Electron Probe Quantitative Analysis of HREE-V-Aluminosilicate Minerals
-
摘要:
产自广东省梅州市玉水铜矿的景文矿,属于含水、重稀土-矾-铝硅酸盐矿物(简写为HREE-V-铝硅酸盐矿物),其化学结构式为Y2Al2V24+(SiO4)2O4(OH)4,该矿物在全球属首次发现,暂未开展相关研究。相对于含轻稀土矿物,含重稀土矿物在电子探针分析过程中,当被高压电子束轰击时,被激发出来的特征X射线线系繁多,线系之间分布更加密集,彼此之间相互重叠的现象也更为严重,要获得理想数据的难度很大,是亟待解决和突破的技术难题。本文对该矿物进行了精细的电子探针定量分析,获得理想的化学成分数据,为新矿物命名提供了理论数据技术支撑。通过对实验方法的探索和总结获得以下结果:①利用15kV加速电压、100nA束流对试样进行全元素扫描,以此确定出17种元素;②在定量分析过程中,对重叠峰进行了剥离;③利用仪器软件中的Zoom-Peak ID程序,选择出17种元素的分析线系、精确的峰位及上下背景值;④选取合适的标样及测试时间等定量分析条件,最终获得理想的定量分析结果(平均总量97.41wt%)。上述四条也是确保获得理想定量分析数据的关键因素。
Abstract:BACKGROUND Jingwenite, Y2Al2V24+(SiO4)2O4(OH)4), from Yushui Copper Mine, Meizhou City, Guangdong Province, is a type of HREE-V hydrated aluminosilicate minerals. Since its discovery, no research has been done. During electron probe microanalysis (EPMA) for HREE minerals, many characteristic X-ray lines are excited when samples are bombarded by a high-voltage electron beam. The lines are not only numerous, but also seriously overlap with each other. It is very difficult to obtain optimal data, and it is a technical problem that needs to be solved.
OBJECTIVES To obtain ideal chemical composition data by fine quantitative analysis of the mineral by EPMA to provide theoretical data technical support for the naming of the new mineral.
METHODS Full element wave spectrum scanning for Jingwenite by JEOL JXA-8530F Plus.
RESULTS (1) 17 elements were identified by wave dispersive scanning with an accelerating voltage of 15kV and a beam current of 100nA; (2) Stripping overlapped peak during the quantitative analysis; (3) Peak positions, upper and lower background values of 17 elements were set by Zoom-Peak ID program in quantitative analysis; (4) The ideal quantitative analysis results (total 97.41wt%) were obtained by selecting appropriate standard samples and testing dwell time.
CONCLUSIONS The above four items are key factors to ensure ideal quantitative analysis data.
-
图 1 广东玉水铜矿区域构造位置示意图(据何耀基[19]修改)
Figure 1.
表 1 HREE-V-铝硅酸盐矿物电子探针分析条件
Table 1. Analysis conditions of HREE-V-aluminiosilicate minerals by electron probe microanalyzer
序号 元素 分光晶体 峰位L(mm) 线系 峰位/背景测量时间(s) 标样 峰位干扰描述 标样溯源 1 Si TAP 77.322 Kα1 10/5 Albite 被Lu的Lβ1干扰,Bg-避开Si Kβ,Bg+避开YLL 美国国家标准委员会 2 Al TAP 90.577 Kα1 10/5 Hornblende 没有干扰 3 Ti LiFH 191.178 Kα1 20/10 Hornblende 没有干扰 4 Fe LiFH 134.751 Kα1 30/15 Hornblende 没有干扰,Bg-避开Dy Lα1,Bg+避开Tb Lα1 5 F LDE1 85.105 Kα1 10/5 Apatite 没干扰,计数率低 6 Nd LiFH 164.668 Lα1 30/15 REE-2 没干扰,计数率低 7 Sm LiFH 152.842 Lα1 20/10 REE-2 计数率低,注意与Y Kβ5区分 8 Gd LiFH 142.452 Lα1 20/10 REE-1 没干扰,计数率低 9 Tb LiFH 137.576 Lα1 30/15 REE-1 没干扰,计数率低 10 Dy LiFL 132.693 Lα1 20/10 REE4 没干扰,Bg+注意避开Fe Kα 11 Er LiFL 124.058 Lα1 20/10 REE4 被Tb Lβ4干扰 12 Tm LiFL 120.030 Lα1 30/15 REE-1 被Sm Lg1干扰 13 Yb LiFL 116.190 Lα1 30/15 REE-2 没干扰,计数率低 14 Ho LiFL 114.536 Lβ1 20/10 REE-4 Lα1被Gd Lβ1干扰 15 Lu LiFL 98.757 Lβ1 30/15 REE-2 Lα1被Ho Lβ3、Dy Lβ2, 15干扰 16 Y PETJ 206.590 Lα1 20/10 YPO4 没有干扰 图卢兹大学 17 V PETJ 80.128 Kα1 20/10 Ca3(VO4)2 被Ti Kβ5干扰,与Ti Kβ1, 3区分 国家标准化管理委员会 注:测量时间如“10/5”表示峰位10s,背景5s。 表 2 定量分析过程中所用标样成分原始数据及监测数据
