-
摘要:
20世纪80年代至今,中国已研制了9种茶叶成分标准物质。中国地质调查局于2004年下达中国地质科学院地球物理地球化学勘查研究所研制的一套适用于覆盖区农业生态地球化学评价的生物地球化学系列标准物质,其中包括两种茶叶标准物质,定值组分60余项,包括植物营养元素、有毒、有害元素和重金属污染元素以及人们关心的一些微量营养元素等,满足了相关食品卫生安全及生物样品成分检验分析的需要,取得了显著的社会效益。随着农业生态地质调查工作全面部署和展开,对生物样品的分析测试任务加大,对相应地球化学标准物质的需求也随之增加。本文复制了GBW10016a和GBW10052a两种茶叶标准物质,候选物分别为福建武夷山乌龙茶和江西上饶市婺源绿茶。研制过程严格按照JJG 1006—1994、JJF 1343—2012和JJF1646—2017等相关规范要求,侯选物经粗碎、干燥、细碎、过筛、混匀等步骤制备而成,经统计学检验,样品均匀,稳定性良好,定值采用多家实验室合作定值的方式进行,优选国内技术实力较强、仪器设备先进、且有相关标准物质定值测试经验的11家实验室,采用电感耦合等离子体质谱/发射光谱法(ICP-MS/OES)、原子荧光光谱法(AFS)等准确可靠的方法共分析61项指标。GBW10016a最终给出认定值54项,参考值3项;GBW10052a定值57项,参考值3项。本次研制的茶叶标准物质定值成分多样、量值准确可靠,符合国家一级标准物质的要求。与原批次标准物质相比,GBW10016a定值指标增加了Ag和Sn,Ge和Tl由原批次的参考值升级为标准值;GBW10052a增加了Al、Ag、Cl、I、N、S、Sb、Sc、Si及Sn由原批次的参考值升级为标准值。本次复研制的标准物质,在同类型中占据重要地位,研制过程严格按照相关规范执行,测试方法经典可靠,定值结果准确度高,于2019年被审批为国家一级标准物质,能够有效支撑农业生态环境地球化学调查与评价、生物样品的分析及食品与农产品分析测试的需要。
-
关键词:
- 茶叶 /
- 标准物质 /
- 定值元素 /
- 电感耦合等离子体质谱/发射光谱法 /
- 质量控制
Abstract:BACKGROUND With the comprehensive development of the agricultural ecological geological survey and the improvement of people's attention to the ecological environment in our country, the demand for biogeochemical reference materials in biological analysis food analysis and agricultural products analysis is increasing. The existing biogeochemical reference materials are in short supply, and there is an urgent need to develop new reference materials. With the full deployment and development of agro-ecological geological surveys, the demand for biogeochemical reference materials is increasing.
OBJECTIVES To reproduce tea composition reference materials (GBW10016a & GBW10052a) to take the place of old tea composition reference materials (GBW10016 & GBW10052).
METHODS According to the development needs of geological surveys, the focus of this paper is on the preparation of two tea reference materials, GBW10016a and GBW10052a. The progress includes sampling, processing and preparation, particle size test, uniformity test, stability test, content test, and calculation of identification value and uncertainty.
In the sampling process, the sample collection locations are Wuyishan City, Fujian Province and Wuyuan County, Shangrao City, Jiangxi Province. The candidates are oolong tea and green tea. The tea samples both weigh 400kg.
In the processing and preparation, the samples were cleaned, freeze-dried, heated and dried, ball milled, screened, sub-packed and inactivated. In the particle size test, the BT-9000s laser particle size distributor was used to test the particle size of the samples. The particle size of GBW10016a & GBW10052a centrally distributed in the range of 75μm to 200μm, and the cumulative distribution content reached 98% in the range of 175μm to 200μm.
In the uniformity testing process, 15 bottles of samples were randomly selected for analysis of more than 30 elements. The analysis results show that the relative standard deviation of the elements is less than 7%, the measured values F in the variance test are less than the critical value F. It shows that the uniformity of the samples is acceptable.
In the stability testing process, the short-term and long- term stability of the samples are good according to the analysis and testing in different time periods.
In the content testing process, a total of 61 indicators were analyzed by accurate and reliable methods such as inductively coupled plasma-mass spectrometry/optical emission spectrometry (ICP-MS/OES) and atomic fluorescence spectrometry (AFS) in multiple laboratories.
In the process of calculation of identification value and uncertainty, the Grubbs algorithm and the Dixon algorithm were carried out to check and exclude individual out-group data in the group at the first step. The Cochrane algorithm was used to carry out precision testing at the second step. The Shapiro-Wilk algorithm was used to complete the data normality test.
