中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍

张莉娟, 方蓬达, 王力强, 王家松. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍[J]. 岩矿测试, 2022, 41(5): 798-805. doi: 10.15898/j.cnki.11-2131/td.202202170022
引用本文: 张莉娟, 方蓬达, 王力强, 王家松. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍[J]. 岩矿测试, 2022, 41(5): 798-805. doi: 10.15898/j.cnki.11-2131/td.202202170022
ZHANG Lijuan, FANG Pengda, WANG Liqiang, WANG Jiasong. Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798-805. doi: 10.15898/j.cnki.11-2131/td.202202170022
Citation: ZHANG Lijuan, FANG Pengda, WANG Liqiang, WANG Jiasong. Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798-805. doi: 10.15898/j.cnki.11-2131/td.202202170022

微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍

  • 基金项目:
    中国地质调查局地质调查项目“地质调查标准化与标准制修订(2019-2021)”(DD20190472)
详细信息
    作者简介: 张莉娟,高级工程师,主要从事地质样品分析测试和方法研究。E-mail:343391065@qq.com
  • 中图分类号: O657.31

Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

  • 砂岩型铀矿是重要的战略性矿产资源,分析铀钍元素含量对砂岩型铀矿的矿床评价和综合利用有重要意义。砂岩型铀矿中铀钍元素的分析目前主要采用酸溶和碱熔方式处理样品,电感耦合等离子体发射光谱法(ICP-OES)进行检测。敞口酸溶法处理样品时往往分解不完全导致结果偏低,碱熔法过程冗长,不利于快速检测,且砂岩型铀矿中铁元素含量很高会对铀钍测量产生干扰。采用微波消解对样品进行处理,在盐酸提取液中加入EDTA和三乙醇胺混合溶液作为掩蔽剂,与溶液中的铁离子形成配合物有效地消除了共存元素铁对铀钍测定的干扰。实验优化了各元素的分析谱线,对掩蔽剂用量进行对比试验以获得最佳条件,采用干扰校正系数法基本消除了共存元素的谱线干扰。标准曲线线性相关系数大于0.9995,方法检出限铀为0.70μg/g,钍为0.58μg/g,标准物质测定结果的相对误差为1.47%~1.82%,相对标准偏差(RSD,n=12)为1.32%~1.78%。该方法操作简单,能够准确地同时测定砂岩型铀矿中的铀和钍元素。

  • 加载中
  • 图 1  (a) 钍和(b)铀元素分析线谱图

    Figure 1. 

    表 1  微波消解升温程序

    Table 1.  Program of microwave digestion

    步骤 升温时间(min) 功率(W) 温度(℃) 保持时间(min)
    1 5 1200 100 0
    2 5 1200 130 5
    3 5 1200 180 20
    下载: 导出CSV

    表 2  国家标准物质GBW04106采用不同样品分解方式测定结果

    Table 2.  Analytical results of elements in GBW04106 dissoluted with different digestion methods

    溶样方式 用酸量(mL) 溶样时间(h) 溶样温度(℃) 铀测定值(%) 钍测定值(%)
    敞口酸溶高压密闭消解 252.5 427 160190 0.04760.0502 0.1370.157
    微波消解 8 1.5 180 0.0495 0.151
    下载: 导出CSV

    表 3  国家标准物质GBW04106在不同谱线下的测定结果

    Table 3.  Analytical results of elements in GBW04106 by different spectral lines

    标准值(%) 不同谱线下GBW04106中铀的测定值(%) 标准值(%) 不同谱线下GBW04106中钍的测定值(%)
    367.007nm 385.958nm 393.203nm 409.014nm 283.730nm 339.204nm 401.913n
    0.0504 0.0257 0.0611 0.124 0.0498 0.156 0.097 0.182 0.153
    下载: 导出CSV

    表 4  有铁干扰时加入不同掩蔽剂铀的测定结果

    Table 4.  Analytical results of uranium with different masking agents in the presence of iron interference

