中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于近红外岩心光谱扫描技术研究鄂尔多斯盆地彭阳铀矿床矿物分布特征

张博, 司庆红, 苗培森, 赵华雷, 朱强, 陈印, 陈路路. 基于近红外岩心光谱扫描技术研究鄂尔多斯盆地彭阳铀矿床矿物分布特征[J]. 岩矿测试, 2022, 41(5): 733-743. doi: 10.15898/j.cnki.11-2131/td.202112130202
引用本文: 张博, 司庆红, 苗培森, 赵华雷, 朱强, 陈印, 陈路路. 基于近红外岩心光谱扫描技术研究鄂尔多斯盆地彭阳铀矿床矿物分布特征[J]. 岩矿测试, 2022, 41(5): 733-743. doi: 10.15898/j.cnki.11-2131/td.202112130202
ZHANG Bo, SI Qinghong, Miao Peisen, ZHAO Hualei, ZHU Qiang, CHEN Yin, CHEN Lulu. Mineral Distribution Characteristics of the Pengyang Uranium Deposit Based on Near Infrared Core Spectral Scanning Technology[J]. Rock and Mineral Analysis, 2022, 41(5): 733-743. doi: 10.15898/j.cnki.11-2131/td.202112130202
Citation: ZHANG Bo, SI Qinghong, Miao Peisen, ZHAO Hualei, ZHU Qiang, CHEN Yin, CHEN Lulu. Mineral Distribution Characteristics of the Pengyang Uranium Deposit Based on Near Infrared Core Spectral Scanning Technology[J]. Rock and Mineral Analysis, 2022, 41(5): 733-743. doi: 10.15898/j.cnki.11-2131/td.202112130202

基于近红外岩心光谱扫描技术研究鄂尔多斯盆地彭阳铀矿床矿物分布特征

  • 基金项目:
    国家自然科学基金重点支持项目(92162212);国家重点研发计划项目(2018YFC0604200);中国地质调查局地质调查项目(DD20190472,DD20221678);国际地球科学计划项目(IGCP675)
详细信息
    作者简介: 张博,硕士,工程师,主要从事砂岩型铀矿调查与研究工作。E-mail:zhangbo0354@163.com
    通讯作者: 司庆红,硕士,高级工程师,从事油气、砂岩型铀矿等研究工作。E-mail:sqinghongcgs@163.com
  • 中图分类号: O657.31

Mineral Distribution Characteristics of the Pengyang Uranium Deposit Based on Near Infrared Core Spectral Scanning Technology

More Information
  • 砂岩型铀矿作为一种以表生流体作用为主的后生矿床,发育较多低温矿物。甘肃省彭阳铀矿是近年来新发现的一处深部砂岩型铀矿床,具有砂体规模大、铀矿化面积广、厚度大、等特点。在含矿层及周边发育方解石、石膏、黄铁矿、黏土矿物等低温成因矿物,研究矿物的空间分布特征及其与铀矿物的关系,对判别成矿流体的主要来源、性质以及对铀成矿的控制作用具有重要意义。近红外岩心光谱扫描技术可无损、快速、批量地识别出岩心中的层状硅酸盐矿物(如高岭石、蒙脱石、绢云母等),硫酸盐矿物(如石膏、明矾石等),碳酸盐矿物(如方解石、白云石等)等矿物信息,本文基于该技术对彭阳铀矿床的矿物类型及其组合进行研究。结果表明:洛河组发育高岭石、蒙脱石、伊利石(伊/蒙混层)、绿泥石、碳酸盐、石膏、铁氧化物等矿物,铀矿段的矿物组合为“伊利石(伊/蒙混层)+石膏+碳酸盐”,局部可见高岭石。根据矿物组合特征反演流体作用,洛河组含铀矿段矿在沉积期主要是一套碱性环境,成矿期存在还原性酸性流体的注入。

  • 加载中
  • 图 1  研究区大地构造位置及区域地质简图[27]

    Figure 1. 

    图 2  彭阳铀矿床典型矿物的近红外光谱特征

    Figure 2. 

    图 3  ZK1钻孔洛河组的矿物分布图

    Figure 3. 

    图 4  与铀矿物共生的矿物

    Figure 4. 

