-
摘要:
摘要:珍珠岩是十分重要的非金属矿,被广泛应用于建筑、水处理、农业等领域。目前,国内外尚未有珍珠岩成分分析标准物质,为满足针对珍珠岩的研究需要,本文研制了河南商城的珍珠岩成分分析标准物质(GBW07137)。对Ag、As、B、Ba、Be、Bi、Cd、Co、Cr、Cs、Cu、Ga、Hf、Hg、In、Li、Mo、Nb、Ni、Pb、Rb、Sb、Sc、Sn、Sr、Ta、Th、U、V、W、Zn、Zr、SiO2、Al2O3、TFe2O3、FeO、MgO、CaO、Na2O、K2O、MnO、TiO2、P2O5、LOI、TC、稀土元素等15项60种成分进行均匀性和稳定性检验,绝大部分成分的RSD小于3%,方差检验的F值均小于临界值F0.05(29, 60)=1.65,表明该标准物质均匀性良好。在稳定性考察期内,60种成分的含量没有统计学意义的明显差异,表明该标准物质稳定性良好。通过9家协作实验室采用重量法、容量法、电感耦合等离子体质谱/发射光谱法等比较有针对性的定值方法来确保珍珠岩定值成分的准确性。按照《标准物质定值的通用原则及统计学原理》进行数据的统计处理,采用格拉布斯法、狄克逊法进行离群值检验。经统计,珍珠岩标准物质原始数据共2500项,剔除68个离群值数据,剔除率为2.7%。经过对定值测试数据的统计处理,确定了本次研制的珍珠岩成分分析标准物质的标准值和不确定度。最终定值成分63种,涵盖了主量、微量及全部稀土元素,其中三种主量成分MgO、CaO和TFe2O3的含量低于1%,可以与现有的硅酸盐标准物质含量形成梯度。该珍珠岩标准物质在岩石地球化学研究及质量监控中能发挥作用, 也可为珍珠岩的科学利用和研究提供参考和借鉴。
-
关键词:
- 珍珠岩 /
- 标准物质 /
- 成分分析 /
- 标准值 /
- 电感耦合等离子体质谱/发射光谱法
Abstract:BACKGROUND Perlite is a vitreous rock formed by rapid cooling of volcanic eruptive acidic lava. It is a very important non-metallic mineral, because of its brittleness, light weight, rapid expansion on heating, and other excellent characteristics, and is widely used in construction, water treatment, agriculture and other fields. However, according to the International Database for Certified Reference Materials (COMAR), there is no reference material for perlite composition analysis at home and abroad. So, in order to meet the research needs of perlite, it is necessary to develop one.
OBJECTIVES To develop a reference material for composition analysis of perlite. The reference material can basically cover the chemical composition needed by the market.
METHODS Perlite samples were collected from Shangcheng County, Henan Province. The collected samples were dried and picked out, the bulk ore was crushed and ground in a ball mill for 40h, then the samples were coarse crushed and discharged, and the debris was removed by 1mm sieve. The samples were dried at 105℃ for 24h, dehydrated and inactivated. After drying, the samples were crushed in a grinder containing high-alumina ceramic balls, and the grinding time was determined by the time required to meet the particle size requirements of the first class standard substance. The processed samples were stored temporarily in polyethylene plastic vats under constant temperature and clean conditions, then sub-packed at 70g per bottle for test. Random samples were taken for homogeneity and stability tests. Through nine collaborative laboratories, more targeted valuation methods such as the gravimetric method, volumetric method, inductively coupled plasma-mass spectrometry, and inductively coupled plasma-optical emission spectrometry were used to ensure the accuracy of the perlite valued components.
RESULTS Fifteen items of 60 components were tested for uniformity and stability, including Ag, As, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, Hf, Hg, In, Li, Mo, Nb, Ni, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, U, V, W, Zn, Zr, SiO2, Al2O3, TFe2O3, FeO, MgO, CaO, Na2O, K2O, MnO, TiO2, P2O5, LOI, TC, and rare earth elements. The RSD of most of the components was less than 3%, and the F value of the variance test was less than the critical value [F0.05(29, 60)=1.65], indicating that the homogeneity of the reference material was good. During the stability inspection period, there was no significant difference in the content of the 60 components, indicating that the reference material was stable. The data were processed in accordance with General and Statistical Principles for Characterization of Reference Materials and outlier tests were performed using the Grubbs and Dixon methods. According to statistics, there were 2500 original data of perlite reference material, and 68 outliers were eliminated, with an elimination rate of 2.7%. The standard value and uncertainty of the certified reference material for perlite composition analysis were determined by statistical processing of the constant value test data. The normal distribution of the mean data set was tested by the method of Shapiro-wilk, and the test results were all normal distribution. The final values were 63 components, covering major, trace, and all rare earth elements. The contents of three major components MgO, CaO and TFe2O3 were all less than 1%, which formed a gradient with the existing silicate reference material content.
