络合铁含量 -0.111 0.006 -0.378 0.882
    SOM含量 0.112 0.240 -0.121 0.865
    络合锰含量 0.416 -0.125 0.443 0.604
    下载: 导出CSV
  • [1]

    Deng R J, Shao R, Ren B Z, et al. Adsorption of antimony(Ⅲ) onto Fe(Ⅲ)-treated humus sludge adsorbent: Behavior and mechanism insights[J]. Polish Journal of Environmental Studies, 2019, 28(2): 577-586.

    [2]

    He M C, Wang N N, Long X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. doi: 10.1016/j.jes.2018.05.023

    [3]

    Zhu Y M, Wu Q H, Lv H Q, et al. Toxicity of different forms of antimony to rice plants: Effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements[J]. Environmental Pollution, 2020, 263: 114544. doi: 10.1016/j.envpol.2020.114544

    [4]

    Mbadugha L, Cowper D, Dossanov S, et al. Geogenic and anthropogenic interactions at a former Sb mine: Environmental impacts of As and Sb[J]. Environmental Geochemistry Health, 2020, 42: 3911-3924. doi: 10.1007/s10653-020-00652-w

    [5]

    张龙, 宋波, 黄凤艳, 等. 湖南锡矿山周边土壤-农作物系统锑迁移转换特征及污染评价[J]. 环境科学, 2022, 43(3): 1558-1566. doi: 10.13227/j.hjkx.202105162

    Zhang L, Song B, Huang F Y, et al. Characteristics of antimony migration and transformation and pollution evaluation in soil-crop system around tin mine in Hunan Province[J]. Environmental Science, 2022, 43(3): 1558-1566. doi: 10.13227/j.hjkx.202105162

    [6]

    Verbeeck M, Thiry Y, Smolders E. Soil organic matter affects arsenic and antimony sorption in anaerobic soils[J]. Environmental Pollution, 2020, 257: 113566. doi: 10.1016/j.envpol.2019.113566

    [7]

    刘冬, 贺灵, 文雪琴, 等. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.20211100139 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011100139

    Liu D, He L, Wen X Q, et al. Concentration and relationship about heavy metals in soils and rices and influencing of pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.20211100139 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011100139

    [8]

    岑如香, 张旺, 韦小了, 等. 黔产薏苡仁及其产地土壤重金属污染的特征[J]. 水土保持通报, 2021, 41(1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101015.htm

    Cen R X, Zhang W, Wei X L, et al. Characteristics of heavy metal pollution of coix seed and soil from its producing area in Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101015.htm

    [9]

    代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818. doi: 10.13227/j.hjkx.201704135

    Dai Y J, Guo J Y, Dong Z, et al. Spatial distribution of soil particles and heavy metals under different psammophilicshrubs in the Ulan Buh Desert[J]. Environmental Science, 2017, 38(11): 4809-4818. doi: 10.13227/j.hjkx.201704135

    [10]

    周世伟, 朱丽娜, 贺京哲, 等. 锑/磷在膨润土和高岭土的竞争吸附[J]. 土壤, 2017, 49(3): 492-499. doi: 10.13758/j.cnki.tr.2017.03.010

    Zhou S W, Zhu L, He J Z, et al. Competition adsorption of antimony (Sb) and phosphorus (P) on bentonite and kaolinite[J]. Soils, 2017, 49(3): 492-499. doi: 10.13758/j.cnki.tr.2017.03.010

    [11]

    Verbeeck M, Warrinnier R, Gustafsson J P, et al. Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study[J]. Applied Geochemistry, 2019, 104: 33-41. doi: 10.1016/j.apgeochem.2019.03.012

    [12]

    Steely S, Amarasiriwardena D, Xing B. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils[J]. Environmental Pollution, 2007, 148: 590-598. doi: 10.1016/j.envpol.2006.11.031

    [13]

    Rong Q, Zhang C L, Huang H, et al. Immobilization of As and Sb by combined applications Fe-Mn oxides with organic amendments and alleviation their uptake by brassica campestris L. [J]. Journal of Cleaner Production, 2021, 288: 125088. doi: 10.1016/j.jclepro.2020.125088

    [14]

    Lan B Y, Wang Y X, Wang X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292: 389-397. doi: 10.1016/j.cej.2016.02.019

    [15]

    王鑫浩. 不同晶型MnO2吸附剂对水中铊及锑的吸附效果研究[D]. 西安: 西安工程大学, 2018: 43.