Table 2. Original data and monitoring data of components in standard sample by quantitative analysis
普通标样 稀土标样 成分 钠长石 角闪石 磷灰石 Ca3(VO4)2 成分 YPO4 REE1 REE2 REE4 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) 原始数据(wt%) 监测数据(wt%) SiO2 68.14 67.98 40.37 40.46 0.34 0.19 - - SiO2 - - 26.96 26.89 27.7 27.07 28.34 28.33 Al2O3 19.77 19.75 14.9 15.23 - - - - Al2O3 - - 30.52 30.24 30.63 30.7 32.08 31.79 Na2O 11.46 11.13 2.6 2.52 0.23 0.22 - - CaO - - 25.16 25.12 25.26 25.38 26.45 26.27 K2O 0.23 0.22 2.05 1.96 - - - - Eu2O3 - - 4.20 4.25 - - - - CaO 0.38 0.16 10.3 10.24 54.02 54.24 48.13 48.72 Gd2O3 - - 4.46 4.46 - - - - FeO - - 10.92 10.52 - - - - Tb2O3 - - 4.35 4.45 - - - - TiO2 - - 4.72 4.71 - - - - Tm2O3 - - 4.35 4.31 - - - - MgO - - 12.8 13.07 - - - - Nd2O3 - - - - 4.26 4.25 - - MnO - - 0.09 0.10 - - - - Sm2O3 - - - - 4.26 4.22 - - P2O5 - - - - 40.78 40.69 - - Yb2O3 - - - - 4.26 4.33 - - F - - - - 2.94 2.97 - - Lu2O3 - - - - 4.26 4.06 - - V2O5 - - - - - - 51.5 51.39 Dy2O3 - - - - - - 4.36 4.21 Cl - - 0.41 0.33 - - Ho2O3 - - - - - - 4.41 4.31 总计 99.98 99.35 98.75 98.81 98.72 98.27 99.63 100.12 Er2O3 - - - - - - 4.36 4.24 P2O5 38.6 38.67 - - - - - - Y2O3 61.4 61.11 - - - - - - 总计 100 99.73 100 99.73 100 100.02 100 99.14 表 3 HREE-V-铝硅酸盐矿物定量分析结果
Table 3. Quantitative analysis results of HREE-V-aluminiosilicate minerals
氧化物 原始点号测量值(wt%) 平均值(wt%) 平均D.L* (ppm) 85 86 87 88 89 90 91 93 94 95 96 VO2 24.18 25.68 24.43 25.84 28.03 26.14 25.88 24.95 25.05 25.74 25.38 25.57 153 Al2O3 11.9 11.38 12.06 12.13 12.52 12.38 12.18 12.6 13.02 12.8 12.69 12.12 176 SiO2 16.28 16.44 16.3 16.37 16.51 16.61 16.41 16.34 16.43 16.43 16.25 16.40 124 TiO2 3.72 3.08 3.45 1.21 ND 0.99 1.45 0.85 0.22 0.13 0.06 1.38 123 FeO** 0.60 0.45 0.52 1.44 0.75 0.71 0.91 1.80 1.79 1.29 1.33 1.05 128 F 0.09 0.10 0.07 0.18 0.09 0.05 0.15 0.26 0.28 0.19 0.19 0.02 211 Y2O3 24.8 24.17 24.78 25.36 25.17 25.08 25.51 25.44 24.49 22.98 22.57 24.58 205 Nd2O3 0.05 ND 0.04 0.05 0.03 0.02 0.01 0.01 ND 0.01 0.02 0.64 195 Sm2O3 0.08 0.06 0.06 0.13 0.10 0.05 0.10 0.13 0.07 0.04 0.06 0.31 236 Gd2O3 0.79 0.81 0.85 0.65 0.65 0.64 0.64 0.57 0.56 0.49 0.42 1.38 261 Tb2O3 0.24 0.37 0.40 0.22 0.30 0.33 0.35 0.36 0.34 0.24 0.25 3.24 288 Dy2O3 3.26 3.58 3.32 2.62 3.60 2.83 2.90 3.11 3.56 3.57 3.32 0.88 278 Ho2O3 0.80 1.05 0.95 0.66 0.96 0.82 0.84 0.81 0.91 0.84 1.02 3.62 624 Er2O3 3.50 3.65 3.50 3.07 3.47 3.42 3.28 3.36 3.82 4.28 4.47 0.63 306 Tm2O3 0.56 0.54 0.59 0.60 0.55 0.63 0.54 0.54 0.66 0.80 0.87 4.02 260 Yb2O3 3.70 3.80 3.55 3.99 3.26 4.01 3.69 3.52 3.74 5.18 5.83 2.58 277 Lu2O3 2.44 2.80 1.20 2.54 2.39 2.97 2.61 1.06 2.64 3.52 4.24 0.15 832 总计 96.95 97.9 96.02 96.95 98.33 97.66 97.38 95.59 97.46 98.45 98.87 97.41 - ∑R2O3 40.22 40.82 39.23 39.87 40.48 40.8 40.47 38.9 40.79 41.96 43.06 40.60 - VO2+TiO2 27.9 28.76 27.88 27.05 28.03 27.13 27.33 25.8 25.27 25.87 25.44 26.95 - 注:氧化物以wt%为单位,平均最低探测极限(D.L)以ppm为单位。“*”:表示在1σ下的11个数据元素平均最低探测极限。“**”:FeO表示Fe2+全铁。 -