The whole preparation process of the tea reference materials follow three specifications: Technical Norm of Primary Reference Materials (JJG 1006—1994), General and Statistical Principles for Characterization of Reference Materials (JJF 1343—2012) and The Production of Reference Materials for Geoanalysis(JJF 1646—2017).
RESULTS GBW10016a (GSB-7a) and GBW10052a (GSB-30a) tea reference materials are successfully reproduced, and have been approved as national first-class reference materials. The GBW10016a (GSB-7a) and GBW10052a (GSB-30a) are characterized by strong representativeness, multi-component planting, and accurate and reliable customization results. A total of 61 indicators are involved in this reproduction: Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, N, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, Y, Yb, Zn. GBW10016a (GSB-7a) contains 54 elements with certified values and uncertainties, and 3 elements with reference values. GBW10052a (GSB-30a) contains 57 elements with certified values and uncertainties, and 3 elements with reference values. For GBW10016a (GSB-7a), Ag and Sn are added, and Ge and Tl are upgraded from the reference values of the original batch (GBW10016) to the certified values. For GBW10052a, Al, Ag, Cl, I, N, S, Sb, Sc, Si and Sn are upgraded from the reference values of the original batch (GBW10052) to the certified values. Due to the current level of analysis technology and objective conditions, the elements of Hf and Nb cannot be given reference values.
CONCLUSIONS The reference materials effectively support the needs of geochemical investigation and evaluation of the agricultural ecological environment, analysis of biological samples and food and agricultural products. With the development of ecological environmental research and food safety and hygiene inspection, people pay more and more attention to the characteristic elements, and the requirements are increasing. Problems still exists in the analysis of biological samples, such as discrete analysis results of the same method between laboratories and systematic errors among the main analysis methods of individual elements. There are technical difficulties in the analysis of some elements. Analysis and testing technology needs to be continuously improved to cope with the characteristics of a special biological sample matrix, low composition content and difficult testing.
-
表 1 国内外茶叶标准物质统计
Table 1. Statistical table of tea reference materials at home and abroad
