中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素

曾江萍, 王家松, 朱悦, 张楠, 王娜, 吴良英, 魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789-797. doi: 10.15898/j.cnki.11-2131/td.202112070197
引用本文: 曾江萍, 王家松, 朱悦, 张楠, 王娜, 吴良英, 魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789-797. doi: 10.15898/j.cnki.11-2131/td.202112070197
ZENG Jiangping, WANG Jiasong, ZHU Yue, ZHANG Nan, WANG Na, WU Liangying, WEI Shuang. Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789-797. doi: 10.15898/j.cnki.11-2131/td.202112070197
Citation: ZENG Jiangping, WANG Jiasong, ZHU Yue, ZHANG Nan, WANG Na, WU Liangying, WEI Shuang. Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789-797. doi: 10.15898/j.cnki.11-2131/td.202112070197

敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素

  • 基金项目:
    中国地质调查局地质调查项目“地质调查标准化与标准制修订(中国地质调查局天津地质调查中心)”(DD20190472);中国地质调查局地质调查项目“国家地质大数据汇聚与管理(中国地质调查局天津地质调查中心)”(DD20190382)
详细信息
    作者简介: 曾江萍,硕士,高级工程师,主要从事岩石矿物分析研究。E-mail:zengjiangping@163.com
    通讯作者: 张楠,硕士,高级工程师,主要从事岩石矿物分析研究。E-mail:nan5460@126.com
  • 中图分类号: O657.31

Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry

More Information
  • 研究铀矿石中的稀土元素特征可以判断其成矿流体物质来源、成岩构造环境和物化条件等,因此准确测定铀矿石中稀土元素的含量显得尤为重要。目前测定稀土元素主要采用电感耦合等离子体质谱法(ICP-MS),样品处理多采用封闭酸溶法,而敞开酸溶法应用不多,主要原因是敞开酸溶时常常加入高氯酸,溶样温度难以将稀土氟化物完全分解而造成测定结果偏低,但在溶样过程中引入硫酸,利用硫酸的高沸点则能完全分解稀土氟化物。基于此原理,本文采用硝酸-氢氟酸-高氯酸-硫酸四酸体系对铀矿石样品进行敞开酸溶,采用在线加入铑内标的方式,建立了ICP-MS法测定铀矿石中15种稀土元素的方法。结果表明:溶样时加入硫酸能完全溶解铀矿石样品,溶液澄清,15种稀土元素的相对标准偏差(RSD)在0.54%~5.98%之间,回收率在96.0%~106.0%之间。将本方法应用于分析岩石国家标准物质(GBW07103、GBW07104、GBW07122),其测定值与标准值一致,相对误差在-8.33%~7.24%之间,表明本方法测定稀土元素是可行的。

  • 加载中
  • 图 1  方法检出限

    Figure 1. 

    图 2  球粒陨石标准化的铀矿石稀土元素配分曲线

    Figure 2. 

    表 1  两种样品前处理方法分析结果

    Table 1.  Analytical results of two sample pretreatment methods

    稀土元素 GBW07103 GBW07104
    标准值(μg/g) 方法一测定值(μg/g) 方法二测定值(μg/g) 标准值(μg/g) 方法一测定值(μg/g) 方法二测定值(μg/g)
    La 54±4 44.12 55.63 22±2 17.23 22.65
    Ce 108±7 91.56 110.7 40±3 33.59 41.89
    Pr 12.7±0.8 8.97 12.47 4.9±0.4 4.06 4.99
    Nd 47±4 41.16 48.56 19±2 16.65 19.44
    Sm 9.7±0.8 8.65 9.96 3.4±0.2 3.02 3.31
    Eu 0.85±0.07 0.78 0.88 1.02±0.05 0.92 1.07
    Gd 9.30±0.7 8.29 9.17 2.70±0.4 2.46 2.76
    Tb 1.65±0.09 1.22 1.59 0.41±0.05 0.34 0.43
    Dy 10.2±0.4 8.94 10.31 1.85±0.17 1.61 1.91
    Ho 2.05±0.17 1.77 2.09 0.34±0.03 0.25 0.35
    Er 6.5±0.3 6.18 6.37 0.85±0.13 0.76 0.88
    Tm 1.06±0.09 0.91 1.02 0.15±0.05 0.12 0.14
    Yb 7.4±0.5 6.89 7.27 0.89±0.13 0.81 0.93
    Lu 1.15±0.09 1.03 1.18 0.12±0.03 0.10 0.13
    Y 62±5 54.28 64.45 9.3±1.2 7.61 9.64
    下载: 导出CSV