CONCLUSIONS The certified reference material for perlite composition analysis developed in this paper has met the requirements of Technical Norm of Primary Reference Material (JJF1006—94) by processing, crushing, homogeneity and stability test of the candidate. The test for uniformity and stability adopts the same detection technology as the fixed value method, and the selected fixed value technology is suitable and accurate, which ensures the accuracy of the fixed value data. The development of perlite composition analysis standard material has enriched the series of China geological mineral composition analysis standard material, and its chemical composition is numerous, it provides important technical support for instrument calibration, analysis method verification, quality control and quantity traceability of modern analytical technology.
-
表 1 候选物粒度分析结果
Table 1. Particle size analysis results of the candidates
候选物粒径
(μm)粒径占比
(%)候选物粒径
(μm)粒径占比
(%)2 11.08 5 1.571 4 36.69 10 1.932 8 57.51 15 2.238 16 73.92 25 2.91 32 88.93 35 3.81 74 98.01 50 6.09 100 99.10 65 10.86 125 99.66 75 16.78 250 100.0 85 26.25 500 100.0 95 48.67 表 2 候选物均匀性检验结果
Table 2. Homogeneity test results of the candidate materials
测试项目 成分平均值
(×10-6)RSD
(%)F实测值 测试项目 成分平均值
(×10-6)RSD
(%)F实测值 Ag 0.049 7.77 1.32 Rb 333.0 1.44 1.00 As 0.54 1.75 1.13 Sb 0.072 9.28 1.08 B 25.8 4.92 1.33 Sc 3.23 4.04 1.19 Ba 161.0 2.26 1.01 Sm 2.18 2.15 1.02 Be 8.44 3.00 1.13 Sn 2.16 4.53 1.28 Bi 0.17 8.04 1.14 Sr 114.0 3.00 1.01 Cd 0.067 9.05 1.21 Ta 2.98 2.26 1.00 Ce 35.8 1.54 1.03 Tb 0.33 2.44 1.06 Co 0.32 5.02 0.99 Th 33.5 2.32 1.05 Cr 2.57 5.73 1.11 Tm 0.26 2.83 1.21 Cs 13.5 0.88 1.2 U 18.3 2.17 1.01 Cu 2.07 5.66 0.96 V 2.54 2.43 1.06 Dy 1.78 1.96 1.04 W 1.88 2.28 1.17 Er 1.39 1.61 1.1 Y 14.4 3.20 1.26 Eu 0.28 2.26 1.12 Yb 1.78 1.76 0.99 Ga 21.2 3.46 1.12 Zn 43.6 4.17 1.06 Gd 2.06 1.85 1.04 Zr 91.0 1.30 1.00 Hf 4.31 1.88 1.07 SiO2* 72.69 0.14 1.05 Hg 3.52 5.21 1.28 Al2O3* 12.69 0.45 1.03 Ho 0.44 1.72 1.06 TFe2O3* 0.64 2.39 1.34 In 0.043 3.69 0.98 FeO* 0.069 1.74 1.39 La 20.6 0.75 1.01 MgO* 0.25 2.93 0.99 Li 8.37 3.44 1.13 CaO* 0.79 2.30 1.07 Lu 0.31 2.24 1.10 Na2O* 3.02 1.39 1.19 Mo 4.8 2.26 1.05 K2O* 4.66 0.76 1.27 Nb 28.0 1.13 1.01 TiO2* 0.081 2.59 1.09 Nd 12.3 3.28 1.25 P2O5* 0.0041 4.64 1.03 Ni 1.55 6.02 1.13 MnO* 0.05 2.78 1.22 Pb 42.6 2.66 1.05 LOI* 4.93 1.16 1.40 Pr 3.77 1.07 1.08 TC* 0.027 5.25 1.09 注:标注“*”的元素质量分数为10-2。 表 3 候选物长期稳定性检验结果