标准物质名称及编号 研制单位 研制时间 定值元素 茶叶成分分析标准物质(GBW08505) 中国科学院生态环境研究中心 1985年 31项 茶叶成分分析标准物质(GBW07605) 中国地质科学院地球物理地球化学勘查研究所 1990年 52项 生物成分分析标准物质(茶叶) (GBW10016) 中国地质科学院地球物理地球化学勘查研究所 2005年 60项 生物成分分析标准物质(绿茶) (GBW10052) 中国地质科学院地球物理地球化学勘查研究所 2010年 60项 茶叶中氟成分分析标准物质(GBW08516) 浙江省医学科学院 1998年 F 海带—茶叶中碘成分分析标准物质(GBW08519) 浙江省医学科学院 2005年 I 海带—茶叶中碘成分分析标准物质(GBW08518) 浙江省医学科学院 2005年 I 茶叶中锶-90标准物质(GBW04330) 中国疾病预防控制中心辐射防护与核安全医学所 2021年 Sr 茶叶中农药和无机元素成分分析标准物质(GBW10083) 中国计量科学研究院 2013年 14项 茶叶中微量元素的标准物质(CRM7505-a) NMIJ日本国家计量院计量管理中心 2010年 19项 23号茶叶Ⅱ标准物质(No.23) 国家环境研究所环境测量和分析中心 2009年 14项 表 2 候选物粒度分布特征统计
Table 2. Statistics of particle size distribution for the candidate materials
粒径
(μm)BGW10016a (GSB-7a) BGW10052a (GSB-30a) 区间含量
(%)累积含量
(%)区间含量
(%)累积含量
(%)10~12 2.66 30.45 2.95 37.41 12~14 2.36 32.81 2.54 39.95 14~17 3.19 36.00 3.29 43.24 17~20 2.92 38.92 2.86 46.12 20~25 4.32 43.24 3.94 50.04 25~30 3.44 46.68 2.91 52.95 30~35 2.62 49.30 2.05 55.23 35~40 3.01 52.31 1.5 56.51 40~45 2.6 54.91 1.23 57.73 45~50 2.4 57.31 2.13 59.86 50~63 4.34 61.65 3.12 62.98 63~75 5.18 66.83 4.35 67.33 75~100 7.24 74.07 7.83 75.16 100~120 5.88 79.95 6.15 81.31 120~140 5.54 85.49 5.53 86.84 140~170 7.25 92.74 6.84 93.68 170~200 5.87 98.61 5.23 98.91 200~250 1.49 100 1.11 100 250~300 0 100 0 100 表 3 候选物均匀性检验结果
Table 3. Homogeneity test results of the candidate materials
组分 单位 GBW10016a(GSB-7a) GBW10052a(GSB-30a) 平均值(X) RSD(%) F实测值 Ubb 平均值(X) RSD(%) F实测值 Ubb Al % 0.239 0.79 1.36 0.0007 0.121 3.92 1.27 0.0016 B μg/g 12.6 6.81 1.04 0.11 11.3 4.52 1.7 0.26 Ba μg/g 31.3 4.68 1.31 0.54 31.6 3.93 1.38 0.5 Be ng/g 49.6 4.38 1.81 1.17 11.6 4.42 1.23 0.17 Bi ng/g 12.9 5.29 1.41 0.28 31.3 3.71 1.64 0.57 Br μg/g 2.2 4.26 1.14 0.02 3.07 5.03 1.23 0.05 Ca % 0.465 0.41 2.6 0.0013 0.354 1 2.54 0.002 Cd ng/g 45.8 4.35 1.87 1.1 207 2.97 1.41 2.54 Ce μg/g 1.34 4.48 1.25 0.02 0.502 3.41 1.63 0.008 Co μg/g 0.28 4.33 1.37 0.005 0.23 3.2 2.19 0.005 Cr μg/g 0.779 4.75 1.51 0.017 0.577 3.87 1.73 0.012 Cs μg/g 0.193 4 1.67 0.004 0.414 2.9 1.06 0.002 Cu μg/g 8.46 2.47 1.04 0.03 13 2.39 1.82 0.17 Fe μg/g 149 2.89 1.03 0.55 162 5.89 1.54 4.43 Ge ng/g 13.3 5.46 1.05 0.12 7.61 5.65 1.83 0.23 K % 1.46 0.22 2.06 0.0019 1.33 0.25 1.82 0.0018 La μg/g 0.996 4.26 1.07 0.008 0.34531 3.24 1.34 0.004 Li μg/g 0.253 4.89 1.08 0.002 0.198 4.07 1.22 0.003 Mg % 0.175 0.48 1.27 0.0003 0.152 2.35 1.01 0.0003 Mn % 0.127 0.33 1.4 0.0002 0.117 0.38 2.11 0.0003 Mo μg/g 0.034 6.92 1.81 0.0013 0.055 5.52 2.12 0.0018 Na μg/g 20.4 6.9 1.02 0.14 14.8 5.06 1.58 0.35 Ni μg/g 3.63 3.81 1.35 0.05 4.31 3.61 1.72 0.08 P % 0.235 0.32 1.31 0.0003 0.266 1.01 1.51 0.0012 Pb μg/g 1.09 10.2 1.29 0.04 1.52 3.89 1.29 0.02 Rb μg/g 45.98 4.42 1.29 0.73 83.1 1.27 1.34 0.4 S % 0.262 0.25 1.13 0.0002 0.237 0.31 1.08 0.0001 Sb ng/g 0.052 7.92 1.08 0.0008 56.5 5.67 2.09 1.91 Si % 0.044 3.05 1.27 0.0005 0.078 5.08 1.6 0.0019 Sr μg/g 13.9 4.37 1.18 0.18 14 4.14 1.38 0.23 Y μg/g 2.02 3.76 1.55 0.04 0.508 4.65 1.61 0.012 Yb ng/g 95.6 3.99 1.01 0.29 34.8 3.83 1.41 0.55 Zn μg/g 25.5 4.1 1.34 0.4 26.6 2.8 1.79 0.4 注:RSD为相对标准偏差;Ubb为均匀性引起的不确定度分量。 表 4 候选物(两种茶叶)短期稳定性检验结果