    表 2  同位素及质谱干扰

    Table 2.  Isotope and mass spectrum interference

    分析元素 同位素 质谱干扰基团 分析元素 同位素 质谱干扰基团
    La 139 - Dy 163 -
    Ce 140 - Ho 165 -
    Pr 141 - Er 166 -
    Nd 146 130BaO Tm 169 -
    Sm 147 - Yb 172 -
    Eu 153 137BaO Lu 175 -
    Gd 157 140CeOH, 141PrO Y 89 -
    Tb 159 143NdO
    注:表中“-”表示不存在质谱干扰。
    下载: 导出CSV

    表 3  岩石标准物质中稀土元素含量测定

    Table 3.  Determination of rare earth elements in rock reference materials

    稀土元素 GBW07103(n=4) GBW07104(n=4) GBW07122(n=4)
    标准值(μg/g) 测定均值(μg/g) 相对误差(%) 标准值(μg/g) 测定均值(μg/g) 相对误差(%) 标准值(μg/g) 测定均值(μg/g) 相对误差(%)
    La 54±4 55.82 3.37 22±2 21.92 -0.36 2.9±0.4 3.11 7.24
    Ce 108±7 111.4 3.15 40±3 41.70 4.25 7.8±1.0 8.02 2.82
    Pr 12.7±0.8 13.12 3.31 4.9±0.4 4.92 0.41 1.25±0.15 1.31 4.80
    Nd 47±4 48.01 2.15 19±2 19.30 1.58 6.5±1.4 6.74 3.69
    Sm 9.7±0.8 10.16 4.74 3.4±0.2 3.44 1.18 2.1±0.2 2.21 5.24
    Eu 0.85±0.07 0.87 2.35 1.02±0.05 1.08 5.88 0.91±0.15 0.87 -4.40
    Gd 9.30±0.7 9.19 -1.18 2.70±0.4 2.66 -1.48 2.8±0.3 2.72 -2.86
    Tb 1.65±0.09 1.66 0.61 0.41±0.05 0.39 -4.88 0.57±0.08 0.56 -1.75
    Dy 10.2±0.4 10.05 -1.47 1.85±0.17 1.79 -3.24 3.5±0.5 3.64 4.00
    Ho 2.05±0.17 2.08 1.46 0.34±0.03 0.32 -5.88 0.85±0.14 0.84 -1.18
    Er 6.5±0.3 6.53 0.46 0.85±0.13 0.87 2.35 2.3±0.4 2.41 4.78
    Tm 1.06±0.09 1.09 2.83 0.15±0.05 0.14 -6.67 0.37±0.10 0.39 5.41
    Yb 7.4±0.5 7.45 0.68 0.89±0.13 0.85 -4.49 2.4±0.4 2.45 2.08
    Lu 1.15±0.09 1.17 1.74 0.12±0.03 0.11 -8.33 0.39±0.06 0.38 -2.56
    Y 62±5 61.06 -1.52 9.3±1.2 9.12 -1.94 20±3 20.33 1.65
    下载: 导出CSV

    表 4  标准物质GBW04108加标回收试验

    Table 4.  Recovery tests of reference material GBW04108

    稀土元素 原始值(μg/g) 加入量(μg/g) 加标后测定值(μg/g) 回收率(%)
    La 40.96 40.00 82.23 103.2
    Ce 81.83 100.0 183.21 101.4
    Pr 10.09 10.00 19.98 98.9
    Nd 34.53 50.00 84.56 100.1
    Sm 6.00 5.00 11.12 102.4
    Eu 0.84 1.00 1.82 98.0
    Gd 5.13 5.00 10.04 98.2
    Tb 0.83 1.00 1.79 96.0
    Dy 4.62 5.00 9.73 102.2
    Ho 0.93 1.00 1.98 105.0
    Er 2.82 5.00 7.69 97.4
    Tm 0.43 0.50 0.96 106.0
    Yb 2.88 2.00 4.95 103.5
    Lu 0.45 0.50 0.96 102.0
    Y 25.01 20.00 44.46 97.3
    下载: 导出CSV

    表 5  不同溶样方法比对实验结果

    Table 5.  Comparison of analytical results with different sample pretreatment methods