Table 3. Long-term stability test results of the candidate materials
测试项目 成分平均值
(×10-6)RSD
(%)b1 t0.05×s(b1) 测试项目 成分平均值
(×10-6)RSD
(%)b1 t0.05×s(b1) Ag 0.051 3.01 0.01 0.002 Rb 332 1.11 0.10 4.28 As 0.6 1.59 0.01 0.01 Sb 0.078 6.04 0.002 0.004 B 25.4 2.04 0.21 0.46 Sc 3.46 2.53 -0.01 0.10 Ba 158 2.89 -0.14 5.30 Sm 2.22 3.09 -0.03 0.06 Be 8.46 1.54 0.01 0.15 Sn 2.11 2.67 0.01 0.06 Bi 0.17 5.37 0.01 0.01 Sr 116 1.95 0.50 2.47 Cd 0.072 2.77 0.01 0.002 Ta 2.96 2.49 -0.03 0.06 Ce 36.3 1.64 -0.14 0.65 Tb 0.33 2.83 0.01 0.01 Co 0.33 4.46 0.01 0.02 Th 35.1 3.28 -0.22 1.27 Cr 2.15 3.88 0.03 0.08 Tm 0.26 3.90 0.01 0.01 Cs 13.4 1.56 -0.01 0.24 U 19.2 3.21 -0.26 0.54 Cu 1.85 3.33 -0.01 0.07 V 2.62 2.90 -0.03 0.07 Dy 2.1 3.07 0.01 0.07 W 1.8 3.01 -0.02 0.05 Er 1.44 2.52 0.02 0.03 Y 14.7 1.53 0.01 0.26 Eu 0.27 2.99 0.01 0.01 Yb 1.74 1.70 0.01 0.02 Ga 21.4 2.53 -0.30 0.30 Zn 40.1 1.96 0.18 0.85 Gd 2.11 3.58 0.01 0.09 Zr 88.2 3.11 1.52 1.53 Hf 4.32 2.48 -0.05 0.09 SiO2* 72.63 0.11 0.03 0.07 Hg 3.58 4.36 0.03 0.17 Al2O3* 12.68 0.44 0.03 0.04 Ho 0.43 3.00 0.01 0.01 Fe2O3* 0.63 1.65 0.01 0.01 In 0.041 3.02 0.01 0.001 FeO* 0.069 1.30 0.01 0.001 La 20 2.02 0.19 0.30 MgO* 0.25 2.06 -0.002 0.004 Li 8.16 1.43 0.04 0.12 CaO* 0.8 1.37 0.01 0.01 Lu 0.3 3.73 0.01 0.01 Na2O* 3.01 0.43 0.01 0.01 Mo 4.73 2.09 0.01 0.11 K2O* 4.65 0.68 0.01 0.03 Nb 27.8 1.96 -0.14 0.58 TiO2* 0.079 1.36 0.01 0.001 Nd 12 3.45 0.05 0.47 P2O5* 0.004 2.17 0.01 0.0001 Ni 1.46 2.10 0.01 0.03 MnO* 0.051 1.98 -0.0005 0.0007 Pb 44.3 2.49 0.19 1.23 LOI* 4.93 0.76 0.02 0.03 Pr 3.78 1.69 0.03 0.06 TC* 0.028 3.07 0.01 0.001 注:标注“*”的元素质量分数为10-2。 表 4 定值测试各元素所采用的测定方法
Table 4. Determination methods of each element in the certified values test
测试项目 测试方法 测试项目 测试方法 Ag ICP-MS,ES Sb ICP-MS,AFS As ICP-MS,AFS Sc ICP-MS,ICP-OES B ICP-OES,ES Sm ICP-MS,ICP-OES Ba ICP-MS,ICP-OES Sn ICP-MS,ES Be ICP-MS,ICP-OES Sr ICP-MS,ICP-OES Bi ICP-MS,AFS Ta ICP-MS Cd ICP-MS,GFAAS Tb ICP-MS,ICP-OES Ce ICP-MS,ICP-OES Th ICP-MS Co ICP-MS,ICP-OES Tm ICP-MS,ICP-OES Cr ICP-MS,ICP-OES U ICP-MS,LF Cs ICP-MS,ICP-OES V ICP-MS,ICP-OES Cu ICP-MS,ICP-OES W ICP-MS,ICP-OES Dy ICP-MS,ICP-OES Y ICP-MS Er ICP-MS,ICP-OES Yb ICP-MS,ICP-OES Eu ICP-MS,ICP-OES Zn ICP-MS,ICP-OES Ga ICP-MS Zr ICP-MS,ICP-OES Gd ICP-MS,ICP-OES SiO2 GR,VOL,XRF Hf ICP-MS Al2O3 VOL,ICP-OES,XRF Hg CV-AAS,AFS Fe2O3 COL,ICP-OES,XRF Ho ICP-MS,ICP-OES FeO VOL In ICP-MS,GFAAS MgO VOL,ICP-OES,XRF La ICP-MS,ICP-OES CaO VOL,ICP-OES,XRF Li ICP-MS,ICP-OES