Geochemical Characteristics and Influencing Factors of Soil Selenium in Longzi County, Tibet Autonomous Region
-
摘要:
硒是人体必需的微量元素之一,土壤中的硒含量与人体健康关系密切。调查土壤硒含量分布特征、圈定富硒土壤资源分布区、查明土壤硒含量影响因素,对于推动富硒土地资源开发利用、发展富硒农牧产业、预防地方疾病等均具有重要意义,也可为土壤硒背景值研究提供参比资料。土壤硒是当前热点研究领域,国内外对土壤硒研究已有很多,然而西藏地区有关土壤硒方面研究资料非常有限。本文选择西藏自治区隆子县重点耕地区为研究对象,系统采集表层土壤、垂向剖面、岩石样等样品,采用原子荧光光谱法(AFS)、容量法(VOC)、电感耦合等离子体发射光谱法(ICP-OES)等方法测定土壤中的硒、有效硒、有机质、全磷等含量指标,利用统计方法对研究区土壤硒、有效硒等地球化学含量特征及影响因素进行初步探讨。结果表明:①研究区表层土壤硒含量范围为0.14~1.51mg/kg,中位数为0.44mg/kg,是西藏土壤硒平均值(0.15mg/kg)的2.9倍和中国表层土壤Se平均值(0.26mg/kg)的1.5倍,表明研究区表层土壤中全硒含量较高;研究区表层土壤中有效硒含量范围为0.8~26.8μg/kg,中位数为9.2μg/kg,土壤有效硒占全硒含量的0.21%~5.79%;土壤硒含量高于0.4mg/kg为界限值,研究区总面积的77.25%符合富硒土壤划定标准,表明富硒土壤资源丰富;②研究区广泛分布的涅如组(T3n)和日当组(J1r)地层发育土壤中硒含量较高,中位数分别为0.44mg/kg和0.41mg/kg,土壤硒含量与地质背景密切相关;土壤理化性质包括有机质、pH、TFe2O3等对土壤全硒含量影响不显著,但土壤有效硒与有机质、pH、N、P、碱解氮、有效磷、速效钾、阳离子交换量(CEC)呈显著正相关;此外,铁氧化物(TFe2O3)对有效硒含量也有一定控制作用;③土壤垂向剖面研究发现,土壤硒含量还与表生富集作用有关。综合认为,研究区土壤Se含量较高,富硒土壤资源丰富,可以通过土壤养分管理,进一步提高土壤硒生物有效性。
Abstract:BACKGROUND Selenium (Se) is one of the essential trace elements in the human body, which has many biological functions. Insufficient or excessive intake of Se will cause a series of diseases. The trace element Se in the human or animal body cannot be synthesized by itself, but can only be supplemented from external food. Se in food, especially in plant food, mainly comes from soil. Therefore, Se in soil is closely related to human health and animal growth. China is a country lacking in soil Se content, especially in Tibet. The background value of soil Se in Tibet is significantly lower than that of surface soil in China. Therefore, local diseases such as Kashin-Beck disease are common in some areas of Tibet due to long-term insufficient intake of selenium. It is of great significance to investigate the distribution characteristic of soil Se content, delineate the distribution area of selenium-enriched soil resources and determine the influencing factors of soil Se content for promoting the development and utilization of selenium-enriched land resources, develop Se-enriched industries and prevent local diseases. This will also provide reference data for the research of soil Se background value.
OBJECTIVES In recent years, it has been a hot topic to investigate the content of Se in soil, to delineate selenium-enriched soil resources and to develop and utilize them. Tibet is the main part of the Qinghai—Tibet Plateau, which has complex and diverse soil parent materials and soil forming processes, forming unique alpine soil types. In addition, Tibet is one of the areas with the least influence of human activities and is the ideal place for environmental geochemistry research. However, due to many factors such as natural geographical location and climate, the research data of soil element geochemistry in Tibet is very limited, and research data of soil Se is rare. Thus, the characteristics, distribution and influencing factors of soil Se content in the study area were studied, to provide a basis for the exploitation and utilization of selenium-enriched land resources, the development of selenium-enriched industry and the prevention of endemic diseases in the frontier ethnic areas of the plateau.