    表 1  各种矿物的提取参数

    Table 1.  Extraction parameters of minerals

    矿物名称 提取矿物所用的光谱参数 检测下限值
    高岭石 2160nm附近吸收深度 0.0026
    蒙脱石 2210nm附近半高宽度 14
    伊利石 全谱解混比例 0.2
    绿泥石 2250nm附近吸收深度 0.001
    石膏 1940nm附近吸收深度 0.003
    碳酸盐矿物 全谱解混比例 0.2
    铁氧化物 860~930nm段吸收深度 1.33
    下载: 导出CSV

    表 2  基于近红外光谱技术的洛河组矿物组合特征

    Table 2.  Mineral assemblage characteristics of the Luohe Formation based on near infrared spectroscopy

    序号 起始深度(m) 终止深度(m) 主要岩性 识别的矿物及其组合
    1 1048.86 1113.83 浅红色、红色细砂岩 伊利石+碳酸盐+铁氧化物
    2 1113.83 1153.89 红色细砾岩、中砾岩 伊利石+碳酸盐+铁氧化物+绿泥石
    3 1153.89 1214.74 浅红色、红色细砂岩 伊利石+碳酸盐+铁氧化物+绿泥石+石膏
    4 1216.12 1284.90 红色、黄色细砂岩 高岭石+伊利石+碳酸盐+铁氧化物+蒙脱石
    5 1284.90 1331.84 黄色细砂岩、中砂岩 伊利石+铁氧化物(少量)+绿泥石
    6 1331.84 1369.89 绿灰色细砂岩、中砂岩 伊利石+石膏(少量)+铁氧化物
    7 1369.89 1413.77 灰色细砂岩、中砂岩 石膏+伊利石+碳酸盐+高岭石(局部发育)
    8 1429.98 1454.36 灰色、黄色细砂岩 石膏+伊利石+碳酸盐
    下载: 导出CSV
  • [1]

    Jaireth S, Roach I C, Bastrakov E, et al. Basin-related uranium mineral systems in Australia: A review of critical features[J]. Ore Geology Reviews, 2015, 76: 360-394. https://www.sciencedirect.com/science/article/pii/S0169136815300056

    [2]

    张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 2016, 32(6): 321-332. doi: 10.3969/j.issn.1000-0658.2016.06.001

    Zhang J D. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 2016, 32(6): 321-332. doi: 10.3969/j.issn.1000-0658.2016.06.001

    [3]

    Jin R S, Miao P S, Sima X Z, et al. New prospecting progress using information and big data of coal and oil exploration holes on sandstone-type uranium deposit in North China[J]. China Geology, 2018, 1(1): 167-168. doi: 10.31035/cg2018017

    [4]

    李建国, 金若时, 张博, 等. 松辽盆地西南部上白垩统姚家组原生黏土矿物组合特征及其找铀意义[J]. 地球学报, 2018, 39(3): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803004.htm

    Li J G, Jin R S, Zhang B, et al. Characteristics of primary clay minerals in the upper Cretaceous Yaojia Formation of southwest Songliao Basin and their significance[J]. Acta Geoscientica Sinica, 2018, 39(3): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803004.htm

    [5]

    张博, 李建国, 苗培森, 等. 开鲁盆地钱家店铀矿床铀的赋存状态及成因探讨[J]. 华北地质, 2021, 44(2): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102006.htm

    Zhang B, Li J G, Miao P S, et al. The occurrence state and origin of uranium in Qianjiadian uranium deposit, Kailu Basin[J]. North China Geology, 2021, 44(2): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102006.htm

    [6]

    张世涛, 陈华勇, 韩金生, 等. 鄂东南铜绿山大型铜铁金矿床成矿岩体年代学、地球化学特征及成矿意义[J]. 地球化学, 2018, 47(3): 240-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201803002.htm

    Zhang S T, Chen H Y, Han J S, et al. Geochronology, geochemistry, and mineralization of quartz monzodiorite and quartz monzodiorite porphyry in Tonglüshan Cu-Fe-Au deposit, Edongnan ore district, China[J]. Geochemical, 2018, 47(3): 240-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201803002.htm

    [7]

    Thompson A J B, Hauff P L, Robitaille A J. Alteration mapping in exploration: Application of short wave infrared (SWIR) spectroscopy[J]. SEG Newsletter, 1999, 39: 16-27.

