Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion
-
摘要:
砂岩型铀矿是重要的战略性矿产资源,分析铀钍元素含量对砂岩型铀矿的矿床评价和综合利用有重要意义。砂岩型铀矿中铀钍元素的分析目前主要采用酸溶和碱熔方式处理样品,电感耦合等离子体发射光谱法(ICP-OES)进行检测。敞口酸溶法处理样品时往往分解不完全导致结果偏低,碱熔法过程冗长,不利于快速检测,且砂岩型铀矿中铁元素含量很高会对铀钍测量产生干扰。采用微波消解对样品进行处理,在盐酸提取液中加入EDTA和三乙醇胺混合溶液作为掩蔽剂,与溶液中的铁离子形成配合物有效地消除了共存元素铁对铀钍测定的干扰。实验优化了各元素的分析谱线,对掩蔽剂用量进行对比试验以获得最佳条件,采用干扰校正系数法基本消除了共存元素的谱线干扰。标准曲线线性相关系数大于0.9995,方法检出限铀为0.70μg/g,钍为0.58μg/g,标准物质测定结果的相对误差为1.47%~1.82%,相对标准偏差(RSD,n=12)为1.32%~1.78%。该方法操作简单,能够准确地同时测定砂岩型铀矿中的铀和钍元素。
-
关键词:
- 砂岩型铀矿 /
- 微波消解 /
- EDTA /
- 三乙醇胺 /
- 电感耦合等离子体发射光谱法
Abstract:BACKGROUND Sandstone-type uranium deposits are important strategic mineral resource. Rapid and accurate analysis of uranium and thorium content is of great significance to the evaluation and comprehensive utilization of this type of deposit. At present, the analysis of uranium and thorium is mainly determined by acid dissolution and alkali fusion methods to decompose samples. For the open acid dissolution method, the decomposition is often incomplete, resulting in lower results. The alkali fusion process is lengthy, which is not conducive to rapid detection. In addition, the high content of iron elements in sandstone type uranium deposits interfere with the measurement of uranium and thorium.
OBJECTIVES To develop a method which can determine uranium and thorium in sandstone uranium deposits by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion.
METHODS The samples were treated by microwave digestion technology, EDTA and triethanolamine mixed solution were added to the hydrochloric acid extract as masking agents to form a complex with iron ions in the solution, which effectively eliminated the interference of coexisting elemental iron on the determination of uranium and thorium. The experiment optimized the analytical spectral lines of each element, compared the amount of masking agent to obtain the best conditions, and basically eliminated the spectral line interference of coexisting elements by using the interference correction coefficient method.
RESULTS The linear correlation coefficients of standard curves were greater than 0.9995, and the detection limit of uranium and thorium were 0.70μg/g, and 0.58μg/g, respectively. The relative error of the determination results of reference materials was 1.47%-1.82% and the relative standard deviation (RSD, n=12) was 1.32%-1.78%.
CONCLUSIONS The method is simple to operate, effectively masking the interference of iron on uranium and thorium, and can be used to accurately complete the simultaneous determination of uranium and thorium in sandstone-type uranium deposits.