METHODS The collection, processing and analysis of samples of surface soil, vertical profile and rock profile were carried out. The samples were collected from the key farming area of Longzi County, Shannan, Tibet Autonomous Region. The surface soil samples were collected in a grid pattern from the third national land survey map spot. The soil sampling points were mainly arranged on agricultural plots, with an average sampling density of 7.9 points/km2. A total of 1587 surface soil samples were collected, with a study area of 200km2. The sampling method for surface soil samples was determined according to the actual plot shape. When the plot was square, "X" type sampling was adopted, and when the plot was rectangular, "S" type sampling was adopted. When sampling cultivated land, 5 sub-sampling points were equally combined into 1 sample; for grassland and woodland sampling, 3-4 sub-sampling points were equally combined into one sample. The samples collected at each sub-sampling point were crushed, small stones, roots and other sundries picked out, and after fully mixing, more than 1000g samples reserved and put into sample bags by quartering method. In the study area, 10 vertical soil profiles were set up, and the sampling interval was 1 sample/20cm. The depth of all the profiles was 160cm except for the profile CM01, which was 140cm deep. In addition, a rock profile was set in the study area, and fresh rock samples were collected. The same kind of rock was collected in a multi-point mode and combined into a sample, with the sample weight of 300g. The surface soil samples, and vertical profile samples collected were naturally dried without pollution, and sieved by -10 mesh nylon sieve, then divided by quartering method, weighed and put into sample bottles and sent to laboratory for analysis. Soil samples were analyzed for Se, available Se, organic matter, pH, N, P, available N, available P, available K, etc. Rock samples were analyzed for Se. The contents of Se and available Se were determined by atomic fluorescence spectrometry (AFS), organic matter. Available nitrogen and cation exchange capacity (CEC) were determined by volumetric method (VOL), pH value was determined by ion selective electrode method (ISE), N content was determined by elemental analyzer method (EA), and available P, available K, P and TFe2O3 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The detection limit, accuracy, precision and reporting rate of the analytical method adopted all met the specification requirements, and the sample analysis quality was reliable.
RESULTS The results of the content of Se in soil and its influence factors, showed that: (1) The Se content in the topsoil of the study area ranged from 0.14 to 1.51mg/kg, with a median of 0.44mg/kg, which was 2.9 times as high as the average value of Tibet (0.15mg/kg) and 1.5 times as high as the average value of China (0.26mg/kg). The content of available Se in the topsoil ranged from 0.8 to 26.8μg/kg, with a median of 9.2μg/kg. The content of available Se in topsoil was 0.21%-5.79% of total Se. (2) Se-enriched (Se≥0.4mg/kg) soil resource area was 154.53km2, which accounted for 77.25% of the total area. Se-enriched soil was mainly distributed in Longzi Town and Ridang Town. There was no excess or deficiency of soil Se in the study area, which indicated that Se-enriched soil was continuous and had the potential to develop Se-enriched soil resources. (3) The geological background was closely related to the Se content in the soil. The Se rich soil was mainly controlled by the distribution of the Nieru Formation (T3n) and the Ridang Formation (J1r). The median Se content in the soil developed from the Nieru Formation (T3n) and the Ridang Formation (J1r) was 0.44mg/kg and 0.41mg/kg, respectively. Analysis of Se content in rock samples showed that Se content ranged from 0.07 to 11.00mg/kg, with an average of 1.65mg/kg. Se content was high in sericite slate and shale, which further proved that Se-enriched soil was closely related to its parent rock. (4) Soil physical and chemical properties including organic matter, pH, TFe2O3 had no significant effect on soil Se content, but soil available Se was positively correlated with organic matter, pH, N, P, alkali-hydrolyzable N, available P, available K, CEC content. There was a positive correlation between the content of organic matter and the content of available Se (R2=0.2792, P < 0.01), and between the content of organic matter and the ratio of available Se to total Se (R2=0.2597, P < 0.01). There was a positive correlation between soil available Se and pH (R2=0.103, P < 0.01). According to the soil pH grading standard, the availability of Se increased gradually from acid to alkaline soil, but in strong alkaline soil, the availability began to decrease due to the methylation reaction of Se. There was a negative correlation between available Se and TFe2O3 (R2=-0.346, P < 0.01). In the study area, the content of soil available Se had significantly positive correlation with the content of N, P, alkali-hydrolyzable N, available P and available K, which indicated that the increase of N, P and K content could significantly improve the bioavailability of soil selenium, which had a certain theoretical significance for the artificial control of soil Se content. (5) 10 vertical soil profiles were constructed in different areas of the study area, and the depth of the other profiles was 160cm except for the CM01 profile, which was 140cm. In that vertical soil profile, the content of Se and available Se decreased with the increase of soil depth. The content of Se in the soil below 100cm was less than 0.4mg/kg, and the content of available Se in the soil at 160cm was 60% less than that in the surface soil.