    [8]

    修连存, 郑志忠, 俞正奎, 等. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

    Xiu L C, Zheng Z Z, Yu Z K, et al. Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral[J]. Acta Geologica Sinica, 2007, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

    [9]

    修连存, 郑志忠, 俞正奎, 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009, 28(6): 519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20090604

    Xiu L C, Zheng Z Z, Yu Z K, et al. Study on method of measuring altered minerals in rocks with near-infrared spectrometer[J]. Rock and Mineral Analysis, 2009, 28(6): 519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20090604

    [10]

    燕守勋, 武晓波, 周朝宪, 等. 遥感和光谱地质进展及其对矿产勘查的实践应用[J]. 地球科学进展, 2011, 26(1): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201101001.htm

    Yan S X, Wu X B, Zhou C X, et al. Remote sensing and spectral geology and their applications to mineral exploration[J]. Advances in Earth Science, 2011, 26(1): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201101001.htm

    [11]

    卢燕, 杨凯, 修连存. 基于近红外光谱技术的烃类与粘土矿物识别及其地质意义[J]. 地质通报, 2017, 36(10): 1884-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201710020.htm

    Lu Y, Yang K, Xiu L C. Identification of hydrocarbon and clay minerals based on near-infrared spectroscopy and its geological significance[J]. Geological Bulletin of China, 2017, 36(10): 1884-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201710020.htm

    [12]

    郭娜, 史维鑫, 黄一入, 等. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图——勘查模型构建[J]. 地质通报, 2018, 37(2-3): 446-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1023.htm

    Guo N, Shi W X, Huang Y R, et al. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit af the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 2018, 37(2/3): 446-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1023.htm

    [13]

    刘新星, 张弘, 张娟, 等. 基于红外光谱技术的内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征研究[J]. 岩矿测试, 2021, 40(1): 121-133. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060010

    Liu X X, Zhang H, Zhang J, et al. A study on alteration mineral assemblages and mineralization characteristics of a Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia, China, based on infrared spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060010

    [14]

    苗培森, 张博, 张红亮, 等. 砂岩型铀矿蚀变矿物研究中的岩心光谱扫描技术[J]. 地质调查与研究, 2017, 40(3): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201703008.htm

    Miao P S, Zhang B, Zhang H L, et al. Automated drill core spectral scanning technique in the study of altered minerals in sandstone-type uranium deposits[J]. Geological Survey and Research, 2017, 40(3): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201703008.htm

    [15]

    侯腱膨, 徐清俊, 叶发旺, 等. 新疆白杨河铀矿床钻孔岩芯蚀变分带特征及地质意义[J]. 中国地质, 2018, 45(4): 839-850. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804015.htm

    Hou J P, Xu Q J, Ye F W, et al. Alteration zonation of drilling cores in the Baiyanghe uranium deposit of Xinjiang and its geological implications[J]. Geology in China, 2018, 45(4): 839-850. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804015.htm

    [16]

    史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060004

    Shi W X, Yi J J, Wang H, et al. Study on the characteristics of the infrared spectrum and the alteration zoning of drill core in the Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060004

    [17]

    李晶, 祁进平, 修连存, 等. 岩芯光谱扫描仪在紫金山矿产勘查中的应用[J]. 矿物学报, 2013, 33(S2): 1020-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2567.htm

    Li J, Qi J P, Xiu L C, et al. Application of core spectral scanner in Zijin mountain mineral exploration[J]. Acta Mineralogical Sinica, 2013, 33(S2): 1020-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2567.htm

    [18]

    陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912005.htm

    Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 2019, 35(12): 3629-3643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912005.htm

    [19]

    苗培森, 陈印, 程银行, 等. 中国北方砂岩型铀矿深部探测新发现及其意义[J]. 大地构造与成矿学, 2020, 44(4): 563-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004002.htm

    Miao P S, Chen Y, Cheng Y H, et al. New deep exploration discoveries of sandstone-type uranium deposits in North China[J]. Geotectonica et Metallogenia, 2020, 44(4): 563-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004002.htm

    [20]

    朱强, 李建国, 苗培森, 等. 鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件[J]. 地球科学与环境学报, 2019, 41(6): 675-690.