Table 4. Short-term stability test results of the candidate materials
组分 单位 GBW10016a (GSB-7a) GBW10052a (GSB-30a) 平均值(X) β1 t0.05×s(β1) 平均值(X) β1 t0.05×s(β1) Al % 0.241 0.0003 0.002 0.127 0.0003 0.0007 B μg/g 12.5 0.015 0.328 11.6 0.001 0.0700 Ba μg/g 22.8 0.049 0.186 31.4 0.050 0.4201 Bi ng/g 13.1 -0.076 0.093 31.5 -0.072 0.5995 Ca % 0.464 0.0002 0.002 0.368 0.000 0.0031 Cd ng/g 44.5 -0.118 0.238 214 0.234 1.2013 Ce μg/g 1.38 0.006 0.019 0.506 -0.001 0.0053 Co μg/g 0.280 0.0002 0.003 0.232 0.0002 0.0020 Cr μg/g 0.786 -0.001 0.005 0.598 -0.0001 0.0063 Cs μg/g 0.189 0.0004 0.001 0.419 -0.0003 0.0016 Cu μg/g 8.1 0.017 0.086 13.5 0.001 0.1132 Fe μg/g 150 -0.962 1.595 173 0.733 1.1041 Ge ng/g 9.55 -0.024 0.215 8.22 -0.012 0.0986 K % 1.45 -0.001 0.006 1.34 -0.001 0.0102 La μg/g 1.02 0.0002 0.009 0.345 -0.0004 0.0044 Li μg/g 0.255 0.001 0.002 0.207 0.001 0.0030 Mg % 0.173 -0.0002 0.001 0.151 -0.0003 0.0010 Mn % 0.128 -0.00003 0.001 0.118 -0.0001 0.0013 Mo μg/g 0.043 -0.0001 0.002 0.057 0.00003 0.0009 Na μg/g 20.4 -0.134 0.669 14.7 0.044 0.2413 Ni μg/g 3.68 0.002 0.014 4.39 0.015 0.0558 P % 0.236 0.0000 0.001 0.273 -0.0003 0.0019 Pb μg/g 1.13 0.007 0.015 1.48 0.008 0.0198 S % 0.264 0.0001 0.002 0.235 0.0003 0.0023 Sr μg/g 13.6 -0.019 0.049 13.5 0.012 0.2929 Y μg/g 1.97 0.006 0.009 0.510 0.001 0.0068 Yb ng/g 86.1 0.042 0.459 34.4 0.137 0.5951 Zn μg/g 26.8 0.0002 0.527 26.3 -0.019 0.2064 注:β1为直线的斜率;t0.05×s(β1)为自由度95%的学生分布列表值。 表 5 候选物(两种茶叶)长期稳定性检验结果
Table 5. Long-term stability test results of the candidate materials
组分 单位 GBW10016a (GSB-7a) GBW10052a (GSB-30a) 平均值(X) β1 t0.05×s(β1) us 平均值(X) β1 t0.05×s(β1) us Al % 0.240 0.000 0.000 0.0 0.126 0.0002 0.0004 0.0 B μg/g 12.4 0.032 0.182 0.1 11.5 -0.018 0.105 0.4 Ba μg/g 22.6 0.106 0.154 0.6 31.6 0.073 0.223 0.8 Be ng/g 49.2 -0.030 0.359 1.4 12.3 -0.030 0.151 0.6 Bi ng/g 13.1 -0.047 0.057 0.2 31.5 0.042 0.323 1.2 Br μg/g 2.23 0.008 0.020 0.1 3.1 0.002 0.038 0.1 Ca % 0.466 -0.0002 0.0003 0.0 0.367 -0.0003 0.001 0.0 Cd ng/g 44.6 0.025 0.367 1.4 214 0.105 1.038 3.9 Ce μg/g 1.38 0.005 0.010 0.0 0.499 0.001 0.004 0.0 Co μg/g 0.278 0.001 0.002 0.0 0.229 0.001 0.002 0.0 Cr μg/g 0.785 0.001 0.005 0.0 0.585 0.002 0.007 0.0 Cs μg/g 0.187 0.001 0.001 0.0 0.420 0.001 0.003 0.0 Cu μg/g 8.17 0.023 0.038 0.1 13.3 0.021 0.100 0.4 Fe μg/g 149. -0.618 0.991 1.7 172 0.269 0.757 2.9 Ge ng/g 9.512 -0.007 0.143 0.5 8.1 0.005 0.075 0.3 K % 1.463 -0.0003 0.0004 0.0 1.33 -0.0002 0.0004 0.0 La μg/g 1.01 0.002 0.006 0.0 0.345 0.0003 0.003 0.0 Li μg/g 0.253 0.0004 0.001 0.0 0.207 0.001 0.002 0.0 Mg % 0.1752 0.00004 0.0001 0.0 0.150 -0.00001 0.0001 0.0 Mn % 0.127 -0.00001 0.0001 0.0 0.1167 0.00005 0.0001 0.0 Mo μg/g 0.043 0.000002 0.001 0.0 0.056 0.0001 0.001 0.0 Na μg/g 20.4 -0.088 0.398 1.5 14.78 0.060 0.104 0.4 