CONCLUSIONS The content of Se in the topsoil of the study area is high, and 77.25% of the study area is in line with the standard of Se-enriched soil. In that soil, the Se content is mainly affected by the parent materials, especially the sericite slate and shale in the Nieru Formation (T3n) and Ridang Formation (J1r). The land use type has little effect on Se content and distribution. Physical and chemical properties of the soil, such as organic matter, pH, N, P, available N, available P, available K and CEC, have little effect on total Se content, but soil available Se is significantly positively correlated with organic matter, pH, N, P, alkali-hydrolyzable N, available P, available K and CEC. Soil nutrient management can further improve bioavailability of soil selenium. Only the characteristics and influencing factors of soil Se content in Longzi County, Tibet Autonomous Region, were discussed, in order to provide a geological basis for the development and utilization of Se-enriched land resources. However, the process of Se uptake by crops is a very complex biogeochemical process, and is affected by many factors. Therefore, it is necessary to further strengthen research on the characteristics of Se content and its migration and transformation in soil-crop system.
-
-
表 1 土壤样品分析方法及检出限
Table 1. Analytical methods and detection limit for soil samples
分析指标 分析方法 样品处理方法 检出限要求
(mg/kg)检出限
(mg/kg)方法依据 Se 原子荧光光谱法(AFS) 王水加热消解,盐酸浸提 0.01 0.01 WHCS-FF-CS/04—2019 有效硒 原子荧光光谱法(AFS) 沸水浸取 - 0.0005 WHCS-FF-CS/22—2019 有机质 容量法(VOL) 浓硫酸加热消解 0.17 0.034 NY/T 1121.6—2006 pH 离子选择性电极法(ISE) 无二氧化碳水浸取 0.1 0.1* WHCS-FF-CS/19—2019 TFe2O3 电感耦合等离子体发射光谱法(ICP-OES) 四酸加热消解,盐酸浸提 0.05 0.02 WHCS-FF-CS/02—2019 N 元素分析仪法(EA) 固体燃烧 20 15 WHCS-FF-CS/12—2019 P 电感耦合等离子体发射光谱法(ICP-OES) 粉末压片 10 4.3 WHCS-FF-CS/02—2019 碱解氮 容量法(VOL) 碱解-扩散 - 1 LY/T 1228—2015 速效磷 电感耦合等离子体发射光谱法(ICP-OES) 中碱性:碳酸氢钠浸取;
酸性:氟化铵-盐酸浸取0.25 0.2 LY/T 1232—2015 速效钾 电感耦合等离子体发射光谱法(ICP-OES) 乙酸铵浸取 1.25 1 LY/T 1234—2015 阳离子交换量
(CEC)容量法(VOL) 乙酸铵浸取 2.5 1** LY/T 1243—1999 注:“*”单位为无量纲;“**”单位为cmol/kg;“-”无检出限值。 表 2 表层土壤地球化学参数特征
Table 2. Characteristics of geochemical parameters for surface soil
分析指标 最小值 最大值 平均值 中位数 标准离差 变化系数 Se(mg/kg) 0.14 1.51 0.45 0.44 0.10 0.23 有效硒(μg/kg) 0.79 26.80 9.20 8.80 3.56 0.39 有机质(%) 0.37 10.50 2.53 2.45 1.03 0.41 pH 5.81 8.86 8.22 8.32 0.41 0.05 TFe2O3(%) 3.53 14.00 7.06 6.88 0.99 0.14 N(mg/kg) 489.00 4412.00 1822.81 1792.00 571.10 0.31 P(mg/kg) 289.00 1728.00 839.03 832.00 193.97 0.23 碱解氮(mg/kg) 10.00 472.00 100.99 93.80 49.61 0.49 速效磷(mg/kg) 0.66 94.30 10.96 7.51 10.00 0.91 速效钾(mg/kg) 6.00 794.00 111.15 80.00 89.00 0.80 西藏土壤硒(mg/kg) 0.04 0.37 0.15 0.14 / 0.48 中国表层土壤硒(mg/kg) 0.00 49.60 0.26 0.21 0.22 0.80 注:西藏土壤硒含量数据引自《西藏土壤元素背景值及其分布特征》(成廷鏊等,1993);中国表层土壤硒含量数据引自《中国土壤地球化学参数》(侯青叶等,2020)。 表 3 研究区不同地层分布区土壤中硒参数统计