[1] 赵芝, 付小方, 任希杰, 等. 四川稀土精矿的稀土元素和微量元素地球化学特征及开发利用意义[J]. 岩矿测试, 2013, 32(5): 810-816. doi: 10.3969/j.issn.0254-5357.2013.05.022 http://www.ykcs.ac.cn/cn/article/id/e7b09ce0-88e8-43dd-9911-3d4838b2586b
Zhao Z, Fu X F, Ren X J, et al. Geochemistry of rare earth and trace elements in rare earth concentrate from Sichuan Province and the significance of the exploitation and utilization[J]. Rock and Mineral Analysis, 2013, 32(5): 810-816. doi: 10.3969/j.issn.0254-5357.2013.05.022 http://www.ykcs.ac.cn/cn/article/id/e7b09ce0-88e8-43dd-9911-3d4838b2586b
[2] 张轰玉, 杨占峰, 焦登铭, 等. 白云鄂博主矿霓石型铌稀土铁矿石中铌在独立矿物中的富集状态和分布规律研究[J]. 有色金属(选矿部分), 2020(1): 6-12. doi: 10.3969/j.issn.1671-9492.2020.01.002
Zhang H Y, Yang Z F, Jiao D M, et al. Distribution regularity and enrichment state of niobium in independent minerals in aegirine-type niobium rare earth iron ore in Bayan Obo main mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1): 6-12. doi: 10.3969/j.issn.1671-9492.2020.01.002
[3] 杨晓勇, 赖小东, 任伊苏, 等. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因[J]. 地质学报, 2015, 89(12): 2323-2350. doi: 10.3969/j.issn.0001-5717.2015.12.010
Yang X Y, Lai X D, Ren Y S, et al. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: Discussion on the origin of Bayan Obo super-large deposit[J]. Acta Geologica Sinica, 2015, 89(12): 2323-2350. doi: 10.3969/j.issn.0001-5717.2015.12.010
[4] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[5] 王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5): 796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020 http://www.ykcs.ac.cn/cn/article/id/70179d82-4d1a-4971-a71f-dcaf6942ab7b
Wang D H, Zhao Z, Yu Y, et al. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 2013, 32(5): 796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020 http://www.ykcs.ac.cn/cn/article/id/70179d82-4d1a-4971-a71f-dcaf6942ab7b
[6] 邓茂春, 王登红, 曾载淋, 等. 风化壳离子吸附型稀土矿圈矿方法评价[J]. 岩矿测试, 2013, 32(5): 803-809. doi: 10.3969/j.issn.0254-5357.2013.05.021 http://www.ykcs.ac.cn/cn/article/id/1ce4adfc-d390-439c-b51c-1983233a79b9
Deng M C, Wang D H, Zeng Z L, et al. Evaluation on delineation methods for ion-adsorption type rare earth ore body[J]. Rock and Mineral Analysis, 2013, 32(5): 803-809. doi: 10.3969/j.issn.0254-5357.2013.05.021 http://www.ykcs.ac.cn/cn/article/id/1ce4adfc-d390-439c-b51c-1983233a79b9
[7] Liu P, Gu X P, Zhang W L, et al. Jingwenite-(Y), IMA 2021-070: CNMNC Newsletter 64[J]. Mineralogical Magazine, 2022, 34(1): 1-6.
