中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

豫西金矿集区矿业活动对周边农田土壤重金属影响研究

孙建伟, 贾煦, 刘向东, 程贤达, 商连南. 豫西金矿集区矿业活动对周边农田土壤重金属影响研究[J]. 岩矿测试, 2023, 42(1): 192-202. doi: 10.15898/j.cnki.11-2131/td.202203280062
引用本文: 孙建伟, 贾煦, 刘向东, 程贤达, 商连南. 豫西金矿集区矿业活动对周边农田土壤重金属影响研究[J]. 岩矿测试, 2023, 42(1): 192-202. doi: 10.15898/j.cnki.11-2131/td.202203280062
SUN Jianwei, JIA Xu, LIU Xiangdong, CHENG Xianda, SHANG Liannan. Influence of Mining Activities in the Gold Ore Concentration Area in Western Henan on the Heavy Metals in Surrounding Farmland Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 192-202. doi: 10.15898/j.cnki.11-2131/td.202203280062
Citation: SUN Jianwei, JIA Xu, LIU Xiangdong, CHENG Xianda, SHANG Liannan. Influence of Mining Activities in the Gold Ore Concentration Area in Western Henan on the Heavy Metals in Surrounding Farmland Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 192-202. doi: 10.15898/j.cnki.11-2131/td.202203280062

豫西金矿集区矿业活动对周边农田土壤重金属影响研究

  • 基金项目:
    中国地质调查局地质调查项目“熊耳山—伏牛山矿集区生态修复支撑调查”(DD20208079),“西安城市群周边健康地质调查试点”(DD20211574)
详细信息
    作者简介: 孙建伟,硕士,工程师,从事国土空间生态环境地质调查及修复研究。E-mail: sun-jianwei@163.com
  • 中图分类号: O657.63;X522

Influence of Mining Activities in the Gold Ore Concentration Area in Western Henan on the Heavy Metals in Surrounding Farmland Soil

  • 矿业活动会促进重金属向生态系统扩散,并在周边农田土壤中累积而引发潜在生态风险。豫西金矿集区矿业生产历史悠久,但在长期的矿产资源开采、选冶、加工生产过程中,缺乏对矿区周边农田土壤重金属元素的累积、空间分布和生态风险的关注,矿业活动对环境的影响程度尚不清楚。为掌握该矿集区矿业活动对周边农田土壤重金属的影响程度,支撑服务矿集区生态修复和周边农业安全生产,本文在金矿集区周边农田采集375件土壤样品,采用冷蒸气原子荧光光谱法(CV-AFS)、氢化物发生原子荧光光谱法(HG-AFS)、电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)检测了样品中Cu、Pb、Zn、Ni、As、Hg、Cd、Cr重金属元素含量。用地累积指数法和潜在生态风险指数法研究了矿集区周边农田土壤中重金属元素的累积特征、空间分布和生态风险,分析评价了矿集区矿业活动对周边农田土壤重金属的影响。研究结果表明:①矿集区周边农田土壤中Cu、Pb、Zn、Ni、As、Hg、Cd、Cr含量平均值都低于国家农田土壤重金属污染风险筛选值,但均高于背景值,分别是背景值的1.47、3.24、2.06、1.05、1.03、1.52、2.77、1.07倍,但都低于农田土壤重金属污染风险筛选值。②区内重金属元素空间变异系数(CV)顺序为:Pb(90.72%)>Hg(85.25%)>Cd(65.65%)>Zn(44.0%)>Cu(33.66%)>As(31.72%)>Ni(24.23%)>Cr(13.61%)。Pb、Hg、Cd具有相对较高的变异系数,且分布位置均在矿业活动场所周边,显示矿业活动等外缘因素是引起重金属元素累积的主导因素。③ 8种重金属地累积指数分别为-0.1、0.74、0.33、-0.56、-0.60、-0.29、0.62、-0.49,其中Cu、Ni、As、Hg、Cr元素未累积,Cd、Pb、Zn元素为中等累积。④ 8种重金属单因子潜在生态危害指数平均值介于2.06~83.62,综合潜在生态风险指数平均值为192.07,整体表现为中等潜在生态风险。本研究揭示:①长期的矿产资源开发是造成Cd、Pb、Zn局部累积的主要因素,Ni、Cr、Cu、As、Hg以自然背景因素为主。②虽然研究区农田土壤重金属污染程度目前尚不严重,但仍需加强源头防控,避免重金属元素在土壤中进一步累积。

  • 加载中
  • 图 1  豫西金矿集区采样点位

    Figure 1. 