    稀土元素 GBW04103 GBW04104
    本文方法测定值(μg/g) 高压密闭酸溶测定值(μg/g) 本文方法测定值(μg/g) 高压密闭酸溶测定值(μg/g)
    La 31.30 31.52 6.11 6.18
    Ce 69.87 69.97 13.88 13.96
    Pr 9.19 9.18 1.89 1.85
    Nd 37.44 37.35 7.65 7.57
    Sm 11.11 11.19 1.73 1.69
    Eu 0.67 0.68 0.36 0.35
    Gd 13.71 13.66 1.89 1.84
    Tb 2.51 2.49 0.29 0.30
    Dy 16.88 16.96 1.65 1.62
    Ho 3.65 3.69 0.34 0.35
    Er 11.42 11.33 0.91 0.89
    Tm 1.94 1.98 0.13 0.12
    Yb 13.65 13.81 0.77 0.75
    Lu 2.22 2.21 0.11 0.11
    Y 107.2 108.8 10.41 10.35
    下载: 导出CSV
  • [1]

    余超. 辽北清原地区英云闪长岩年代学、地球化学特征及其地质意义[J]. 地质调查与研究, 2019, 42(1): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201901003.htm

    Yu C. Geochronological and geochemical characteristics of the tonalite and its geological implication in the Qinyuan area, northern Liaoning Province[J]. Geological Survey and Research, 2019, 42(1): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201901003.htm

    [2]

    马风华, 张勇, 潘进礼, 等. 六盘山盆地白垩系马东山组泥页岩稀土元素地球化学特征及地质意义[J]. 地质论评, 2021, 67(1): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101021.htm

    Ma F H, Zhang Y, Pan J L, et al. Geochemical characteristics of rare earth element and their geological significance of mud-shale in Cretaceous Madongshan Formation, Liupanshan Basin[J]. Geological Review, 2021, 67(1): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101021.htm

    [3]

    吴兴源, 刘晓阳, 周佐民, 等. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述[J]. 地质调查与研究, 2020, 43(1): 42-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001005.htm

    Wu X Y, Liu X Y, Zhou Z M, et al. Overview on geological, geochemical features and genesis of the granitic pegmatites in Gatumba area, Rwanda[J]. Geological Survey and Research, 2020, 43(1): 42-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001005.htm

    [4]

    郑玉文, 陈友良, 常丹, 等. 若尔盖铀矿田510-1铀矿床稀土元素地球化学特征[J]. 四川冶金, 2019, 41(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ201906006.htm

    Zheng Y W, Chen Y L, Chang D, et al. REE geochemical characteristics of the 510-1 uranium deposit in the Zoige uranium orefield[J]. Sichuan Metallurgy, 2019, 41(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ201906006.htm

    [5]

    胡妍, 胡永兴, 张翔, 等. 鄂尔多斯盆地西南缘镇原地区砂岩型铀矿元素地球化学特征及地质意义[J]. 现代地质, 2020, 34(6): 1153-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006006.htm

    Hu Y, Hu Y X, Zhang X, et al. Geochmical features and geological significance of sandstone-type uranium deposit in Zhenyuan area, southwestern Ordos Basin[J]. Geosience, 2020, 34(6): 1153-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006006.htm

    [6]

    李杰, 黄宏业, 刘子杰, 等. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101009.htm

    Li J, Huang H Y, Liu Z J, et al. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101009.htm

    [7]

    李强, 马绍春. 云南东川大梁子铀矿床微量、稀土元素地球化学特征及其意义[J]. 铀矿地质, 2019, 35(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201903004.htm

    Li Q, Ma S C. Geochemical characteristics and significance of trace and rare earth elements of Daliangzi uranium deposit in Dongchua, Yunnan[J]. Uranium Geology, 2019, 35(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201903004.htm

    [8]

    余关美, 时国. 赣中相山铀矿田基底变质岩稀土元素特征及其地质意义[J]. 东华理工大学学报(自然科学版), 2015, 38(4): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201504003.htm

    Yu G M, Shi G. Characteristics of rare earth elements and the geological significance of the basement metamorphic rocks in Xiangshan uranium ore field in central Jiangxi Province[J]. Journal of East China Institute of Technology (Natural Science), 2015, 38(4): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201504003.htm

    [9]

    孙志峰, 张志刚, 张翼明, 等. 镝铁合金中稀土总量的测定——EDTA容量法[J]. 稀土, 2010, 31(1): 77-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201001021.htm