[8] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
[9] Smith M, Kynicky J, Xu C, et al. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu District, China[J]. Lithos, 2018, 308-309: 65-82. doi: 10.1016/j.lithos.2018.02.027
[10] 强山峰, 毕诗健, 邓晓东, 等. 豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义[J]. 地球科学——中国地质大学学报, 2013, 38(1): 43-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301009.htm
Qiang S F, Bi S J, Deng X D, et al. Monazite U-Th-Pb ages of the Qinnan gold deposit, Xiaoqinling District: Implications for regional metallogenesis and tectonic setting[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(1): 43-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301009.htm
[11] Pyle J M, Spear F S, Wark D A, et al. Contributions to precision and accuracy of monazite microprobe ages[J]. American Mineralogist, 2005, 90: 547-577. doi: 10.2138/am.2005.1340
[12] Asami M, Suzuki K, Grew E S. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, east Antarctica: Evidence for ultra-high-temperature metamorphism at 2400Ma[J]. Precambrian Research, 2002, 114: 249-275. doi: 10.1016/S0301-9268(01)00228-5
[13] Pyle J M, Spear F S, Wark D A. Electron microprobe analysis of REE in apatite, monazite and xenotime: Protocols and pitfalls[J]//Kohn M J, Rakovan J, Hughes J M. Phosphates: Geochemical, geobiological, and materials importance. Reviews in mineralogy and geochemistry, 2002, 48: 337-362.
[14] Michael J J, Michael L W, Edward D. Lane in-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA[J]. Chemical Geology, 2008, 254: 97-215.
[15] Chen A P, Yang J J, Zhong D L, et al. Epidote spherulites and radial euhedral epidote aggregates in a greenschist facies metavolcanic breccia hosting an UHP eclogite in Dabieshan (China): Implication for dynamic metamorphism[J]. American Mineralogist, 2019, 104: 1197-1212.
[16] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086
Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086
[17] 姚立, 田地, 梁细荣, 等. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080118
Yao L, Tian D, Liang X R, et al. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080118
[18] 陈懋弘, 柯昌辉, 田永飞, 等. 浅海环境下的喷流沉积块状硫化物矿床——以广东玉水铜矿为例[J]. 地质学报, 2021, 95(6): 1774-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106008.htm
Chen M H, Ke C H, Tian Y F, et al. Sedimentary-exhalative massive sulfide deposits in shallow marine environment: A case study from Yushui copper deposit, Guangdong Province[J]. Acta Geologica Sinica, 2021, 95(6): 1774-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106008.htm
[19] 何耀基. 广东梅县玉水热液沉积多金属矿床的成矿地质特征[J]. 广东地质, 1990, 3(1): 1-13.
He Y J. Metallogenic-geologic characteristics of Yushui hydrothermal-sedimentary polymetallic deposit in Meixian County, Guangdong Province[J]. Guangdong Geology, 1990, 3(1): 1-13.
[20] Stormer J C, Pierson M J, Tacker R C. Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis[J]. American Mineralogist, 1993, 78: 641-648.