    图 2  研究区农田土壤重金属单项潜在生态风险指数空间分布

    Figure 2. 

    图 3  研究区农田土壤重金属综合潜在生态风险空间分布

    Figure 3. 

    表 1  各指标分析测试检出限

    Table 1.  Detection limit of analyzed indicators

    元素 检出限
    (μg/g)
    元素 检出限
    (μg/g)
    Hg 0.005 Ni 0.2
    As 0.2 Zn 0.03
    Cr 0.2 Cd 0.021
    Cu 0.5 Pb 0.5
    下载: 导出CSV

    表 2  地累积指数(Igeo)评价指标体系

    Table 2.  Index of geo-accumulation and classification of the influence effect degree

    Igeo
    (Forstner)
    级别 污染程度 Igeo
    (Anon)
    级别 污染程度
    <0 1 无影响 <0 1 无影响~轻度影响
    0~1 2 无影响~中度影响 0~1 2 中度影响
    1~2 3 中度影响 1~3 3 中度影响~强影响
    2~3 4 中度影响~强影响 3~5 4 强影响
    3~4 5 强影响 >5 5 极强影响
    4~5 6 强影响~极强影响
    >5 7 极强影响
    下载: 导出CSV

    表 3  风险因子、潜在生态危害系数及生态风险程度等级

    Table 3.  Risk factor (Eri), potential ecological risk index (RI)and the ecological risk degree

    Eri RI 生态危害程度
    <40 <150 轻微
    40~80 150~300 中等
    80~160 300~600
    160~320 ≥600 很强
    ≥320 - 极强
    下载: 导出CSV

    表 4  研究区农田土壤重金属含量特征

    Table 4.  Heavy metal content characteristics of farmland soils in the study area

    参数 pH Cu Pb Zn Ni As Hg Cd Cr
    样品数量(件) 87 375 373 375 375 375 375 375 375
    最小值(mg/kg) 5.11 1.00 2.00 8.00 2.00 2.29 0.0067 0.04 28.20
    最大值(mg/kg) 8.75 71.72 524.79 320.37 52.77 24.64 0.268 1.30 107.93
    平均值(mg/kg) 7.74 35.33 74.43 137.69 31.60 12.39 0.064 0.43 76.27
    标准差(mg/kg) 0.74 11.89 67.52 60.58 7.66 3.90 0.055 0.29 10.38
    变异系数(CV,%) 9.52 33.66 90.72 44.00 24.23 31.72 85.25 66.65 13.61
    黄河中游土壤背景值(mg/kg) - 24 23 67 30 12.0 0.042 0.155 71
    表层土壤筛选值(mg/kg) - 100 170 300 190 25 3.4 0.6 250
    下载: 导出CSV

    表 5  研究区农田土壤重金属元素地累积指数(Igeo)及影响程度分级比例

    Table 5.  Ground accumulation index of heavy metals in farmland soils and the ratio of different influence degree in the study area

    元素 重金属元素地累积指数(Igeo) 各级样品数所占比例(%)
    最小值 最大值 平均值 0级 1级 2级 3级 4级 5级 6级
    Cu -5.17 2.45 -0.10 65.33 31.47 2.93 0.27 0 0 0
    Pb -4.11 10.29 0.74 28.00 40.00 18.93 10.40 1.87 0.27 0.53
    Zn -3.65 2.33 0.33 33.87 51.73 13.33 1.07 0 0 0
    Ni -4.49 0.93 -0.56 97.07 2.93 0 0 0 0 0
    As -2.97 2.92 -0.60 96.27 2.93 0.27 0.53 0 0 0
    Hg -3.23 6.31 -0.29 71.47 16.80 7.46 2.66 0.80 0.53 0.27
    Cd -2.54 3.53 0.62 28.00 42.93 20.27 7.73 1.07 0 0
    Cr -1.92 2.02 -0.49 98.93 0.80 0 0.27 0 0 0
    下载: 导出CSV