-
表 1 微波消解升温程序
Table 1. Program of microwave digestion
步骤 升温时间(min) 功率(W) 温度(℃) 保持时间(min) 1 5 1200 100 0 2 5 1200 130 5 3 5 1200 180 20 表 2 国家标准物质GBW04106采用不同样品分解方式测定结果
Table 2. Analytical results of elements in GBW04106 dissoluted with different digestion methods
溶样方式 用酸量(mL) 溶样时间(h) 溶样温度(℃) 铀测定值(%) 钍测定值(%) 敞口酸溶高压密闭消解 252.5 427 160190 0.04760.0502 0.1370.157 微波消解 8 1.5 180 0.0495 0.151 表 3 国家标准物质GBW04106在不同谱线下的测定结果
Table 3. Analytical results of elements in GBW04106 by different spectral lines
标准值(%) 不同谱线下GBW04106中铀的测定值(%) 标准值(%) 不同谱线下GBW04106中钍的测定值(%) 367.007nm 385.958nm 393.203nm 409.014nm 283.730nm 339.204nm 401.913n 0.0504 0.0257 0.0611 0.124 0.0498 0.156 0.097 0.182 0.153 表 4 有铁干扰时加入不同掩蔽剂铀的测定结果
Table 4. Analytical results of uranium with different masking agents in the presence of iron interference
分析谱线(nm) 5μg/mL铀标准溶液中铀测量值(μg/g) 10μg/mL铀标准溶液中铀测量值(μg/g) 步骤1 步骤2 步骤3 步骤1 步骤2 步骤3 铀标准溶液(5μg/mL) 加Fe3+量(100mg/L) 加掩蔽剂(10mL) 铀标准溶液(10μg/mL) 加Fe3+量(200mg/L) 加掩蔽剂(10mL) 367.007 4.897 6.102 5.237 9.883 11.21 10.25 385.958 5.023 5.933 5.253 10.13 10.88 10.27 393.203 5.012 5.935 5.398 10.25 10.91 10.31 409.014 5.003 5.698 4.987 10.05 10.73 10.03 表 5 方法准确度和精密度
Table 5. Accuracy and precision tests of the method
技术指标 GBW04101铀含量 GBW04106钍含量 标准值(%) 3.29 0.156 测定平均值(%) 3.34 0.159 相对误差(%) 1.52 1.92 RSD(%) 1.32 1.78 -
[1] 陈军强, 曾威, 王佳营, 等. 全球和我国铀资源供需形势分析[J]. 华北地质, 2021, 44(2): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102004.htm
Chen J Q, Zeng W, Wang J Y, et al. Application of singularity theory in weak information extraction for ore prospecting in the Dalaimiao grassland-covered area[J]. North China Geology, 2021, 44(2): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102004.htm
[2] 郭冬发, 范光, 欧光习, 等. 与地浸型砂岩型铀矿有关的分析测试技术发展趋势[J]. 国外铀金地质, 2002, 19(3): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200203012.htm
Guo D F, Fan G, Ou G X, et al. Development trend of analysis and testing technology related to in-situ leaching sandstone type uranium deposit[J]. Overseas Uranium and Gold Geology, 2002, 19(3): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200203012.htm
[3] 司庆红, 俞礽安, 蔡洪广, 等. 鄂尔多斯盆地乃马岱地区直罗组砂岩元素地球化学特征及其地质意义[J]. 华北地质, 2021, 44(2): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102007.htm
Si Q H, Yu R A, Cai H G, et al. Element geochemical characteristics and geological significance of sandstones of Zhiluo Formation in uranium-bearing strata in Naimadai area, Ordos Basin[J]. North China Geology, 2021, 44(2): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102007.htm
[4] 马兴娟, 费发源, 甘彩霞, 等. 混合酸溶-ICP-MS法测定砂岩铀矿样品中的铀钍[J]. 现代科学仪器, 2016(3): 91-95.
Ma X J, Fei F Y, Gan C X, et al. Quantification of uranium and thorium in sandstone uranium deposits by ICP-MS with mixed acid docomposition[J]. Modern Scientific Instruments, 2016(3): 91-95.