    Wang X H. Study on the adsorption effect of different crystalline MnO2 adsorbents on thallium and antimony in water[D]. Xi'an: Xi'an Polytechnic University, 2018: 43.

    [16]

    Wang H W, Tsang Y F, Wang Y N, et al. Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions[J]. Clean Technologies and Environmental Policy, 2018, 20: 2169-2179. doi: 10.1007/s10098-018-1552-0

    [17]

    Shanggan Y X, Qin X P, Zhao L, et al. Effects of iron oxide on antimony(Ⅴ) adsorption in natural soils: Transmission electron microscopy and X-ray photoelectron spectroscopy measurements[J]. Journal of Soils & Sediments, 2016, 16(2): 509-517.

    [18]

    白德奎, 朱霞萍, 王艳艳, 等. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究[J]. 岩矿测试, 2010, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100113

    Bai D K, Zhu X P, Wang Y Y, et al. Study on adsorption behaviors of As(Ⅲ) by manganese oxide iron oxide and aluminium oxide[J]. Rock and Mineral Analysis, 2010, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100113

    [19]

    Guo X J, Wu Z J, He M C, et al. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276: 339-345. doi: 10.1016/j.jhazmat.2014.05.025

    [20]

    刘爱叶, 马杰, 马光胜. 氯化铵-乙醇法测定膨胀土阳离子交换量方法的优化[J]. 铁道勘察, 2011, 37(1): 43-45. doi: 10.3969/j.issn.1672-7479.2011.01.014

    Liu A Y, Ma J, Ma G S. Optimized experiment for ammonium chloride-ethanol method in measurement of bentonite cationic exchange capacity[J]. Railway Investigation and Surveying, 2011, 37(1): 43-45. doi: 10.3969/j.issn.1672-7479.2011.01.014

    [21]

    徐永昊, 聂军, 鲁艳红, 等. 减施化肥下紫云英翻压量对土壤团聚体及铁锰氧化物的影响[J]. 中国土壤与肥料, 2020(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202006003.htm

    Xu Y H, Nie J, Lu Y H, et al. Effects of different returning amount of Chinese milk vetch on soil aggregates and iron and manganese oxides under reduced fertilizer application[J]. Soil and Fertilizer Sciences in China, 2020(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202006003.htm

    [22]

    顾明华, 李志明, 陈宏, 等. 施锰对土壤锰氧化物形成及镉固定的影响[J]. 生态环境学报, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm

    Gu M H, Li Z M, Chen H, et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil[J]. Ecology and Environmental Sciences, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm

    [23]

    姜学钧. 海洋铁锰氧化物沉积物中常、微量元素的地球化学特征[D]. 青岛: 中国海洋大学, 2008: 22.

    Jiang X J. Geochemistry of major and minor elements in marine ferromanganese oxide deposits[D]. Qingdao: Ocean University of China, 2008: 22.

    [24]

    郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201906110084

    Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201906110084

    [25]

    薛佳. 液相色谱-原子荧光光谱联用法测定土壤砷铬锑硒元素价态[J]. 岩矿测试, 2021, 40(2): 250-261. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202003090028

    Xue J. Determination of valences of As, Cr, Sb and Se in soil using HPLC-HG-AFS[J]. Rock and Mineral Analysis, 2021, 40(2): 250-261. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202003090028

    [26]

    谭迪. 锑砷复合污染土壤的风险评价及萃取研究[D]. 长沙: 湖南农业大学, 2019: 2.