    表 6  研究区农田土壤重金属潜在生态风险指数及危害程度等级比例

    Table 6.  Potential ecological risk index of heavy metals in farmland soils and the ratio of different hazard degree in the study area

    评价指标 元素 毒性系数 最小值 最大值 平均值 各级样品数所占比例(%)
    轻微 中度 很强 极强
    Eri Cu 5 0.21 15.85 7.37 100 0 0 0 0
    Pb 5 0.43 114.08 16.18 92 7.47 0.53 0 0
    Zn 1 0.12 4.88 2.06 100 0 0 0 0
    Ni 5 0.33 8.79 5.27 100 0 0 0 0
    As 10 1.91 23.38 10.35 100 0 0 0 0
    Hg 40 6.38 476.81 65.09 45.60 35.47 11.46 4.27 3.20
    Cd 30 7.74 260.86 83.62 17.6 46.14 25.33 10.93 0
    Cr 2 0.79 2.15 3.25 100 0 0 0 0
    RI - - 51.66 689.64 192.07 46.40 41.07 11.20 1.33 0
    下载: 导出CSV
  • [1]

    Zhang Y M, Li S, Chen Z, et al. A systemic ecological risk assessment based on spatial distribution and source apportionment in the abandoned lead acid battery plant zone, China[J]. Journal of Hazardous Materials, 2018, 354: 170-179. doi: 10.1016/j.jhazmat.2018.04.054

    [2]

    Huang D W, Gui H R, Lin M L, et al. Chemical speciation distribution characteristics and ecological risk assessment of heavy metals in soil from Sunan mining area, Anhui Province, China[J]. Human and Ecological Risk Assessment: An International Journal, 2018, 24(6): 1694-1079. doi: 10.1080/10807039.2017.1422973

    [3]

    Chileshe M N, Syampungani S, Festin E S, et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration[J]. Journal of Forestry Research, 2020, 31(4): 1283-1293. doi: 10.1007/s11676-019-00921-0

    [4]

    姚春卉, 张春荣, 李少勇, 等. 胶州湾沿岸土壤重金属元素分布特征及其生态风险评价[J]. 中国科技论文, 2021, 16(1): 112-120. doi: 10.3969/j.issn.2095-2783.2021.01.017

    Yao C H, Zhang C R, Li S Y, et al. Spatial distribution and ecological risk assessment of heavy metals in soils along the coast of Jiaozhou Bay[J]. Chinese Scientific Papers, 2021, 16(1): 112-120. doi: 10.3969/j.issn.2095-2783.2021.01.017

    [5]

    况琴, 黄庭, 向京, 等. 鄂西北某农田保护区土壤重金属分布特征及生态风险评价[J]. 环境工程, 2019, 37(5): 45-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201905009.htm

    Kuang Q, Huang T, Xiang J, et al. Distribution characteristics and ecological risk assessment of heavy metals in the soil of a farmland protection area in northwest Hubei[J]. Environmental Engineering, 2019, 37(5): 45-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201905009.htm

    [6]

    邵啸. 浅析土壤重金属污染的现状与治理[J]. 资源节约与环保, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061

    Shao X. Current situation and treatment of heavy metal pollution in soil[J]. Resource Conservation and Environmental Protection, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061

    [7]

    杨国栋, 张梦竹, 冯涛, 等. 土壤重金属污染修复技术研究现状及展望[J]. 现代化工, 2020, 40(12): 50-54, 58. doi: 10.16606/j.cnki.issn0253-4320.2020.12.010

    Yang G D, Zhang M Z, Feng T, et al. Research status and prospect of remediation technology for heavy metal pollution in soil[J]. Modern Chemical Industry, 2020, 40(12): 50-54, 58. doi: 10.16606/j.cnki.issn0253-4320.2020.12.010

    [8]

    赵沁娜, 杨凯. 发达国家污染土地置换开发管理实践及对我国的启示[J]. 环境污染与防治, 2006(7): 540-544. doi: 10.3969/j.issn.1001-3865.2006.07.016