    Zhu Q, Li J G, Miao P S, et al. Reservoir characteristics of Luohe Formation and metallogenic geological conditions of deep uranium in the south western margin of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 41(6): 675-690.

    [21]

    邓军, 王庆飞, 高帮飞, 等. 鄂尔多斯盆地演化与多种能源矿产分布[J]. 现代地质, 2005, 19(4): 538-545. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200504009.htm

    Deng J, Wang Q F, Gao B F, et al. Evolution of Ordos Basin and its distribution of various energy resources[J]. Geoscience, 2005, 19(4): 538-545. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200504009.htm

    [22]

    刘池洋, 赵红格, 谭成仟, 等. 多种能源矿产赋存与盆地成藏(矿)系统[J]. 石油与天然气地质, 2006, 27(2): 131-142. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200602000.htm

    Liu C Y, Zhao H G, Tan C Q, et al. Occurrences of multiple energy mineral deposits and mineralization reservoiring system in the basin[J]. Oil & Gas Geology, 2006, 27(2): 131-142. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200602000.htm

    [23]

    刘池洋, 赵红格, 王锋, 等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报, 2005, 79(6): 738-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200506006.htm

    Liu C Y, Zhao H G, Wang F, et al. Attributes of the mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 738-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200506006.htm

    [24]

    杨晓勇, 凌明星, 赖小东, 等. 鄂尔多斯盆地东胜—黄龙地区砂岩型铀矿铀矿物赋存状态研究[J]. 地质学报, 2009, 83(8): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200908017.htm

    Yang X Y, Ling M X, Lai X D, et al. Study on uranium mineral occurrence of sandstone-type uranium deposits in Dongsheng—Huang region, the Ordos Basin[J]. Acta Geologica Sinica, 2009, 83(8): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200908017.htm

    [25]

    魏斌, 张忠义, 杨友运. 鄂尔多斯盆地白垩系洛河组至环河—华池组沉积相特征研究[J]. 地层学杂志, 2006, 30(4): 367-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200604009.htm

    Wei B, Zhang Z Y, Yang Y Y, et al. Sedimentary facies of the cretaceous Luohe and Huanhe—Huachi Formations in the Ordos Basin[J]. Journal of Stratigraphy, 2006, 30(4): 367-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200604009.htm

    [26]

    张字龙, 范洪海, 贺锋, 等. 鄂尔多斯盆地西南缘下白垩统铀成矿条件分析[J]. 铀矿地质, 2018, 34(4): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201804001.htm

    Zhang Z L, Fan H H, He F, et al. Analysis of sandstone type uranium metallogenic conditions of lower Cretaceous in the southwest margin of Ordos Basin[J]. Uranium Geology, 2018, 34(4): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201804001.htm

    [27]

    Zhao H L, Ao C, Li J G, et al. Occurrence and mech-anism of uranium enrichment with a unique eolian sedimental environment in the Pengyang uranium deposit, Ordos Basin[J]. Ore Geology Reviews, 2022, 141, https://doi.org/10.1016/j.oregeorev.2021.104641. doi: 10.1016/j.oregeorev.2021.104641

    [28]

    Xing L D, Lockley M G, Tang Y Z, et al. Tetrapod track assemblages from lower Cretaceous desert facies in the Ordos Basin, Shanxi Province, China, and their implications for Mesozoic paleoecology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507: 1-14. https://www.sciencedirect.com/science/article/pii/S0031018218300762

    [29]

    Laukamp C, Caccetta M, Chia J, et al. The uses, abuses and opportunities for hyperspectral technologies and derived geoscience information[C]//Proceedings of Geo-computing Conference Brisbane: AIG Bulletin, 2010: 73-76.