Ni μg/g 3.66 0.0004 0.017 0.1 4.32 0.013 0.032 0.1 P % 0.235 0.000001 0.0003 0.0 0.275 -0.00002 0.001 0.0 Pb μg/g 1.12 0.003 0.008 0.0 1.52 -0.010 0.015 0.1 Rb μg/g 45.7 0.263 0.349 1.3 83.3 -0.034 0.141 0.5 S % 0.262 -0.00003 0.00009 0.0 0.235 0.001 0.001 0.0 Sb μg/g 0.055 0.0002 0.001 0.0 56.3 0.132 0.340 1.3 Sr μg/g 13.4 0.022 0.069 0.3 13.6 0.005 0.151 0.6 Y μg/g 1.95 0.003 0.007 0.0 0.507 0.002 0.005 0.0 Yb ng/g 85.9 0.207 0.314 1.2 34.8 0.014 0.222 0.8 Zn μg/g 26.6 0.038 0.241 0.9 26.3 -0.030 0.158 0.6 注: β1为直线的斜率;t0.05×s(β1)为自由度95%的学生分布列表值;us为稳定性引起的不确定度分量。 表 6 标准物质元素及定值测试方法
Table 6. Elements and analytical methods of the certified materials
元素 样品前处理方法 定值方法 元素 样品前处理方法 定值方法 Ag DAC,DFMW ICP-MS Mg DAC,DAMW,DFMW ICP-AES,ICP-MS Al DAC,FU ICP-AES,ICP-MS Mn DAC,DAMW,DFMW ICP-AES,ICP-MS As DAC,DAMW,DFMW,DMA ICP-MS,AFS,ICP-AES Mo DAC,DAMW,DFMW ICP-MS B DAC,DAMW,DFMW ICP-MS,ICP-AES,ES N DA,DAC,DS VOL Ba DAC,DAMW,DFMW ICP-MS,ICP-AES Na DAC,DAMW,DFMW ICP-AES,ICP-MS Be DAC,DAMW,DFMW ICP-MS Nb DAC,DAMW ICP-MS Bi DAC,DFMW,DMA,DP ICP-MS,XRF Nd DAC,DAMW ICP-MS Br DAC,FU ICP-MS Ni DAC,DAMW ICP-MS Ca DAC,DAMW,DFMW ICP-AES,ICP-MS P DAC,DAMW,DFMW ICP-AES,ICP-MS Cd DAC,DAMW,DFMW,DP ICP-MS,XRF Pb DAC,DAMW,DFMW ICP-MS Ce DAC,DAMW ICP-MS Pr DAC,DAMW,DFMW ICP-MS Cl DAC,DP,FU COL,IC,XRF Rb DAC,DAMW,DFMW ICP-MS Co DAC,DAMW,DFMW ICP-MS S DAC,DAMW,DFMW ICP-AES,ICP-MS Cr DAC,DAMW,DFMW ICP-MS Sb DAC,DAMW,DFMW ICP-MS,AFS Cs DAC,DAMW,DFMW ICP-MS Sc DAC,DAMW,DFMW ICP-MS Cu DAC,DAMW,DFMW ICP-MS,ICP-AES Se DAC,DAMW,DMA AFS,ICPMS Dy DAC,DAMW,DFMW ICP-MS Si DAC,DP,FU ICP-AES,XRF Er DAC,DAMW,DFMW ICP-MS Sm DAC,DAMW,DFMW ICP-MS Eu DAC,DAMW,DFMW ICP-MS Sn DAC,DAMW,DFMW ICP-MS,ES F DAC,DS,FU ISE,COL,IC Sr DAC,DAMW,DFMW ICP-MS,ICP-AES Fe DAC,DAMW,DFMW ICP-AES,ICP-MS Tb DAC,DAMW,DFMW ICP-MS Gd DAC,DAMW,DFMW ICP-MS Th DAC,DAMW,DFMW ICP-MS Ge DAC,DAMW,DFMW ICP-MS Ti DAC,DAMW,DFMW ICP-MS,ICP-AES Hg DAC,DAMW,DFMW,DMA AFS,ICP-MS Tl DAC,DAMW,DFMW ICP-MS Ho DAC,DAMW,DFMW ICP-MS Tm DAC,DAMW,DFMW ICP-MS I DAC,DAMW,FU ICP-MS,COL U DAC,DAMW,DFMW ICP-MS K DAC,DAMW,DFMW ICP-AES,ICP-MS V DAC,DAMW,DFMW ICP-MS La DAC,DAMW,DFMW ICP-MS Y DAC,DAMW,DFMW ICP-MS Li DAC,DAMW,DFMW ICP-MS Yb DAC,DAMW,DFMW ICP-MS Lu DAC,DAMW,DFMW ICP-MS Zn DAC,DAMW,DFMW ICP-MS,ICP-AES 注:样品分解与富集方法:DAC—硝酸加过氧化氢密闭分解,DFMW—硝酸加氢氟酸微波消解,FU—碱熔或艾斯卡熔融,DAMW—硝酸加过氧化氢微波消解,DMA—混合酸分解,DP—粉末压片法,DS—硫酸分解。
元素含量测定方法:ICP-MS—电感耦合等离子体质谱法,ICP-OES—电感耦合等离子体发射光谱法,AFS—原子荧光光谱法,XRF—X射线荧光光谱法,COL—分光光度法,VOL—容量法,ES—直流电弧发射光谱法,IC—离子色谱法,ISE—离子选择电极法。表 7 两种茶叶标准物质的认定值与扩展不确定度
Table 7. Certified values and expanded uncertainty of two tea reference materials
样品编号 组分 认定值及不确定度 组分 认定值及不确定度 组分 认定值及不确定度 组分 认定值及不确定度 GBW10016a