Table 3. Statistics of selenium parameters in soils of different stratigraphic distribution areas in the study area
地层 样品数量 硒含量最小值
(mg/kg)硒含量最大值
(mg/kg)硒含量算术平均值
(mg/kg)硒含量中位数
(mg/kg)标准差
(mg/kg)变异系数 涅如组三段(T3n3) 110 0.22 1.03 0.43 0.42 0.11 0.25 涅如组二段(T3n2) 317 0.22 1.51 0.46 0.44 0.14 0.31 涅如组一段(T3n1) 28 0.24 0.77 0.47 0.45 0.12 0.26 日当组(J1r) 401 0.14 1.35 0.43 0.41 0.11 0.27 陆热组(J1-2l) 8 0.28 0.73 0.50 0.49 0.15 0.31 第四系(Qh) 711 0.14 0.72 0.45 0.45 0.07 0.15 辉绿岩(βμ) 9 0.14 0.46 0.37 0.44 0.11 0.30 花岗斑岩(γπ) 3 0.39 0.49 0.45 0.48 0.06 0.12 比马组(K1b)* 23 0.08 0.22 0.12 0.12 0.03 0.23 宋热岩组(T3s)* 78 0.15 0.71 0.34 0.29 0.13 0.40 典中组(E1d)* 24 0.10 0.44 0.23 0.22 0.09 0.42 注:“*”数据来源于西藏乃东区重点耕地区1:5万土地质量地球化学调查数据。 表 4 不同土地利用方式土壤硒地球化学参数
Table 4. Geochemical parameters of selenium concentration in soils with different land use types
用地类型 样品数量 硒含量最小值
(mg/kg)硒含量最大值
(mg/kg)硒含量算术平均值
(mg/kg)硒含量中位数
(mg/kg)标准差
(mg/kg)变异系数 水浇地 860 0.26 0.98 0.45 0.44 0.07 0.17 旱地 20 0.38 0.58 0.47 0.46 0.05 0.11 天然牧草地 424 0.14 1.51 0.43 0.41 0.16 0.37 人工牧草地 81 0.26 0.74 0.44 0.43 0.08 0.18 灌木林地 115 0.25 0.65 0.45 0.46 0.07 0.15 其他林地 37 0.33 0.63 0.46 0.45 0.09 0.18 乔木林地 40 0.32 0.55 0.45 0.45 0.05 0.11 沼泽草地 6 0.33 0.7 0.53 0.52 0.14 0.27 内陆滩涂 4 0.33 0.43 0.4 0.42 0.05 0.12 表 5 土壤有效硒和CEC与氮、磷等指标相关关系
Table 5. Correlation between soil available selenium and CEC and N, P and other indicators
指标 样品数量 氮 磷 有机质 碱解氮 有效磷 速效钾 有效硒 有效硒 1587 0.591** 0.406** 0.528** 0.538** 0.385** 0.500** 1 CEC 130 0.749** 0.649** 0.785** 0.601** 0.383** 0.431** 0.446** 注: “**”表示在置信度(双测)为0.01时,相关性是显著的。 -
[1] Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health[J]. Metallomics: Integrated Biometal Science, 2014, 6(1): 25-54. doi: 10.1039/C3MT00185G
[2] 李军, 张忠诚. 微量元素硒与人体健康[J]. 微量元素与健康研究, 2011, 28(5): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201105027.htm
Li J, Zhang Z C. Trace element selenium and human health[J]. Studies of Trace Elements and Health, 2011, 28(5): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201105027.htm
[3] 吕其壮, 颜秋, 陈艳, 等. 微量元素硒在动物体内的抗病毒作用研究进展[J]. 土壤, 2018, 50(6): 1113-1118. doi: 10.13758/j.cnki.tr.2018.06.008
Lyu Q Z, Yan Q, Chen Y, et al. Research progress of antiviral effects of microelement selenium in animal body[J]. Soils, 2018, 50(6): 1113-1118. doi: 10.13758/j.cnki.tr.2018.06.008
[4] Tan L C, Nancharaiah Y V, Hullebusch E D V, et al. Selenium: Environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886-907. doi: 10.1016/j.biotechadv.2016.05.005
[5] 谭见安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989: 39.