    分析谱线(nm) 5μg/mL铀标准溶液中铀测量值(μg/g) 10μg/mL铀标准溶液中铀测量值(μg/g)
    步骤1 步骤2 步骤3 步骤1 步骤2 步骤3
    铀标准溶液(5μg/mL) 加Fe3+量(100mg/L) 加掩蔽剂(10mL) 铀标准溶液(10μg/mL) 加Fe3+量(200mg/L) 加掩蔽剂(10mL)
    367.007 4.897 6.102 5.237 9.883 11.21 10.25
    385.958 5.023 5.933 5.253 10.13 10.88 10.27
    393.203 5.012 5.935 5.398 10.25 10.91 10.31
    409.014 5.003 5.698 4.987 10.05 10.73 10.03
    下载: 导出CSV

    表 5  方法准确度和精密度

    Table 5.  Accuracy and precision tests of the method

    技术指标 GBW04101铀含量 GBW04106钍含量
    标准值(%) 3.29 0.156
    测定平均值(%) 3.34 0.159
    相对误差(%) 1.52 1.92
    RSD(%) 1.32 1.78
    下载: 导出CSV
  • [1]

    陈军强, 曾威, 王佳营, 等. 全球和我国铀资源供需形势分析[J]. 华北地质, 2021, 44(2): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102004.htm

    Chen J Q, Zeng W, Wang J Y, et al. Application of singularity theory in weak information extraction for ore prospecting in the Dalaimiao grassland-covered area[J]. North China Geology, 2021, 44(2): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102004.htm

    [2]

    郭冬发, 范光, 欧光习, 等. 与地浸型砂岩型铀矿有关的分析测试技术发展趋势[J]. 国外铀金地质, 2002, 19(3): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200203012.htm

    Guo D F, Fan G, Ou G X, et al. Development trend of analysis and testing technology related to in-situ leaching sandstone type uranium deposit[J]. Overseas Uranium and Gold Geology, 2002, 19(3): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200203012.htm

    [3]

    司庆红, 俞礽安, 蔡洪广, 等. 鄂尔多斯盆地乃马岱地区直罗组砂岩元素地球化学特征及其地质意义[J]. 华北地质, 2021, 44(2): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102007.htm

    Si Q H, Yu R A, Cai H G, et al. Element geochemical characteristics and geological significance of sandstones of Zhiluo Formation in uranium-bearing strata in Naimadai area, Ordos Basin[J]. North China Geology, 2021, 44(2): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102007.htm

    [4]

    马兴娟, 费发源, 甘彩霞, 等. 混合酸溶-ICP-MS法测定砂岩铀矿样品中的铀钍[J]. 现代科学仪器, 2016(3): 91-95.

    Ma X J, Fei F Y, Gan C X, et al. Quantification of uranium and thorium in sandstone uranium deposits by ICP-MS with mixed acid docomposition[J]. Modern Scientific Instruments, 2016(3): 91-95.

    [5]

    封亚辉, 潘生林, 查燕青, 等. 波长色散X射线荧光光谱法测定钽铁和铌铁矿中钽铌铀钍[J]. 冶金分析, 2022, 42(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202203002.htm

    Feng Y H, Pan S L, Zha Y Q, et al. Determination of tantalum, niobium, uranium and thorium in tantalite and niobite by wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2022, 42(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202203002.htm

    [6]

    姚杰祖, 张鑫, 宋茂生, 等. 激光荧光法测定五氧化二钒中的微量铀[J]. 铀矿冶, 2021, 40(4): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI202104009.htm

    Yao J Z, Zhang X, Song M S, et al. Determination of trace uranium in vanadium pentoxide by laser fluorescence[J]. Uranium Mining and Metallurgy, 2021, 40(4): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI202104009.htm

    [7]

    时亮, 隋欣. 电感耦合等离子体-原子发射光谱法的应用[J]. 化工技术与开发, 2013(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXHG201305008.htm

    Shi L, Sui X. Application of inductively coupled plasma-atomic emission spectrometry[J]. Technology & Development of Chemical lndustry, 2013(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXHG201305008.htm

    [8]

    李杰, 李珍, 胡新新, 等. 电感耦合等离子体发射光谱法测定绿茶中11种重金属元素[J]. 现代食品, 2021, 27(13): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SPXD202113044.htm