(GSB-7a)Ag 0.010±0.002 Cu 8.3±0.5 Mn* 0.125±0.004 Sn 0.06±0.01 Al* 0.25±0.02 Dy** 130±20 Mo 0.04±0.01 Sr 13.7±0.7 As 0.10±0.02 Er** 80±10 N* 3.4±0.3 Tb** 21±2 B 12.6±0.8 Eu** 27▲ 25~29 Na 22.6±6.7 Th** 33.4±7.2 Ba 32±3 Fe 149±7 Nd 0.66±0.08 Ti (11.00) Be** 50±8 Gd** 140±20 P* 0.24±0.01 Tl** 47±8 Bi** 13±2 Ge** 13±5 Pb 1.09±0.13 Tm** 14±2 Br (3.00) Hg** 8±1 Pr** 160▲ 150~180 U** 13±2 Ca* 0.47±0.02 Ho** 28±4 Rb 45.9±3.3 V 0.3±0.1 Cd** 46±5 I (0.20) S* 0.26±0.02 Y 2.0±0.2 Ce 1.3±0.2 K* 1.45±0.05 Sb 0.05±0.01 Yb** 100±20 Cl* 0.050±0.004 La 1.01±0.08 Sc** 89±17 Zn 27±3 Co 0.28±0.02 Li 0.25±0.02 Se 0.09±0.04 Cr 0.79±0.11 Lu** 16±3 Si* 0.04±0.01 Cs 0.19±0.02 Mg* 0.18±0.01 Sm** 120±20 GBW10052a
(GSB-30a)Ag 0.008±0.002 Cu 13.2±0.9 Mg* 0.150±0.005 Se 0.09±0.03 Al* 0.12±0.02 Dy** 54±8 Mn* 0.117±0.004 Si* 0.08±0.01 As 0.16±0.02 Er** 33±5 Mo 0.053±0.012 Sm** 54±6 B 11±2 Eu** 20±4 N* 3.7±0.3 Sn 0.11±0.02 Ba 32±3 F (155.00) Na 15±4 Sr 14.0±1.3 Be** 12±2 Fe 161±18 Nb (0.15) Tb** 9±1 Bi** 31±5 Gd** 58±7 Nd 0.25±0.04 Th** 25±8 Br 3.1±0.8 Ge** 7.5±1.6 Ni 4.4±0.3 Ti (11.00) Ca* 0.34▲ 0.32~0.37 Hg** 7.3±0.7 P* 0.27±0.02 Tl** 57±11 Cd** 200±20 Ho** 11±2 Pb 1.6±0.2 Tm** 5.4±0.9 Ce 0.51±0.07 I 0.16±0.06 Pr** 64±7 U** 8.2±1.5 Cl* 0.05±0.01 K* 1.31±0.05 Rb 81±6 V 0.26±0.03 Co 0.23±0.02 La 0.34±0.04 S* 0.23±0.03 Y 0.51±0.05 Cr 0.6±0.1 Li 0.20±0.03 Sb 0.055±0.007 Yb** 36±5 Cs 0.42±0.05 Lu** 6±1 Sc** 54±10 Zn 26±3 注:元素含量单位为10-6,标注“*”质量分数为×10-2, 标注“**”质量分数为×10-9,带▲的标准值为中位值,其下数据为置信限,括号内数据为参考值。 -
[1] 孙德忠, 安子怡, 许春雪, 等. 四种前处理方法对电感耦合等离子体质谱测定植物样品中27种微量元素的影响[J]. 岩矿测试, 2012, 31(6): 961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008 http://www.ykcs.ac.cn/cn/article/id/ykcs_20120609
Sun D Z, An Z Y, Xu C X, et al. Effects of four pretreatment methods on determination of 27 trace elements in plant samples by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6): 961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008 http://www.ykcs.ac.cn/cn/article/id/ykcs_20120609
[2] 王巧云, 何欣, 王锐. 国内外标准物质发展现状[J]. 化学试剂, 2014(4): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201404002.htm
Wang Q Y, He X, Wang R. Development of reference materials in China and abroad[J]. Chemical Reagents, 2014(4): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201404002.htm
[3] 刘素丽, 王宏伟, 赵梅, 等. 食品中基体标准物质研究进展[J]. 食品安全质量检测学报, 2019, 10(1): 8-13. doi: 10.3969/j.issn.2095-0381.2019.01.002
Liu S L, Wang H W, Zhao M, et al. Research progress of matrix reference materials for food[J]. Journal of Food Safety and Quality, 2019, 10(1): 8-13. doi: 10.3969/j.issn.2095-0381.2019.01.002
[4] Zhu Y, Narukawa T, Inagaki K, et al. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves[J]. Analytical Sciences, 2011, 27(11): 1149-1155. doi: 10.2116/analsci.27.1149
[5] Mori I, Ukachi M, Nagano K, et al. Characterization of NIES CRM No. 23 Tea Leaves Ⅱ for the determination of multielements[J]. Analytical & Bioanalytical Chemistry, 2010(397): 463-470.
