中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

磷灰石LA-ICP-MS U-Pb定年直接校准方法研究

赵令浩, 詹秀春, 曾令森, 胡明月, 孙冬阳, 袁继海. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744-753. doi: 10.15898/j.cnki.11-2131/td.202202260035
引用本文: 赵令浩, 詹秀春, 曾令森, 胡明月, 孙冬阳, 袁继海. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744-753. doi: 10.15898/j.cnki.11-2131/td.202202260035
ZHAO Linghao, ZHAN Xiuchun, ZENG Lingsen, HU Mingyue, SUN Dongyang, YUAN Jihai. Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744-753. doi: 10.15898/j.cnki.11-2131/td.202202260035
Citation: ZHAO Linghao, ZHAN Xiuchun, ZENG Lingsen, HU Mingyue, SUN Dongyang, YUAN Jihai. Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744-753. doi: 10.15898/j.cnki.11-2131/td.202202260035

磷灰石LA-ICP-MS U-Pb定年直接校准方法研究

  • 基金项目:
    中国地质科学院基本科研业务费项目(CSJ201901,CSJ202201);中国地质调查局地质调查项目(DD20221838);国家重点研发计划项目(2021YFC2903101)
详细信息
    作者简介: 赵令浩,博士,副研究员,从事地球化学及构造地质学研究。E-mail:linghaozhao@126.com
  • 中图分类号: P597;O657.63

Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating

  • 磷灰石作为含铀副矿物在各种类型地质样品中广泛存在,其U-Pb封闭温度~500℃,是良好的热年代学研究对象。但是磷灰石相对较低的铀含量和较高普通铅含量以及缺少基体匹配标准样品等问题限制了磷灰石LA-ICP-MS U-Pb定年技术的发展和应用。本文采用激光剥蚀高分辨电感耦合等离子体质谱(LA-HR-ICP-MS)针对Madagascar磷灰石样品MAD2进行U-Pb定年分析,探讨其U-Pb同位素均一性及直接用作磷灰石LA-ICP-MS U-Pb定年标准样品的可行性。结果表明:该样品U、Pb含量均值分别为23.8×10-6和13.5×10-6,颗粒内207Pb/206Pb和206Pb/238U比值均一性较好,加权平均值分别为0.0943±0.0006和0.0794±0.0004,可以用于直接校准磷灰石LA-ICP-MS U-Pb同位素分析过程中的元素分馏效应,无需普通铅校正。以MAD2为标准样品,结合207Pb普通铅扣除法,测定了不同年龄磷灰石样品U-Pb年龄,结果为:McClure Moutain(521±5Ma)、Tory Hill-apt(1021±16Ma)、Durango(30.7±1.5Ma)、房山岩体闪长岩磷灰石(~131Ma),各样品年龄测定值与推荐值在误差范围内一致,表明本文建立的LA-ICP-MS U-Pb定年方法和同位素比值校准方案的可行性和准确性。本文采用的校准和数据处理方案有效地降低了磷灰石LA-ICP-MS U-Pb定年数据处理难度,有利于方法的推广和应用。

  • 加载中
  • 图 1  Madagascar磷灰石(MAD2) LA-ICP-MS U-Pb定年结果

    Figure 1. 

    图 2  磷灰石样品LA-ICP-MS U-Pb定年结果

    Figure 2. 

    图 3  房山花岗闪长岩样品19FS-01、19FS-03中锆石、榍石和磷灰石定年结果

    Figure 3. 

    表 1  LA-ICP-MS仪器参数和工作条件

    Table 1.  Instrumental setup and operating conditions

    高分辨电感耦合等离子体质谱
    (Thermo Scientific Element XR)
    激光剥蚀系统
    (NWR 193ArF准分子激光器)
    参数 工作条件 参数 工作条件
    RF功率 1400W 波长 193nm
    冷却气(Ar)流速 16L/min 脉冲时间 15ns
    辅助气(Ar)流速 0.9L/min 激光斑束 25μm, 30μm, 40μm
    样品气(Ar)流速 0.98L/min 激光频率 10Hz
    分辨率 低(MM=300) 激光能量 7mJ
    扫描模式 E-Scan 剥蚀模式 点剥蚀
    扫描质量
    积分时间
    202Hg(16ms), 204Pb(16ms),
    206Pb(24ms), 207Pb(24ms), 208Pb(16ms), 232Th(16ms), 238U(24ms)
    载气(He) 流速 0.87L/min
    接收器模式 Counting: 202Hg, 204Pb, 207Pb, 208Pb Analog: 206Pb, 232Th, 238U 剥蚀时间 40s
    下载: 导出CSV
  • [1]