    Li J, Li Z, Hu X X, et al. Determination of 11 heavy metals in green tea by inductively coupled plasma-atomic emission spectrometry[J]. Modern Food, 2021, 27(13): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SPXD202113044.htm

    [9]

    王董云, 赵慧, 段希英, 等. 微波消解电感耦合-等离子体发射光谱法同时测定复方氢氧化铝片中铝和镁含量[J]. 中国药业, 2021, 30(21): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202121021.htm

    Wang D Y, Zhao H, Duan X Y, et al. Simultaneous determination of aluminum and magnesium in compound aluminum hydroxide tablets by microwave digestion-ICP-OES[J]. China Pharmaceuticals, 2021, 30(21): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202121021.htm

    [10]

    孙玲玲, 宋金明, 刘瑶, 等. 电感耦合等离子体发射光谱法(ICP-OES)测定海洋浮游生物中总磷的方法优化[J]. 海洋科学, 2020, 44(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202003010.htm

    Sun L L, Song J M, Liu Y, et al. Optimization of ICP-OES for the determination of total phosphorus in marine plankton[J]. Marine Sciences, 2020, 44(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202003010.htm

    [11]

    王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688-697. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202103190040

    Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma-optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202103190040

    [12]

    Yousefi S R, Zolfonoun E. On-line solid phase extraction using ion-pair microparticles combined with ICP-OES for the simultaneous preconcentration and determination of uranium and thorium[J]. De Gruyter, 2016, 104(11): 801-807.

    [13]

    Wang J, Liua J, Li H C, et al. Uranium and thorium leachability in contaminated stream sediments from a uranium minesite[J]. Journal of Geochemical Exploration, 2017, 176: 85-90.

    [14]

    Pradhan S K, Ambade B. A scheme for sequential separation of thorium, lanthanides, uranium in geo-materials and their ICP-OES determination[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021(329): 115-125.

    [15]

    张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201712180194

    Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201712180194

    [16]

    解原, 黄浩, 成景特, 等. 超声雾化-ICP-OES法测定铀矿尾渣中低含量的铀和钍[J]. 化学工程师, 2020, 34(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202005009.htm

    Xie Y, Huang H, Cheng J T, et al. Determination of low-content uranium and thorium in uranium ore tailings by ICP-OES with ultrasonic nebulization[J]. Chemical Engineer, 2020, 34(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202005009.htm

    [17]

    王水锋, 郭敬华. 土壤和沉积物中铀、钍、钾、铅含量的测定[J]. 化学工程与技术, 2019, 9(6): 477-480.

    Wang S F, Guo J H. Determination of U, Th, K and Pb concentrations in soil and sediment[J]. Journal of Chemical Engineering and Technology, 2019, 9(6): 477-480.

    [18]

    倪文山. 氢氧化镁共沉淀-电感耦合等离子体原子发射光谱法测定矿石样品中钍[J]. 冶金分析, 2013(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201301004.htm

    Ni W S. Determination of thorium in mineral samples by inductively coupled plasma atomic emission spectrometry after preconcentration through coprecipitation of magnesium hydroxide[J]. Metallurgical Analysis, 2013(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201301004.htm

    [19]

    曾昭文, 郑成, 毛桃嫣, 等. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(增刊): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2019S1001.htm

    Zeng Z W, Zheng C, Mao T Y, et al. Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(Supplement): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2019S1001.htm

    [20]

    龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011030136

    [21]

    曾江萍, 王家松, 郑智慷, 等. 高压密闭酸溶-电感耦合等离子体原子发射光谱法测定锑矿石中10种元素[J]. 理化检验(化学分册), 2021, 57(9): 788-793. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202109004.htm

    Zeng J P, Wang J S, Zheng Z K, et al. Determination of 10 elements in antimony ore by inductively coupled plasma atom emission spectrometry with sealed acid digestion at high pressure[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(9): 788-793. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202109004.htm

    [22]

    孙秉怡, 全葳, 卢瑛, 等. 微波消解-激光荧光法测定土壤样品中微量铀[J]. 核化学与放射化学, 2017, 39(4): 268-272. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201704002.htm