[6] 尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试, 2009, 28(1): 37-52. doi: 10.3969/j.issn.0254-5357.2009.01.009 http://www.ykcs.ac.cn/cn/article/id/ykcs_20090109
Yin M. Development status and trend of geological analysis and testing technology in China[J]. Rock and Mineral Analysis, 2009, 28(1): 37-52. doi: 10.3969/j.issn.0254-5357.2009.01.009 http://www.ykcs.ac.cn/cn/article/id/ykcs_20090109
[7] 卢晓华, 纪洁. 我国食品分析用标准物质现状分析[J]. 中国计量, 2007(4): 78-79. doi: 10.3969/j.issn.1006-9364.2007.04.043
Lu X H, Ji J. Analysis on the status quo of reference substances for food analysis in my country[J]. China Metrology, 2007(4): 78-79. doi: 10.3969/j.issn.1006-9364.2007.04.043
[8] 邵鸿飞, 冀克俭, 刘元俊, 等. 环境标准物质的应用及其发展中存在的问题[J]. 化学分析计量, 2008(3): 68-69. doi: 10.3969/j.issn.1008-6145.2008.03.024
Shao H F, Ji K J, Liu Y J, et al. Application of environmental standard substances and problems existing in its development[J]. Chemical Analysis Metrology, 2008(3): 68-69. doi: 10.3969/j.issn.1008-6145.2008.03.024
[9] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716. doi: 10.3321/j.issn:1006-3021.2009.06.003
Xie X J, Ren T X, Xi X H, et al. The implementation of the Regional Geochemistry-National Recon-Naissance Program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6): 700-716. doi: 10.3321/j.issn:1006-3021.2009.06.003
[10] 孙威江, 危赛明. 中国无公害茶叶发展的现状与趋势[J]. 中国茶叶, 2001(5): 24-25. doi: 10.3969/j.issn.1000-3150.2001.05.012
Sun W J, Wei S M. Current situation and trend of China's pollution-free tea development[J]. Chinese Tea, 2001(5): 24-25. doi: 10.3969/j.issn.1000-3150.2001.05.012
[11] 王毅民, 王晓红, 高玉淑. 地质标准物质粒度测量与表征的现代方法[J]. 地质通报, 2009, 28(1): 137-145. doi: 10.3969/j.issn.1671-2552.2009.01.017
Wang W M, Wang X H, Gao Y S, et al. Modern methods for particle size measurement and characterization of geological reference materials[J]. Geological Bulletin of China, 2009, 28(1): 137-145. doi: 10.3969/j.issn.1671-2552.2009.01.017
[12] 杨珍娥, 苏健, 孙乐雨, 等. 关于激光粒度仪和标准筛分试验的对比研究[J]. 煤炭加工与综合利用, 2017(S1): 62-64, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJG2017S1017.htm
Yang Z E, Su J, Sun L Y, et al. Comparative study on laser particle size analyzer and standard screening test[J]. Coal Processing and Comprehensive Utilization, 2017(S1): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJG2017S1017.htm
[13] 邵鸿飞, 柴娟, 黄辉. 粒度分析及粒度标准物质研究进展[J]. 化学分析计量, 2012, 21(2): 99-101. doi: 10.3969/j.issn.1008-6145.2012.02.031
Shao H F, Chai J, Huang H. Research progress of particle size analysis and particle size reference materials[J]. Chemical Analysis and Metrology, 2012, 21(2): 99-101. doi: 10.3969/j.issn.1008-6145.2012.02.031
[14] 王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010, 29(6): 735-741. doi: 10.3969/j.issn.0254-5357.2010.06.023 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100624
Wang X H, Wang Y M, Gao Y S, et al. Review and discussion on the homogeneity test method of geological reference material[J]. Rock and Mineral Analysis, 2010, 29(6): 735-741. doi: 10.3969/j.issn.0254-5357.2010.06.023 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100624
[15] 雷霆, 赵士英. 食品标准物质的均匀性检验[J]. 科研与设计, 1992(1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKJ199201014.htm
Lei T, Zhao S Y. Homogeneity inspection of food standard materials[J]. Research and Design, 1992(1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKJ199201014.htm