    Chew D M, Sylvester P J, Tubrett M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1): 200-216. https://www.sciencedirect.com/science/article/pii/S0009254110004031

    [2]

    Chew D M, Petrus J A, Kamber B S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185-199. doi: 10.1016/j.chemgeo.2013.11.006

    [3]

    Fisher C M, Bauer A M, Luo Y, et al. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite—Improvements, potential reference materials, and application to the Archean Saglek Block gneisses[J]. Chemical Geology, 2020, 539: 119493. doi: 10.1016/j.chemgeo.2020.119493

    [4]

    Gregory C J, Rubatto D, Allen C M, et al. Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb study[J]. Chemical Geology, 2007, 245(3): 162-182. https://www.sciencedirect.com/science/article/pii/S0009254107003555

    [5]

    Li D, Tan C, Miao F, et al. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet[J]. Ore Geology Reviews, 2019, 107: 587-599. doi: 10.1016/j.oregeorev.2019.03.011

    [6]

    Sun J, Yang J, Wu F, et al. In situ U-Pb dating of titanite by LA-ICPMS[J]. Chinese Science Bulletin, 2012, 57(20): 2506-2516. doi: 10.1007/s11434-012-5177-0

    [7]

    Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807-2814. doi: 10.1002/2016GC006784

    [8]

    赵令浩, 曾令森, 詹秀春, 等. 榍石LA-SF-ICP-MS U-Pb定年及对结晶和封闭温度的指示[J]. 岩石学报, 2020, 36(10): 2983-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202010004.htm

    Zhao L H, Zeng L S, Zhan X C, et al. In situ U-Pb dating of titanite by LA-SF-ICP-MS and insights into titanite crystallization and closure temperature[J]. Acta Petrologica Sinica, 2020, 36(10): 2983-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202010004.htm

    [9]

    周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206003.htm

    Zhou H Y, Geng J Z, Cui Y R, et al. In situ U-Pb dating of apatite using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6): 857-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206003.htm

    [10]

    Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365-418. doi: 10.2138/rmg.2017.83.12

    [11]

    Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095-1116. doi: 10.3390/min11101095

    [12]

    Kusebauch C, John T, Whitehouse M J, et al. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes[J]. Geochimica et Cosmochimica Acta, 2015, 170: 225-246. doi: 10.1016/j.gca.2015.08.023

    [13]

    O'Sullivan G, Chew D, Kenny G, et al. The trace ele-ment composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

    [14]

    Zeng L, Asimow P D, Saleeby J B. Coupling of Anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of Anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3671-3682. doi: 10.1016/j.gca.2005.02.035

    [15]

    Hammerli J, Kemp A I S, Spandler C. Neodymium iso-tope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals[J]. Earth and Planetary Science Letters, 2014, 392: 133-142. doi: 10.1016/j.epsl.2014.02.018

    [16]

    Chu M F, Wang K L, Griffin W L, et al. Apatite Com-position: Tracing petrogenetic processes in transhimalayan granitoids[J]. Journal of Petrology, 2009, 50(10): 1829-1855. doi: 10.1093/petrology/egp054

    [17]

    Piccoli P M, Candela P A. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 255-292. doi: 10.2138/rmg.2002.48.6

    [18]

    Najman Y, Mark C, Barfod D N, et al. Spatial and tem-poral trends in exhumation of the eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan[J]. GSA Bulletin, 2019, 131(9-10): 1607-1622. doi: 10.1130/B35031.1

    [19]

    Pochon A, Poujol M, Gloaguen E, et al. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian—Carboniferous boundary in the Armorican Massif (France)[J]. American Mineralogist, 2016, 101: 2430-2442. doi: 10.2138/am-2016-5736

    [20]

    Liu W, Zhang J, Sun T, et al. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China[J]. Journal of Geochemical Exploration, 2014, 138: 22-32. doi: 10.1016/j.gexplo.2013.12.006

    [21]

    刘敏, 宋世伟, 崔玉荣, 等. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究[J]. 岩石学报, 2021, 37(3): 717-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103005.htm

    Liu M, Song S W, Cui Y R, et al. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W (Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province[J]. Acta Petrologica Sinica, 2021, 37(3): 717-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103005.htm

    [22]

    Wohlgemuth-Ueberwasser C, Tegner C, Pease V. LA-Q-ICP-MS apatite U/Pb geochronology using common Pb in plagioclase: Examples from layered mafic intrusions[J]. American Mineralogist, 2017, 102: 571-579. doi: 10.2138/am-2017-5903