    Sun B Y, Quan W, Lu Y, et al. Determination of trace uranium in soil samples by microwave digestion-laser fluorescence method[J]. Journal of Nuclear and Radiochemistry, 2017, 39(4): 268-272. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201704002.htm

    [23]

    郭国龙, 王春叶, 丁红芳, 等. 微波消解-电感耦合等离子体质谱法测定粉煤灰中铀[J]. 冶金分析, 2019, 39(6): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201906004.htm

    Guo G L, Wang C Y, Ding H F, et al. Determination of uranium in coal fly ash by inductively coupled plasma mass spectrometry with micro wave digestion[J]. Metallurgical Analysis, 2019, 39(6): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201906004.htm

    [24]

    汪君, 王頔, 邓长生, 等. 电感耦合等离子体发射光谱法测定地球化学样品中的钍[J]. 岩矿测试, 2014, 33(4): 501-505. http://www.ykcs.ac.cn/cn/article/id/b0559d52-1375-47cd-8224-13dea98fbd1e

    Wang J, Wang D, Deng C S, et al. Determination of thorium in geochemical samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505. http://www.ykcs.ac.cn/cn/article/id/b0559d52-1375-47cd-8224-13dea98fbd1e

    [25]

    Li X Z, Xiong C, Sun K, et al. Optimization of ICP-OES's parameters for uranium analysis of rock samples[J]. Journal of the Korean Physical Society, 2021, 78: 737-742.

    [26]

    Sengupta A, Adya V, Godbole S. Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(3): 1259-1264.

    [27]

    罗艳, 丛海霞, 赵中奇, 等. ICP-AES中多重谱线拟合(MSF)扣除光谱干扰法在Th、U测定中的应用[J]. 核化学与放射化学, 2015, 37(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201501006.htm

    Luo Y, Cong H X, Zhao Z Q, et al. ICP-AES with MSF for determination of Th and U[J]. Journal of Nuclear and Radiochemistry, 2015, 37(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201501006.htm

    [28]

    刘欣, 臧旭芳, 时燕华. ICP-OES测量岩矿中铀的干扰分析[J]. 四川有色金属, 2019(3): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201903012.htm

    Liu X, Zang X F, Shi Y H. Analysis on uranium element measurement interference by inductively coupled plasma optical emission spectroscopy (ICP-OES)[J]. Sichuan Nonferrous Metals, 2019(3): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201903012.htm

    [29]

    王攀峰, 邰文亮, 王斌, 等. 电感耦合等离子体发射光谱法测定土壤中的钍[J]. 江西化工, 2018(4): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-PROV201804016.htm

    Wang P F, Tai W L, Wang B, et al. Determination of thorium in soil by inductively coupled plasma-atomic emission spectrometry[J]. Jiangxi Chemical Industry, 2018(4): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-PROV201804016.htm

    [30]

    王成玲. 电感耦合等离子体发射光谱法测定地质样品中的铀含量[J]. 化工时刊, 2018, 32(6): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS201806007.htm

    Wang C L. Determination of uranium content in geological samples by inductively coupled plasma atomic emission spectrometry[J]. Chemical Industry Times, 2018, 32(6): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS201806007.htm

    [31]

    秦晓丽, 田贵, 李朝长等. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾[J]. 岩矿测试, 2019, 38(6): 741-746. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201812290142

    Qin X L, Tian G, Li Z C, et al. Determination of thorium and potassium oxide in geological samples by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201812290142

    [32]

    于阗. 碱熔电感耦合等离子体发射光谱法测定矿石中钍[J]. 现代科学仪器, 2020(1): 174-176. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    Yu T. Determination of thorium in minerals by alkaline dissolution and inductively coupled plasma emission spectrometry[J]. Modern Scientific Instruments, 2020(1): 174-176. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    [33]

    Martins C A, Scheffler G L, Pozebon D, et al. Straight forward determination of U, Th and Hf at trace levels using ultrasonic nebulization and axial view ICP-OES[J]. Analytical Methods, 2016, 8: 504-509.

  • 加载中

(1)

(5)

计量
  • 文章访问数:  1388
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2022-02-17
修回日期:  2022-06-10
录用日期:  2022-06-25
刊出日期:  2022-09-28

目录