    Zhao Q N, Yang K. Contaminated redevelopment management of developed countries and the inspirations to China[J]. Environmental Pollution and Prevention, 2006(7): 540-544. doi: 10.3969/j.issn.1001-3865.2006.07.016

    [9]

    郭朝晖, 涂卫佳, 彭驰, 等. 典型铅锌矿区河流沿岸农田土壤重金属分布特征及潜在生态风险评价[J]. 农业环境科学学报, 2017, 36(10): 2029-2938. doi: 10.11654/jaes.2017-0386

    Guo Z H, Tu W J, Peng C, et al. Distribution characteristics and potential ecological risk assessment of heavy metals in farmland soil along river banks in typical lead-zinc mining areas[J]. Journal of Agricultural and Environmental Sciences, 2017, 36(10): 2029-2038. doi: 10.11654/jaes.2017-0386

    [10]

    Rai S, Gupta S, Mittal P C. dietary intakes and health risk of toxic and essential heavy metals through the food chain in agricultural, industrial, and coal mining areas of Northern India[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(4): 913-933. doi: 10.1080/10807039.2014.946337

    [11]

    于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408-424. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011300154

    Yu F, Wang W, Yu Y, et al. Distribution characteristics ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011300154

    [12]

    Yang Y, Li H L, Peng L, et al. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food Chemistry, 2015, 197(Part A): 482-488.

    [13]

    张江华, 徐友宁, 陈华清, 等. 小秦岭金矿区土壤-小麦重金属累积效应对比研究[J]. 西北地质, 2020, 53(3): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003029.htm

    Zhang J H, Xu Y N, Chen H Q, et al. Comparative study of the accumulated effect of heavy metals on soil and wheat in Xiaoqinling gold mining area[J]. Northwest Geology, 2020, 53(3): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003029.htm

    [14]

    林荩, 梁文静, 焦旸, 等. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm

    Lin J, Liang W J, Jiao Y, et al. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shanxi Province[J]. Geology in China, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm

    [15]

    曹见飞, 段欣荣, 吴泉源, 等. 金矿区周边农田土壤重金属源解析研究——以焦家金矿为例[J]. 环境污染与防治, 2021, 43(5): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202105003.htm

    Cao J F, Duan X R, Wu Q Y, et al. Source apportionment of soil heavy metals in surrounding farmland of gold mining: A case study of Jiaojia gold mine[J]. Environmental Pollution and Prevention, 2021, 43(5): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202105003.htm

    [16]

    刘子赫, 孟瑞红, 代辉祥, 等. 基于改进地累积指数法的沉积物重金属污染评价[J]. 农业环境科学学报, 2019, 38(9): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909019.htm

    Liu Z H, Meng R H, Dai H X, et al. Evaluation of heavy metals pollution in surface sediments using an improved geo-accumulation index method[J]. Journal of Agro-Environment Science, 2019, 38(9): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909019.htm

    [17]

    Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14: 975-1001. doi: 10.1016/0043-1354(80)90143-8

    [18]

    Loska K, Wiechula D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30(2): 159-165. doi: 10.1016/S0160-4120(03)00157-0

    [19]

    侯叶青, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.

    Hou Y Q, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.

    [20]

    Forstner U. Lecture notes in earth sciences (contaminated sediments)[M]. Berlin: Springer Verlag, 1989: 107-109.

    [21]

    胡艳霞, 周连第, 魏长山, 等. 北京水源保护地土壤重金属空间变异及污染特征[J]. 土壤通报, 2013, 44(6): 1483-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201306036.htm

    Hu Y X, Zhou L D, Wei C S, et al. Study on spatial variability of soil heavy metals environments and its pollution characteristics in Beijing water protective area[J]. Chinese Journal of Soil Science, 2013, 44(6): 1483-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201306036.htm

    [22]

    徐争启, 倪军师, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm

    Xu Z Q, Ni J S, Tuo X G, et al. Calculation of toxicity coefficient of heavy metals in potential ecological hazard index evaluation[J]. Environment Science and Technology, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm

    [23]

    Tang Z E, Deng R J, Zhang J, et al. Regional distribution characteristics and ecological risk assessment of heavy metal pollution of different land use in an antimony mining area—Xikuangshan, China[J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(7): 1779-1794. doi: 10.1080/10807039.2019.1608423