[5] 封亚辉, 潘生林, 查燕青, 等. 波长色散X射线荧光光谱法测定钽铁和铌铁矿中钽铌铀钍[J]. 冶金分析, 2022, 42(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202203002.htm
Feng Y H, Pan S L, Zha Y Q, et al. Determination of tantalum, niobium, uranium and thorium in tantalite and niobite by wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2022, 42(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202203002.htm
[6] 姚杰祖, 张鑫, 宋茂生, 等. 激光荧光法测定五氧化二钒中的微量铀[J]. 铀矿冶, 2021, 40(4): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI202104009.htm
Yao J Z, Zhang X, Song M S, et al. Determination of trace uranium in vanadium pentoxide by laser fluorescence[J]. Uranium Mining and Metallurgy, 2021, 40(4): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI202104009.htm
[7] 时亮, 隋欣. 电感耦合等离子体-原子发射光谱法的应用[J]. 化工技术与开发, 2013(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXHG201305008.htm
Shi L, Sui X. Application of inductively coupled plasma-atomic emission spectrometry[J]. Technology & Development of Chemical lndustry, 2013(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXHG201305008.htm
[8] 李杰, 李珍, 胡新新, 等. 电感耦合等离子体发射光谱法测定绿茶中11种重金属元素[J]. 现代食品, 2021, 27(13): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SPXD202113044.htm
Li J, Li Z, Hu X X, et al. Determination of 11 heavy metals in green tea by inductively coupled plasma-atomic emission spectrometry[J]. Modern Food, 2021, 27(13): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SPXD202113044.htm
[9] 王董云, 赵慧, 段希英, 等. 微波消解电感耦合-等离子体发射光谱法同时测定复方氢氧化铝片中铝和镁含量[J]. 中国药业, 2021, 30(21): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202121021.htm
Wang D Y, Zhao H, Duan X Y, et al. Simultaneous determination of aluminum and magnesium in compound aluminum hydroxide tablets by microwave digestion-ICP-OES[J]. China Pharmaceuticals, 2021, 30(21): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202121021.htm
[10] 孙玲玲, 宋金明, 刘瑶, 等. 电感耦合等离子体发射光谱法(ICP-OES)测定海洋浮游生物中总磷的方法优化[J]. 海洋科学, 2020, 44(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202003010.htm
Sun L L, Song J M, Liu Y, et al. Optimization of ICP-OES for the determination of total phosphorus in marine plankton[J]. Marine Sciences, 2020, 44(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202003010.htm
[11] 王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688-697. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202103190040
Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma-optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202103190040
[12] Yousefi S R, Zolfonoun E. On-line solid phase extraction using ion-pair microparticles combined with ICP-OES for the simultaneous preconcentration and determination of uranium and thorium[J]. De Gruyter, 2016, 104(11): 801-807.
[13] Wang J, Liua J, Li H C, et al. Uranium and thorium leachability in contaminated stream sediments from a uranium minesite[J]. Journal of Geochemical Exploration, 2017, 176: 85-90.
[14] Pradhan S K, Ambade B. A scheme for sequential separation of thorium, lanthanides, uranium in geo-materials and their ICP-OES determination[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021(329): 115-125.
[15] 张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201712180194
Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201712180194
[16] 解原, 黄浩, 成景特, 等. 超声雾化-ICP-OES法测定铀矿尾渣中低含量的铀和钍[J]. 化学工程师, 2020, 34(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202005009.htm
Xie Y, Huang H, Cheng J T, et al. Determination of low-content uranium and thorium in uranium ore tailings by ICP-OES with ultrasonic nebulization[J]. Chemical Engineer, 2020, 34(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202005009.htm
[17] 王水锋, 郭敬华. 土壤和沉积物中铀、钍、钾、铅含量的测定[J]. 化学工程与技术, 2019, 9(6): 477-480.
Wang S F, Guo J H. Determination of U, Th, K and Pb concentrations in soil and sediment[J]. Journal of Chemical Engineering and Technology, 2019, 9(6): 477-480.