    [23]

    Glorie S, Jepson G, Konopelko D, et al. Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan[J]. Gondwana Research, 2019, 71: 1-15. doi: 10.1016/j.gr.2019.01.011

    [24]

    Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q0AA21. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011GC003928

    [25]

    Schoene B, Bowring S A. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb[J]. Contributions to Mineralogy and Petrology, 2006, 151(5): 615. doi: 10.1007/s00410-006-0077-4

    [26]

    McDowell F W, McIntosh W C, Farley K A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3): 249-263. https://www.sciencedirect.com/science/article/pii/S0009254104004218

    [27]

    Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    [28]

    Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    [29]

    Aleinikoff J, Wintsch R, Tollo R, et al. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England[J]. American Journal of Science, 2007, 307: 63-118. doi: 10.2475/01.2007.04

    [30]

    Kennedy A K, Kamo S L, Nasdala L, et al. Grenville skarn titanite: Potential reference material for SIMS U-Th-Pb analysis[J]. The Canadian Mineralogist, 2010, 48(6): 1423-1443. doi: 10.3749/canmin.48.5.1423

    [31]

    Griffin W, Powell W, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS, in laser ablation-ICP-MS in the Earth sciences: Current practices and outstanding issues[M]//Sylvester P. Toronto: Mineralogical Association of Canada, 2008: 308-311.

    [32]

    Ludwig K R. User's manual for Isoplot 3.6: A geo-chronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003.

    [33]

    Tera F, Wasserburg G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in Lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14(3): 281-304. doi: 10.1016/0012-821X(72)90128-8

    [34]

    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221. doi: 10.1016/0012-821X(75)90088-6

    [35]

    Xu L, Yang J, Ni Q, et al. Determination of Sm-Nd isotopic compositions in fifteen geological materials using laser ablation MC-ICP-MS and application to monazite geochronology of metasedimentary rock in the North China Craton[J]. Geostandards and Geoanalytical Research, 2018, 42(3): 379-394. doi: 10.1111/ggr.12210

    [36]

    Cochrane R, Spikings R A, Chew D, et al. High temperature (>350℃) thermochronology and mechanisms of Pb loss in apatite[J]. Geochimica et Cosmochimica Acta, 2014, 127: 39-56. doi: 10.1016/j.gca.2013.11.028

    [37]

    蔡建辉, 阎国翰, 牟保磊, 等. 北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨[J]. 岩石学报, 2005, 21(3): 776-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503018.htm

    Cai J H, Yan G H, Mu B L, et al. Zircon U-Pb age, Sr-Nd-Pb isotopic compositions and trace element of Fangshan Complex in Beijing and their petrogenesis significance[J]. Acta Petrologica Sinica, 2005, 21(3): 776-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503018.htm

    [38]

    Sun J F, Yang J H, Wu F Y, et al. Magma mixing con-trolling the origin of the early Cretaceous Fangshan granitic pluton, North China Craton: In situ U-Pb age and Sr-, Nd-, Hf- and O-isotope evidence[J]. Lithos, 2010, 120(3): 421-438. https://www.sciencedirect.com/science/article/pii/S0024493710002537

    [39]

    桑海清, 王非, 贺怀宇, 等. 中国K-Ar法地质年龄标准物质ZBH-15黑云母的研制[J]. 矿物岩石地球化学通报, 2006, 25(3): 201-217. doi: 10.3969/j.issn.1007-2802.2006.03.001

    Sang H Q, Wang F, He H Y, et al. Intercalibration of the ZBH-15 biotite reference material utilized for K-Ar and 40Ar-39Ar isotopic dating in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(3): 201-217. doi: 10.3969/j.issn.1007-2802.2006.03.001

    [40]

    桑海清, 王非, 贺怀宇, 等. K-Ar法地质年龄标准物质ZBJ角闪石的定值结果[J]. 地质科学, 2007, 42(3): 532-557. doi: 10.3321/j.issn:0563-5020.2007.03.010

    Sang H Q, Wang F, He H Y, et al. Certified results of the ZBJ hornblende reference materials for K-Ar and 40Ar-39Ar datings[J]. Chinese Hournal of Geology, 2007, 42(3): 532-557. doi: 10.3321/j.issn:0563-5020.2007.03.010

  • 加载中

(3)

(1)

计量
  • 文章访问数:  2745
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2022-02-26
修回日期:  2022-04-23
录用日期:  2022-04-30
刊出日期:  2022-09-28

目录