    Sun Z F, Zhang Z G, Zhang Y M, et al. Determination of total rare earth contents in Dy-Fe alloy with EDTA volume method[J]. Chinese Rare Earths, 2010, 31(1): 77-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201001021.htm

    [10]

    龙旭东, 高立红, 张红, 等. EDTA滴定法测定稀土铝中间合金中稀土总量[J]. 冶金分析, 2020, 40(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202004015.htm

    Long X D, Gao L H, Zhang H, et al. Determination of total rare earths in intermediate alloy of rare earth aluminum by EDTA titration[J]. Metallurgical Analysis, 2020, 40(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202004015.htm

    [11]

    刘叶平, 李艳峰, 高立红, 等. 重量法测定镧镍合金中稀土总量[J]. 冶金分析, 2019, 39(11): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201911004.htm

    Liu Y P, Li Y F, Gao L H, et al. Determination of total rare earth content in lanthanum-nickel alloy by gravimetric method[J]. Metallurgical Analysis, 2019, 39(11): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201911004.htm

    [12]

    徐思婷, 施平. 草酸盐重量法测定有机溶液中稀土氧化物总量[J]. 材料研究与应用, 2017, 11(1): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS201701013.htm

    Xu S T, Shi P. Determination of total rare earth oxide contents in organic solution with oxalate gravimetric method[J]. Materials Research and Application, 2017, 11(1): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS201701013.htm

    [13]

    夏峰林, 孔雪艳, 史秀梅. 分光光度法测定高放废液中的稀土总量[J]. 核化学与放射化学, 2020, 42(5): 371-377. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202005012.htm

    Xia F L, Kong X Y, Shi X M. Determinaton of total rare earth in HLLW by spectrophotometry[J]. Journal of Nuclear and Radiochemistry, 2020, 42(5): 371-377. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202005012.htm

    [14]

    李志明. 原子吸收光谱法测定痕量铕[J]. 分析测试技术与仪器, 2003, 9(2): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ200302007.htm

    Li Z M. Determination of trace europium by atomic absorption spectrometry[J]. Analysis and Testing Technology and Instruments, 2003, 9(2): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ200302007.htm

    [15]

    孙朝阳, 杨凯, 代小吕, 等. 电感耦合等离子体质谱(ICP-MS)法测定岩石中的稀土元素[J]. 中国无机分析化学, 2015, 5(4): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201504015.htm

    Sun C Y, Yang K, Dai X L, et al. Determination of rare earth elements in rock by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201504015.htm

    [16]

    Shirai N, Toktaganov M, Takahashi H, et al. Multielemental analysis of Korean geological reference samples by INAA, ICP-AES and ICP-MS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303: 1367-1374.

    [17]

    Zhao W, Zong K Q, Liu Y S, et al. An effective oxide interference correction on Sc and REE for routine analyses of geological samples by inductively coupled plasma-mass spectrometry[J]. Journal of Earth Science, 2019, 30(6): 1302-1310.

    [18]

    胡璇, 刘万超, 石磊. 电感耦合等离子体原子发射光谱法测定赤泥中6种稀土元素[J]. 理化检验(化学分册), 2017, 53(11): 1304-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201711013.htm

    Hu X, Liu W C, Shi L. ICP-AES determination of 6 rare earth elements in red mud[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(11): 1304-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201711013.htm

    [19]

    陈绯宇, 张少夫, 温世杰. 电感耦合等离子体原子发射光谱法测定钇铁合金中14种稀土杂质元素[J]. 有色金属科学与工程, 2017, 8(6): 121-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201706020.htm

    Chen F Y, Zhang S F, Wen S J. Determination of 14 rare earth elements in yttrium-iron alloy by inductively coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 121-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201706020.htm

    [20]

    Serpil Y K, Eftade O G, Aysun D, et al. Determination of major and rare earth elements in bastnasite ores by ICP-AES[J]. Analytical Letters, 2004, 37(13): 2701-2709.