Tan J A. The atlas of endemic diseases and their environment in the People's Republic of China[M]. Beijing: Science Press, 1989: 39.
[6] 孙国新, 张召阳. 中国表层土壤汞和硒分布空间异质性的因素分析[J]. 科技导报, 2022, 40(3): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202203011.htm
Sun G X, Zhang Z Y. Spatial distribution heterogeneity of Hg and Se in surface soil in China and its plausible reason[J]. Science & Technology Review, 2022, 40(3): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202203011.htm
[7] 孙国新, 李媛, 李刚, 等. 我国土壤低硒带的气候成因研究[J]. 生物技术进展, 2017, 7(5): 387-394. doi: 10.19586/j.2095-2341.2017.0061
Sun G X, Li Y, Li G, et al. Climatic causes of the selenium-deficient soil belt in China[J]. Current Biotechnology, 2017, 7(5): 387-394. doi: 10.19586/j.2095-2341.2017.0061
[8] Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035
[9] 王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm
Wang X Q, Liu Q Q, Liu H L, et al. Key elements and human health: Is China's arable land selenium-deficient?[J]. Earth Science Frontiers, 2021, 28(3): 412-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm
[10] 王锐, 余涛, 杨忠芳, 等. 我国主要农耕区土壤硒含量分布特征、来源及影响因素[J]. 生物技术进展, 2017, 7(5): 359-366. doi: 10.19586/j.2095-2341.2017.0071
Wang R, Yu T, Yang Z F, et al. Distribution characteristics, origin and influencing factors of soil selenium concentration of main farming areas in China[J]. Current Biotechnology, 2017, 7(5): 359-366. doi: 10.19586/j.2095-2341.2017.0071
[11] 成廷鏊, 田均良. 西藏土壤元素背景值及其分布特征[M]. 北京: 科学出版社, 1993: 65.
Cheng T A, Tian J L. Background values of elements in Tibet soil and their distribution[M]. Beijing: Science Press, 1993: 65.
[12] 张晓平, 张玉霞. 西藏土壤中硒的含量及分布[J]. 土壤学报, 2000, 37(4): 558-562. doi: 10.3321/j.issn:0564-3929.2000.04.018
Zhang X P, Zhang Y X. Content and distribution of selenium in soils of Tibet[J]. Acta Pedologica Sinica, 2000, 37(4): 558-562. doi: 10.3321/j.issn:0564-3929.2000.04.018
[13] 曲航, 尼玛扎西, 韦泽秀, 等. 西藏青稞产区土壤和籽粒硒含量调查研究[J]. 麦类作物学报, 2020, 40(7): 890-896. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202007016.htm
Qu H, Ni M Z X, Wei Z X, et al. Investigation on selenium content in soil and hulless barley grains in Tibet[J]. Journal of Triticeae Crops, 2020, 40(7): 890-896. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202007016.htm
[14] 次仁旺堆, 多吉卫色, 索朗次仁, 等. 西藏山南市乃东区土壤硒分布特征及影响因素[J]. 岩矿测试, 2022, 41(3): 427-436. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202201100006
Ci R W D, Duo J W S, Suo L C R, et al. Distribution characteristics and influencing factors of soil selenium in Naidong District, Shannan City, Tibet[J]. Rock and Mineral Analysis, 2022, 41(3): 427-436. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202201100006
[15] Wang J, Li H R, Li L S, et al. Distribution and trans-location of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area[J]. Environmental Geochemistry and Health, 2017, 39(1): 221-229. doi: 10.1007/s10653-016-9823-3
[16] 罗海怡, 罗先熔, 刘攀峰, 等. 广西三江县土壤硒含量分布特征及其影响因素研究[J]. 现代地质, 2022, 36(2): 645-654. doi: 10.19657/j.geoscience.1000-8527.2022.02.25
Luo H Y, Luo X R, Liu P F, et al. Distribution characteristics of soil selenium content and its influencing factors in Sanjiang County, Guangxi[J]Geoscience, 2022, 36(2): 645-654. doi: 10.19657/j.geoscience.1000-8527.2022.02.25
[17] 曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201606130084
Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201606130084
[18] 郭军, 刘明, 汤恒佳, 等. 湖南汨罗市范家园地区富硒土壤特征及其影响因素研究[J]. 华南地质, 2021, 37(4): 387-397. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC202104003.htm
Guo J, Liu M, Tang H J, et al. Characteristics and influencing factors of selenium-rich soil in Fanjiayuan area of Miluo City, Hunan Province[J]. South China Geology, 2021, 37(4): 387-397. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC202104003.htm
[19] 梁红霞, 侯克斌, 陈富荣, 等. 安徽池州地区富硒土壤地球化学特征及成因分析[J]. 资源环境与工程, 2022, 36(2): 154-162. doi: 10.16536/j.cnki.issn.1671-1211.2022.02.004
Liang H X, Hou K B, Chen F R, et al. Geochemical characteristics and genesis analysis of selenium-rich soils in Chizhou area, Anhui Province[J]. Resources Environment & Engineering, 2022, 36(2): 154-162. doi: 10.16536/j.cnki.issn.1671-1211.2022.02.004
[20] 刘才泽, 王永华, 曾琴琴, 等. 成渝典型地区土壤硒地球化学特征及其成因分析[J]. 物探与化探, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm
Liu C Z, Wang Y H, Zeng Q Q, et al. The distribution and source of soil selenium in typical areas of Chengdu—Chongqing region[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm
[21] 武芝亮, 李致坤, 侯青叶, 等. 四川省邻水县土壤及作物硒地球化学特征及其研究意义[J]. 现代地质, 2021, 35(6): 1752-1761. doi: 10.19657/j.geoscience.1000-8527.2021.06.21
Wu Z L, Li Z K, Hou Q Y, et al. Geochemical characteristics of selenium in soils and crops and its research significance in Linshui County, Sichuan Province[J]. Geoscience, 2021, 35(6): 1752-1761. doi: 10.19657/j.geoscience.1000-8527.2021.06.21
[22] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters of China[M]. Beijing: Geological Publishing House, 2020.
[23] 夏飞强, 张祥, 杨艳, 等. 安徽省宁国市土壤和农产品硒地球化学特征及影响因素[J]. 土壤, 2021, 53(3): 585-593. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202103019.htm
Xia F Q, Zhang X, Yang Y, et al. Geochemical characteristics and influencing factors of selenium in soils and agricultural products in Ningguo City, Anhui Province[J]. Soils, 2021, 53(3): 585-593. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202103019.htm
[24] 吉清妹, 潘孝忠, 张冬明, 等. 海南农田土壤有效硒含量与分级及其影响因素[J]. 广东农业科学, 2016, 43(3): 88-92, 193. https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201603018.htm
Ji Q M, Pan X Z, Zhang D M, et al. Content, distribution classification of available selenium in Hainan farmlands and its influence factors[J]. Guangdong Agricultural Sciences, 2016, 43(3): 88-92, 193. https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201603018.htm
[25] 孙朝, 侯青叶, 杨忠芳, 等. 典型土壤环境中硒的迁移转化影响因素研究——以四川省成都经济区为例[J]. 中国地质, 2010, 37(6): 1760-1768. doi: 10.3969/j.issn.1000-3657.2010.06.023
Sun C, Hou Q Y, Yang Z F, et al. Factors controlling the transport and transformation of selenium in typical soil environments: A case study of the Chengdu economic zone in Sichuan Province[J]. Geology in China, 2010, 37(6): 1760-1768. doi: 10.3969/j.issn.1000-3657.2010.06.023
[26] 毛香菊, 刘璐, 程新涛, 等. 河南新密典型富硒区土壤Se元素地球化学特征及空间分布规律[J]. 地质通报, 2021, 40(10): 1664-1670. doi: 10.12097/j.issn.1671-2552.2021.10.008
Mao X J, Liu L, Cheng X T, et al. Geochemistry and spatial distribution of Se element in soils of typical Se-rich area in Xinmi Henan Province[J]. Geological Bulletin of China, 2021, 40(10): 1664-1670. doi: 10.12097/j.issn.1671-2552.2021.10.008
[27] 高宇, 杜亮亮, 海龙, 等. 宁夏中宁县土壤硒元素垂向分布特征研究[J]. 资源环境与工程, 2017, 31(S1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2017S1014.htm
Gao Y, Du L L, Hai L, et al. Characteristic research of vertical distribution of selenium element in Zhongning County, Ningxia[J]. Resources Environment & Engineering, 2017, 31(S1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2017S1014.htm
[28] 伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(4): 461-475. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006230095
Yi Q, Cheng H, Shang W Y. Review on characteristics of selenium in soil and related analytical techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006230095
[29] 张建东, 王丽, 赫栗涛, 等. 岚皋县岩石、土壤和农产品中硒分布规律研究[J]. 土壤通报, 2022, 53(1): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202201022.htm
Zhang J D, Wang L, He L T, et al. Distribution characteristics of selenium in rocks, soils and agricultural products of Langao[J]. Chinese Journal of Soil Science, 2022, 53(1): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202201022.htm
[30] 王志强, 杨建锋, 魏丽馨, 等. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202201026.htm
Wang Z Q, Yang J F, Wei L X, et al. Geochemical characteristics and bioavailability of selenium in alkaline soil in Shizuishan area, Ningxia[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202201026.htm
[31] 刘健, 汪一凡, 林钟扬, 等. 浙江建德市耕地表层土壤硒分布、来源及生态效应[J]. 现代地质, 2022, 36(3): 953-962. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202203015.htm
Liu J, Wang Y F, Lin Z Y, et al. Distribution, sources and ecological effects of selenium in topsoil of cultivated land in Jiande City, Zhejiang Province[J]. Geoscience, 2022, 36(3): 953-962. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202203015.htm
[32] Xiao K C, Lu L F, Tang J J, et al. Parent material modulates land use effects on soil selenium bioavailability in a selenium-enriched region of southwest China[J]. Geoderma, 2020, 376: 114554.