[16] 关铁权. 标准物质均匀性可靠性的探讨[J]. 计量与测试技术, 1994(6): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS406.013.htm
Guan T Q. Discussion on reliability of standard material homogeneity[J]. Metrology and Testing Technology, 1994(6): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYS406.013.htm
[17] 赵海, 李灵凤. 电热板酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中的硼、砷、硫[J]. 中国资源综合利用, 2020, 38(8): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202008006.htm
Zhao H, Li L F. Simultaneous determination of boron, arsenic and sulfur in geological samples by hot plate acid-soluble-inductively coupled plasma atomic emission spectrometry[J]. Comprehensive Utilization of Resources in China, 2020, 38(8): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202008006.htm
[18] 但德忠, 冷庚, 皇甫鑫. 环境样品分析[J]. 分析试验室, 2010, 29(7): 79-122. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201007025.htm
Dan D Z, Leng G, Huang F X. Environmental sample analysis[J]. Chinese Journal of Analysis Laboratory, 2010, 29(7): 79-122. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201007025.htm
[19] 罗立强, 吴晓军. 现代地质与地球化学分析研究进展[M]. 北京: 地质出版社, 2014: 417.
Luo L Q, Wu X J. Advances in geoanalysis[M]. Beijing: Geological Publishing House, 2014: 417.
[20] 习小山. 浅析岩矿分析与测试技术在当前阶段的应用与发展趋势[J]. 中国新技术新产品, 2016(21): 174-175. https://www.cnki.com.cn/Article/CJFDTOTAL-XPJX201621122.htm
Xi X S. The application and development trend of rock mine analysis and testing technology in the current stage[J]. New Technology & New Products of China, 2016(21): 174-175. https://www.cnki.com.cn/Article/CJFDTOTAL-XPJX201621122.htm
[21] 汪艳芸, 邓晃. 岩矿分析技术发展方向及其在实物地质资料中的应用浅析[J]. 中国矿业, 2017(2): 374-376. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S2088.htm
Wang Y Y, Deng H. The development direction of rock and mineral analysis technology and its application in physical geological data[J]. China Mining, 2017(2): 374-376. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S2088.htm
[22] 冯永明, 邢应香, 刘洪青, 等. 微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J]. 岩矿测试, 2014, 33(1): 34-39. http://www.ykcs.ac.cn/cn/article/id/00a7dfe7-2a17-45e5-ada2-503f476cc501
Feng Y M, Xing Y X, Liu H Q, et al. Determination of trace selenium in biological samples by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(1): 34-39. http://www.ykcs.ac.cn/cn/article/id/00a7dfe7-2a17-45e5-ada2-503f476cc501
[23] 刘文政, 贾亚琪, 李磊. 微波消解-电感耦合等离子体质谱法同时测定茶叶中的10种金属元素[J]. 微量元素与健康研究, 2020(27): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK202001025.htm
Liu W Z, Jia Y Q, Li L. Simultaneous determination of 10 metal elements in tea by microwave digestion-inductively coupled plasma mass spectrometry[J]. Study on Trace Elements and Health, 2020(27): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK202001025.htm
[24] 张丽华, 肖国平, 宋游, 等. 微波技术在生物样品预处理中的应用[J]. 现代科学仪器, 2004(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ200405009.htm
Zhang L H, Xiao G P, Song Y, et al. Application of microwave technology in biological sample pretreatment[J]. Modern Scientific Instruments, 2004(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ200405009.htm
[25] 全浩, 韩永志. 标准物质及其应用技术(第二版)[M]. 北京: 中国标准出版社, 2003: 225-230.
Quan H, Han Y Z. Reference materials and their applied technology (The 2nd Edition)[M]. Beijing: China Standard Publishing House, 2003: 225-230.