[18] 倪文山. 氢氧化镁共沉淀-电感耦合等离子体原子发射光谱法测定矿石样品中钍[J]. 冶金分析, 2013(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201301004.htm
Ni W S. Determination of thorium in mineral samples by inductively coupled plasma atomic emission spectrometry after preconcentration through coprecipitation of magnesium hydroxide[J]. Metallurgical Analysis, 2013(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201301004.htm
[19] 曾昭文, 郑成, 毛桃嫣, 等. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(增刊): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2019S1001.htm
Zeng Z W, Zheng C, Mao T Y, et al. Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(Supplement): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2019S1001.htm
[20] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136
Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136
[21] 曾江萍, 王家松, 郑智慷, 等. 高压密闭酸溶-电感耦合等离子体原子发射光谱法测定锑矿石中10种元素[J]. 理化检验(化学分册), 2021, 57(9): 788-793. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202109004.htm
Zeng J P, Wang J S, Zheng Z K, et al. Determination of 10 elements in antimony ore by inductively coupled plasma atom emission spectrometry with sealed acid digestion at high pressure[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(9): 788-793. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202109004.htm
[22] 孙秉怡, 全葳, 卢瑛, 等. 微波消解-激光荧光法测定土壤样品中微量铀[J]. 核化学与放射化学, 2017, 39(4): 268-272. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201704002.htm
Sun B Y, Quan W, Lu Y, et al. Determination of trace uranium in soil samples by microwave digestion-laser fluorescence method[J]. Journal of Nuclear and Radiochemistry, 2017, 39(4): 268-272. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201704002.htm
[23] 郭国龙, 王春叶, 丁红芳, 等. 微波消解-电感耦合等离子体质谱法测定粉煤灰中铀[J]. 冶金分析, 2019, 39(6): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201906004.htm
Guo G L, Wang C Y, Ding H F, et al. Determination of uranium in coal fly ash by inductively coupled plasma mass spectrometry with micro wave digestion[J]. Metallurgical Analysis, 2019, 39(6): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201906004.htm
[24] 汪君, 王頔, 邓长生, 等. 电感耦合等离子体发射光谱法测定地球化学样品中的钍[J]. 岩矿测试, 2014, 33(4): 501-505. http://www.ykcs.ac.cn/cn/article/id/b0559d52-1375-47cd-8224-13dea98fbd1e
Wang J, Wang D, Deng C S, et al. Determination of thorium in geochemical samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505. http://www.ykcs.ac.cn/cn/article/id/b0559d52-1375-47cd-8224-13dea98fbd1e
[25] Li X Z, Xiong C, Sun K, et al. Optimization of ICP-OES's parameters for uranium analysis of rock samples[J]. Journal of the Korean Physical Society, 2021, 78: 737-742.
[26] Sengupta A, Adya V, Godbole S. Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(3): 1259-1264.
[27] 罗艳, 丛海霞, 赵中奇, 等. ICP-AES中多重谱线拟合(MSF)扣除光谱干扰法在Th、U测定中的应用[J]. 核化学与放射化学, 2015, 37(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201501006.htm
Luo Y, Cong H X, Zhao Z Q, et al. ICP-AES with MSF for determination of Th and U[J]. Journal of Nuclear and Radiochemistry, 2015, 37(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201501006.htm
[28] 刘欣, 臧旭芳, 时燕华. ICP-OES测量岩矿中铀的干扰分析[J]. 四川有色金属, 2019(3): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201903012.htm
Liu X, Zang X F, Shi Y H. Analysis on uranium element measurement interference by inductively coupled plasma optical emission spectroscopy (ICP-OES)[J]. Sichuan Nonferrous Metals, 2019(3): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201903012.htm
[29] 王攀峰, 邰文亮, 王斌, 等. 电感耦合等离子体发射光谱法测定土壤中的钍[J]. 江西化工, 2018(4): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-PROV201804016.htm
Wang P F, Tai W L, Wang B, et al. Determination of thorium in soil by inductively coupled plasma-atomic emission spectrometry[J]. Jiangxi Chemical Industry, 2018(4): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-PROV201804016.htm
[30] 王成玲. 电感耦合等离子体发射光谱法测定地质样品中的铀含量[J]. 化工时刊, 2018, 32(6): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS201806007.htm
Wang C L. Determination of uranium content in geological samples by inductively coupled plasma atomic emission spectrometry[J]. Chemical Industry Times, 2018, 32(6): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS201806007.htm
[31] 秦晓丽, 田贵, 李朝长等. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾[J]. 岩矿测试, 2019, 38(6): 741-746. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201812290142
Qin X L, Tian G, Li Z C, et al. Determination of thorium and potassium oxide in geological samples by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201812290142
[32] 于阗. 碱熔电感耦合等离子体发射光谱法测定矿石中钍[J]. 现代科学仪器, 2020(1): 174-176. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm
Yu T. Determination of thorium in minerals by alkaline dissolution and inductively coupled plasma emission spectrometry[J]. Modern Scientific Instruments, 2020(1): 174-176. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm
[33] Martins C A, Scheffler G L, Pozebon D, et al. Straight forward determination of U, Th and Hf at trace levels using ultrasonic nebulization and axial view ICP-OES[J]. Analytical Methods, 2016, 8: 504-509.