[33] 赵辰, 孙彬彬, 贺灵, 等. 四川昭觉县中部乡镇表层土壤硒地球化学特征[J]. 岩矿测试, 2022, 41(3): 412-426. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202111250185
Zhao C, Sun B B, He L, et al. Geochemical characteristics of selenium in surface soil of central townships in Zhaojue County, Sichuan Province[J]. Rock and Mineral Analysis, 2022, 41(3): 412-426. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202111250185
[34] 时章亮, 金立新, 廖超, 等. 四川雷波县重点耕地区土壤硒含量特征及其成因分析[J]. 物探与化探, 2020, 44(5): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005036.htm
Shi Z L, Jin L X, Liao C, et al. Content characteristics and genesis of soil selenium in important cultivated areas of Leibo County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005036.htm
[35] 刘冰权, 沙珉, 谢长瑜, 等. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740-750. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202107230082
Liu B Q, Sha M, Xie C Y, et al. Geochemical characteristics of soil selenium and influencing factors of selenium bioavailability in rice root soils in Qingxi area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202107230082
[36] 杨泽, 刘国栋, 戴慧敏, 等. 黑龙江兴凯湖平原土壤硒地球化学特征及富硒土地开发潜力[J]. 地质通报, 2021, 40(10): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202110020.htm
Yang Z, Liu G D, Dai H M, et al. Selenium geochemistry of soil and development potential of Se-rich soil in Xingkai Lake Plain[J]. Geological Bulletin of China, 2021, 40(10): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202110020.htm
[37] 成晓梦, 孙彬彬, 贺灵, 等. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202106080072
Cheng X M, Sun B B, He L, et al. Content characteristics and influencing factors of soil selenium in western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202106080072
[38] 张立, 杨晨梦, 孙广义, 等. 黑龙江绥化大宗农作物硒含量特征及影响因素分析[J]. 地球与环境, 2021, 49(5): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202105006.htm
Zhang L, Yang C M, Sun G Y, et al. Characteristics and influencing factors of selenium content of staple crops in Suihua area of Heilongjiang Province[J]. Earth and Environment, 2021, 49(5): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202105006.htm
[39] 唐玉霞, 王慧敏, 刘巧玲, 等. 河北省麦田土壤硒的含量、形态及其有效性研究[J]. 华北农学报, 2010, 25(S1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB2010S1045.htm
Tang Y X, Wang H M, Liu Q L, et al. Study on the content, speciation distribution and availability of selenium in wheat field soils of Hebei[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(S1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB2010S1045.htm
[40] 王保欣, 韦继康, 余晓霞, 等. 浙江慈溪粮食主产区富硒土壤评价方法对比研究[J]. 现代地质, 2020, 34(4): 672-679. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202004004.htm
Wang B X, Wei J K, Yu X X, et al. Comparative study of different evaluation methods of Se-rich soil in main grain producing area of Cixi, Zhejiang Province[J]. Geoscience, 2020, 34(4): 672-679. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202004004.htm
[41] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911140158
Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911140158
[42] 李玉超, 王诚煜, 于成广. 辽宁丹东地区土壤Se元素地球化学特征及其影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1766-1775. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006012.htm
Li Y C, Wang C Y, Yu C G. Geochemical characteristics and influencing factors of selenium in soil from Dandong area, Liaoning Province[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6): 1766-1775. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006012.htm
[43] 陈东平, 张金鹏, 聂合飞, 等. 粤北山区连州市土壤硒含量分布特征及影响因素研究[J]. 环境科学学报, 2021, 41(7): 2838-2848. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202107034.htm
Chen D P, Zhang J P, Nie H F, et al. Selenium distribution in soils of Lianzhou City, mountain area of northern Guangdong Province and its influencing factors[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2838-2848. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202107034.htm