    [30]

    郭娜, 黄一入, 郑龙, 等. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型[J]. 地球学报, 2017, 38(5): 767-778. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705016.htm

    Guo N, Huang Y R, Zheng L, et al. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits[J]. Acta Geoscientic Sinina, 2017, 38(5): 767-778. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705016.htm

    [31]

    Yang K, Whitbourn L, Mason P. Mapping the chemical composition of nickel laterites with reflectance spectroscopy at Koniambo, New Caledonia[J]. Economic Geology, 2013, 108(6): 1285-1299. https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/108/6/1285/128510/Mapping-the-Chemical-Composition-of-Nickel

    [32]

    徐清俊, 叶发旺, 张川, 等. ASD地面光谱仪在新疆白杨河铀矿床蚀变信息研究中的应用[J]. 铀矿地质, 2016, 32(3): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201603010.htm

    Xu Q J, Ye F W, Zhang C, et al. Application of ASD spectrometer to the study of alteration information in Baiyanghe uranium deposit, Xinjiang[J]. Uranium Deposit, 2016, 32(3): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201603010.htm

    [33]

    王润生, 甘甫平, 闫柏琨, 等. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 2010, 22(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201001002.htm

    Wang R S, Gan F P, Yan B K, et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land & Resources, 2010, 22(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201001002.htm

    [34]

    张天福, 张云, 金若时, 等. 鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约[J]. 中国地质, 2020, 47(2): 278-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202002003.htm

    Zhang T F, Zhang Y, Jin R S, et al. Characteristics of Jurassic sequence boundary surfaces on the northeastern margin of Ordos Basin and their constraints on the spatial-temporal properties of sandstone uranium mineralization[J]. Geology in China, 2020, 47(2): 278-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202002003.htm

    [35]

    张川, 叶发旺, 徐清俊, 等. 相山铀矿田西部深钻岩心成像光谱编录及蚀变分带特征[J]. 国土资源遥感, 2019, 31(2): 231-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201902033.htm

    Zhang C, Ye F W, Xu Q J, et al. Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield[J]. Remole Sensing for Land and Resources, 2019, 31(2): 231-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201902033.htm

    [36]

    彭自栋, 申俊峰, 曹卫东, 等. 蚀变矿物近红外光谱特征对地质找矿的指示意义——以甘肃岗岔金矿为例[J]. 地质通报, 2016, 35(5): 822-831. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605018.htm

    Peng Z D, Shen J F, Cao W D, et al. The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province[J]. Geological Bulletin of China, 2016, 35(5): 822-831. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605018.htm

    [37]

    李建国, 张博, 金若时, 等. 钱家店铀矿床表生含氧含铀流体与深层酸性含烃流体的耦合成矿作用[J]. 大地构造与成矿学, 2020, 44(4): 576-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004003.htm

    Li J G, Zhang B, Jin R S, et al. Uranium mineralization of coupled supergene oxygen-uranium bearing fluids and deep acidic hydrocarbon bearing fluids in the Qianjiadian uranium deposit, Kailu Basin[J]. Geotectonica et Metallogenia, 2020, 44(4): 576-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004003.htm

    [38]

    Si Q H, Li J G, Miao P S, et al. Characteristics and mechanism of hydrocarbon alteration of faded sandstone in the uranium-bearing Luohe Formation, Pengyang area, southwest Ordos Basin[J]. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2021.104500. doi: 10.1016/j.oregeorev.2021.104500

    [39]

    Gingele F X, de Deckker P D, Norman M. Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited off shore the River Murray Mouth[J]. Earth and Planetary Science Letters, 2007, 255: 257-272. https://www.sciencedirect.com/science/article/pii/S0012821X06008995

    [40]

    孙庆峰, Christophe C, 陈发虎, 等. 气候环境变化研究中影响黏土矿物形成及其丰度因素的讨论[J]. 岩石矿物学杂志, 2011, 30(2): 291-300.

    Sun Q F, Christophe C, Chen F H, et al. A discussion on the factors affecting formation and quantity of clay minerals in climatic and environmental researches[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 291-300.

    [41]

    谢渊, 李令喜, 谢正温, 等. 鄂尔多斯盆地白垩系石膏类矿物分布特征及其对地下水水化学类型和水质的影响[J]. 水文地质工程地质, 2008(S): 55-62.

    Xie Y, Li L X, Xie Z W, et al. Distribution of gypsum and its effect on the groundwater hydrochemical type and quality of the Cretaceous in Ordos Basin[J]. Hydrogeology & Engineering Geology, 2008(S): 55-62.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1432
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2021-12-13
修回日期:  2022-04-20
录用日期:  2022-04-30
刊出日期:  2022-09-28

目录