    Tan D. Risk assessment and leaching extraction of antimony (Sb) and arsenic (As) contaminated soils[D]. Changsha: Hunan Agricultural University, 2019: 2.

    [27]

    马祥爱, 秦俊梅, 张亚尼. 锑在不同土壤中的解吸行为比较[J]. 农业环境科学学报, 2015, 34(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508014.htm

    Ma X A, Qin J M, Zhang Y N. A comparison of desorption behaviors of Sb in different soils[J]. Journal of Agro-Environment Science, 2015, 34(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508014.htm

    [28]

    Zhu Y M, Yang J G, Wang L Z, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 2020, 738: 140232.

    [29]

    姜再菊. 锑矿冶炼区周围土壤中锑的吸附释放行为研究[D]. 贵阳: 贵州大学, 2019: 7.

    Jiang Z J. Study on adsorption and release behavior of Sb in soil of antimony ore smelting mine[D]. Guiyang: Guizhou University, 2019: 7.

    [30]

    Lin X L, He F, Sun Z J, et al. Influences of soil pro-perties and long-time aging on phytotoxicity of antimony to barley root elongation[J]. Environmental Pollution, 2020, 262: 114330. http://www.sciencedirect.com/science/article/pii/S0269749120301147

    [31]

    孙雪. 不同景观部位土壤铁锰新生体的形态, 组成及形成环境研究[D]. 沈阳: 沈阳农业大学, 2018: 4-5.

    Sun X. The morphology, composition, and formation environment of soil Fe-Mn new growth in different landscape sites[D]. Shenyang: Shenyang Agricultural University, 2018: 4-5.

    [32]

    肖作义, 马耀祖, 郑春丽, 等. 季节性冻融作用对土壤吸附稀土元素镧的影响[J]. 应用化工, 2018, 47(9): 1841-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201809011.htm

    Xiao Z Y, Ma Y Z, Zheng C L, et al. The effect of seasonal freeze-thaw on the soil adsorption of rare earth elements lanthanum[J]. Applied Chemical Industry, 2018, 47(9): 1841-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201809011.htm

    [33]

    梁化学. 不同形态氧化铁对黄土性土壤表面性质及铅吸附解吸的影响[D]. 杨凌: 西北农林科技大学, 2016: 2-3.

    Liang H X. Effects of iron oxides on surface properties and adsorption-desorption of lead by several loessial soils[D]. Yangling: Northwest A&F University, 2016: 2-3.

    [34]

    Zhou S, Sato T, Otake T. Dissolved silica effects on adsorption and co-precipitation of Sb(Ⅲ) and Sb(Ⅴ) with ferrihydrite[J]. Minerals, 2018, 8(101): 1-12. http://www.onacademic.com/detail/journal_1000040539668010_66d6.html

    [35]

    Qi P F, Pichler T. Sequential and simultaneous adsorption of Sb(Ⅲ) and Sb(Ⅴ) on ferrihydrite: Implications for oxidation and competition[J]. Chemosphere, 2016, 145: 55-60.

    [36]

    高雪. 外源砷在土壤中的老化及植物有效性研究[D]. 北京: 中国农业科学院, 2016: 21.

    Gao X. A study on aging process and phytoavailability of exogenous arsenic in soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 21.

    [37]

    Cai Y B, Mi Y T, Zhang H, et al. Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J]. Journal of Hazardous Materials, 2016, 316: 102-109.

    [38]

    Long X J, Wang X, Guo X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90: 189-204.

    [39]

    Belzile N, Chen Y W, Wang Z J. Oxidation of antimony(Ⅲ) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174: 379-387.

  • 加载中

(1)

(7)

计量
  • 文章访问数:  3154
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2021-11-25
修回日期:  2022-01-04
录用日期:  2022-01-30
刊出日期:  2023-01-28

目录