    [24]

    周骏驰, 刘孝利, 雷鸣, 等. 湖南典型矿区耕地土壤重金属空间特征研究[J]. 地理空间信息, 2018, 16(8): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201808030.htm

    Zhou J C, Liu X L, Lei M, et al. Spatial characteristics of heavy metals in cultivated soils of typical mining areas in Hunan Province[J]. Geospatial Information, 2018, 16(8): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201808030.htm

    [25]

    毛朝明, 蒋灵华. 松阳县毛竹林地土壤养分空间变异特征分析[J]. 浙江林业科技, 2020, 40(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLK202002010.htm

    Mao Z M, Jiang L H. Spatial variability of soil nutrient content in phyllostachys edulis stands in Songyang County[J]. Zhejiang Forestry Technology, 2020, 40(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLK202002010.htm

    [26]

    刘政, 赵文廷, 王爱军. 盂县煤矿区及周边农田土壤重金属溯源分析[J]. 煤炭学报, 2018, 43(S2): 532-545. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2023.htm

    Liu Z, Zhao W T, Wang A J. Traceability analysis of heavy metals in soil of coal mining area and surrounding farmland in Yuxian County[J]. Journal of China Coal Society, 2018, 43(S2): 532-545. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2023.htm

    [27]

    李传章, 欧小辉, 张超兰, 等. 环江沿岸农田土壤重金属污染与空间变异性分析[J]. 江西农业大学学报, 2018, 40(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201806030.htm

    Li C Z, Ou X H, Zhang C L, et al. Analysis of heavy metal pollution and spatial variability in farmland soil along the Huanjiang River[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201806030.htm

    [28]

    王全九, 毕磊, 张继红. 新疆包头湖灌溉区农田土壤水盐热特性空间变异特征[J]. 环境科学学报, 2018, 34(18): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201818017.htm

    Wang Q J, Bi L, Zhang J H. Spatial variability analysis of large-scale soil water, salt and heat characteristics in Baotou Lake irrigation area of Xinjiang[J]. Journal of Environmental Science, 2018, 34(18): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201818017.htm

    [29]

    孙天河, 刘伟, 靳立杰, 等. 基于多元统计的土壤主要重金属影响因素分析——以济南市平阴县城区及附近区域为例[J]. 安全与环境学报, 2021, 21(2): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202102055.htm

    Sun T H, Liu W, Jin L J, et al. Assessment of the heavy metal influential factors based on the multivariate statistical analysis—A case study of the urban and nearby areas of Pinyin County of Jinan, China[J]. Journal of Safety and Environment, 2021, 21(2): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202102055.htm

    [30]

    宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133-144. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109290135

    Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in topsoil on human health in Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 2022, 41(1): 133-144. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109290135

    [31]

    刘春跃, 王辉, 白明月, 等. 沈阳市老城区表层土壤重金属分布特征及风险评价[J]. 环境工程, 2020, 38(1): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202001027.htm

    Liu C Y, Wang H, Bai M Y, et al. Distribution characteristics and risk assessment of heavy metals in topsoil of old urban area of Shenyang[J]. Environmental Engineering, 2020, 38(1): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202001027.htm

    [32]

    牛真茹, 祁硕, 吴庭雯, 等. 某有色冶炼场地浅层土壤重金属空间变异规律与分布特征[J]. 土壤通报, 2016, 47(3): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603035.htm

    Niu Z R, Qi S, Wu T W, et al. Spatial variability and distribution of heavy metals in the shallow soil around non-ferrous metal smelting site[J]. Chinese Journal of Soil Science, 2016, 47(3): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603035.htm

    [33]

    贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 395-407. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101260016

    He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soil in the typical geological back ground region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101260016

    [34]

    余涛, 蒋天宇, 刘旭, 等 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021, 48(2): 460-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm

    Yu T, Jiang T Y, Liu X, et a. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 2021, 48(2): 460-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm

  • 加载中

(3)

(6)

计量
  • 文章访问数:  1670
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2022-03-28
修回日期:  2022-04-30
录用日期:  2022-06-25
刊出日期:  2023-01-28

目录