    [21]

    李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201307007.htm

    Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2013, 33(7): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201307007.htm

    [22]

    周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201706280113

    Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201706280113

    [23]

    任旭东, 聂成宏, 王振江, 等. 熔融制样-X射线荧光光谱法测定稀土铝中间合金中稀土元素[J]. 冶金分析, 2020, 40(3): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003014.htm

    Ren X D, Nie C H, Wang Z J, et al. Determination of rare earth elements in rare earth-aluminum intermediate alloy by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2020, 40(3): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003014.htm

    [24]

    董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901090004

    Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901090004

    [25]

    梁亚丽, 杨珍, 阿丽莉, 等. ICP-MS法测定钼矿石中伴生锂、镓和稀土元素[J]. 吉林大学学报(理学版), 2021, 59(2): 427-434. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202102034.htm

    Liang Y L, Yang Z, A L L, et al. Determination of associated lithium, gallium and rare earth elements in molybdenum ore by inductively coupled mass spectrometry method[J]. Journal of Jilin University (Science Edition), 2021, 59(2): 427-434. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202102034.htm

    [26]

    王琳琳, 王力, 霍亮, 等. 电感耦合等离子体质谱法测定辉钼矿中稀土元素[J]. 世界地质, 2020, 39(3): 731-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202003026.htm

    Wang L L, Wang L, Huo L, et al. Determination of rare earth element in molybdenite by ICP-MS[J]. Global Geology, 2020, 39(3): 731-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202003026.htm

    [27]

    戴雪峰, 蒋宗明, 杨利华. 电感耦合等离子体质谱(ICP-MS)法测定铜铅锌矿中稀土元素[J]. 中国无机分析化学, 2016, 6(1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201601007.htm

    Dai X F, Jiang Z M, Yang L H. Determination of rare earth elements in copper, lead and zinc ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201601007.htm

    [28]

    李丽君, 王娜. 电感耦合等离子体质谱法测定高岭土中的15种稀土元素[J]. 理化检验(化学分册), 2017, 53(6): 689-692. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201706017.htm

    Li L J, Wang N. Determination of 15 rare earth elements in kaolin by ICP-MS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(6): 689-692. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201706017.htm

    [29]

    张国玉, 王正其, 梁良. 相山、下庄铀矿田稀土元素特征对比[J]. 矿物岩石, 2006, 26(1): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200601011.htm

    Zhang G Y, Wang Z Q, Liang L. Correlation of REE features between Xiangshan and Xiazhuang uanium ore fields[J]. Mineral Petrology, 2006, 26(1): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200601011.htm

    [30]

    刘斌, 陈卫锋, 方启春, 等. 相山铀矿田成矿流体特征: 来自微量、稀土元素地球化学证据[J]. 岩石学报, 2019, 35(9): 2774-2786. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909010.htm

    Liu B, Chen W F, Fang Q C, et al. Characteristics of ore-forming fluids in the Xiangshan uranium ore-field: Constraints from trace elements and rare earth elements[J]. Acta Petrologica Sinica, 2019, 35(9): 2774-2786. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909010.htm

    [31]

    吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1): 12-19. http://www.ykcs.ac.cn/cn/article/id/2c32f0ea-719c-486f-aa0d-027493aec6da

    Wu S T, Wang Y P, Sun D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12-19. http://www.ykcs.ac.cn/cn/article/id/2c32f0ea-719c-486f-aa0d-027493aec6da

    [32]

    兰明国, 陆迁树, 张先昌. 溶样方法对电感耦合等离子体质谱法测定岩石和土壤中稀土元素的影响[J]. 冶金分析, 2018, 38(6): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806008.htm

    Lan M G, Lu Q S, Zhang X C. Influence of sample dissolution method on determination of rare earth elements in rock and soil by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806008.htm

    [33]

    龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136

    [34]

    尹庆红, 祝秀江, 栾进华, 等. 电感耦合等离子体质谱(ICP-MS)法测定页岩中稀土元素含量[J]. 中国无机分析化学, 2019, 9(3): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201903006.htm

    Yin Q H, Zhu X J, Luan J H, et al. Determination of rare earth elements in shale by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(3): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201903006.htm

    [35]

    郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素[J]. 岩矿测试, 2014, 33(1): 25-28. http://www.ykcs.ac.cn/cn/article/id/cabb5c57-5661-4c70-8f1c-d4de84e39e7e

    Guo Z H, He H J, Tian F Y. Determination of rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with mixed acid dissolution[J]. Rock and Mineral Analysis, 2014, 33(1): 25-28. http://www.ykcs.ac.cn/cn/article/id/cabb5c57-5661-4c70-8f1c-d4de84e39e7e

    [36]

    吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm

    Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdeum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm

  • 加载中

(2)

(5)

计量
  • 文章访问数:  1335
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2021-12-07
修回日期:  2022-02-17
录用日期:  2022-03-13
刊出日期:  2022-09-28

目录