[44] 蔡立梅, 王硕, 温汉辉, 等. 土壤硒富集空间分布特征及影响因素研究[J]. 农业工程学报, 2019, 35(10): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201910011.htm
Cai L M, Wang S, Wen H H, et al. Enrichment spatial distribution characteristics of soil selenium and its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201910011.htm
[45] 张丽, 张乃明, 张玉娟, 等. 云南耕地土壤硒含量空间分布及其影响因素研究[J]. 土壤, 2021, 53(3): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202103018.htm
Zhang L, Zhang N M, Zhang Y J, et al. Spatial distribution of Se content and its influencing factors in cultivated topsoil in Yunnan[J]. Soils, 2021, 53(3): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202103018.htm
[46] 杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5): 837-849. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201205000.htm
Yang Z F, Yu T, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan island[J]. Geoscience, 2012, 26(5): 837-849. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201205000.htm
[47] 杨畅. 贵州省修文县土壤硒元素地球化学特征及其影响因素[J]. 现代矿业, 2021, 37(3): 23-26, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202103007.htm
Yang C. Geochemical characteristics and its influencing factors of soil selenium in Xiuwen County, Guizhou Province[J]. Modern Mining, 2021, 37(3): 23-26, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202103007.htm
[48] 董旭, 姜明亮, 汤明. 安徽省金寨县土壤硒分布特征及影响因素研究[J]. 东华理工大学学报(自然科学版), 2021, 44(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101006.htm
Dong X, Jiang M L, Tang M. Distribution characteristics and influencing factors of selenium content in soil in Jinzhai County, Anhui Province[J]. Journal of East China University of Technology (Natural Science), 2021, 44(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101006.htm
[49] 吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm
Wu X S. Characteristics and genesis of selenium-rich soil in Wuping area, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm
[50] 徐文坡, 朱建明, 秦海波, 等. 铁、锰和铝氧化物吸附硒的行为研究[J]. 矿物学报, 2017, 37(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703015.htm
Xu W P, Zhu J M, Qin H B, et al. A study on selenium oxyanions adsorbed onto iron/manganese/aluminum oxides[J]. Acta Mineralogica Sinica, 2017, 37(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703015.htm
[51] 余文权, 王峰, 陈玉真, 等. 福建省典型茶园土壤硒含量及其影响因素研究[J]. 茶叶科学, 2020, 40(2): 173-185. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKK202002005.htm
Yu W Q, Wang F, Chen Y Z, et al. Study on soil selenium content and its influencing factors in typical tea garden of Fujian Province[J]. Journal of Tea Science, 2020, 40(2): 173-185. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKK202002005.htm
[52] 吴正, 梁红霞, 陈富荣, 等. 安徽省南陵地区土壤Se分布特征及评价研究[J]. 山东国土资源, 2019, 35(10): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201910005.htm
Wu Z, Liang H X, Chen F R, et al. Study on the distribution characteristics and evaluation of Se in soil of Nanling area in Anhui Province[J]. Shandong Land and Resources, 2019, 35(10): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201910005.htm
[53] 吴长龙, 周晨霓, 王彤. 土壤硒有效性影响因素研究进展[J]. 山东林业科技, 2022, 52(1): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TREE202201014.htm
Wu C L, Zhou C N, Wang T. Progress on the influencing factors of soil selenium effectiveness[J]. Journal of Shandong Forestry Science and Technology, 2022, 52(1): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TREE202201014.htm
[54] 刘世全, 蒲玉琳, 张世熔, 等. 西藏土壤阳离子交换量的空间变化和影响因素研究[J]. 水土保持学报, 2004, 18(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200405000.htm
Liu S Q, Pu Y L, Zhang S R, et al. Spatial change and affecting factors of soil cation exchange capacity in Tibet[J]. Journal of Soil and Water Conservation, 2004, 18(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200405000.htm
-