Na2O AAS,ICP-OES,XRF Lu ICP-MS,ICP-OES K2O AAS,ICP-OES,XRF Nb ICP-MS TiO2 COL,ICP-OES,XRF Nd ICP-MS,ICP-OES MnO AAS,ICP-OES,XRF Ni ICP-MS,ICP-OES P2O5 COL,ICP-OES,XRF Pb ICP-MS,ICP-OES H2O+ GR Pr ICP-MS,ICP-OES CO2 VOL,IR Rb ICP-MS,ICP-OES TC VOL,IR S ICP-OES,IR,VOL LOI GR 注:ICP-MS—电感耦合等离子体质谱法; ICP-OES—电感耦合等离子体发射光谱法; AFS—原子荧光光谱法; GFAAS—火焰原子吸收光谱法; XRF—X射线荧光光谱法; VOL—容量法; COL—分光光度法; GR—重量法; IR—红外燃烧法; ES—电弧火花发射光谱法; CV-AAS—冷原子吸收光谱法; LF—激光荧光法。 表 5 珍珠岩标准物质的标准值和扩展不确定度
Table 5. Certified values and expanded uncertainties of the perlite standard material
定值项目 标准值及扩展不确定度
(×10-2)定值项目 标准值及扩展不确定度
(×10-6)SiO2 72.72±0.25 Gd 2±0.3 Al2O3 12.69±0.13 Hf 4.3±0.4 TFe2O3 0.62±0.05 Hg* (3.4) FeO 0.07±0.01 Ho 0.44±0.05 MgO 0.25±0.02 In 0.04±0.01 CaO 0.82±0.04 La 21±2 Na2O 3.03±0.05 Li 8.3±0.5 K2O 4.65±0.12 Lu 0.31±0.04 TiO2 0.079±0.004 Mo 4.8±0.4 P2O5 0.004±0.0004 Nb 30±3 MnO 0.051±0.003 Nd 12.4±1.6 LOI 4.97±0.13 Ni 1.49±0.14 TC 0.028±0.004 Pb 46±5 CO2 (0.045) Pr 3.9±0.3 H2O+ 4.91±0.14 Rb 334±15 定值项目 标准值及扩展不确定度
(×10-6)定值项目 标准值及扩展不确定度
(×10-6)Ag 0.053±0.007 S (38) As 0.59±0.04 Sb (0.08) B 26±2 Sc 3.4±0.4 Ba 164±18 Sm 2.3±0.2 Be 8.5±0.6 Sn 2.2±0.3 Bi 0.18±0.03 Sr 118±9 Cd 0.07±0.01 Ta 3±0.3 Ce 37±3 Tb 0.34±0.04 Co 0.33±0.05 Th 35±5 Cr (2.3) Tm 0.25±0.05 Cs 13.8±0.9 U 19±2 Cu (1.9) V (2.6) 定值项目 标准值及扩展不确定度
(×10-6)定值项目 标准值及扩展不确定度
(×10-6)Dy 2±0.3 W 1.9±0.2 Er 1.46±0.09 Y 14±2 Eu 0.29±0.04 Yb 1.8±0.2 Ga 22±2 Zn 40±3 Zr 91±6 注:标注“*”的元素质量分数为10-9。括号内的数据为参考值。 -
[1] 严育通, 贾宝剑, 周红升, 等. 珍珠岩矿床地质背景研究进展[J]. 信阳师范学院学报, 2016, 29(4): 645-649. doi: 10.3969/j.issn.1003-0972.2016.04.036
Yan Y T, Jia B J, Zhou H S, et al. The geological background research progress of perlite deposits[J]. Journal of Xinyang Normal University, 2016, 29(4): 645-649. doi: 10.3969/j.issn.1003-0972.2016.04.036
[2] 杜鹏. 我国珍珠岩资源概况及开发利用现状[J]. 中国非金属矿工业导刊, 2016(4): 6-8. doi: 10.3969/j.issn.1007-9386.2016.04.003
Du P. Present situation of exploitation and utilization of perlite resources in China[J]. China Non-metallic Mineral Industry, 2016(4): 6-8. doi: 10.3969/j.issn.1007-9386.2016.04.003
[3] 于永生, 葛灵, 武珂, 等. 我国珍珠岩矿产综合利用及其发展战略[J]. 矿产保护与利用, 2019, 39(6): 159-163. doi: 10.13779/j.cnki.issn1001-0076.2019.06.021
Yu Y S, Ge L, Wu K, et al. Comprehensive utilization and development strategy of perlite mineral resources in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 159-163. doi: 10.13779/j.cnki.issn1001-0076.2019.06.021
[4] 张宪圆, 林克辉, 谢红波. 国内外珍珠岩概述及其在建筑领域的应用分析[J]. 广东建材, 2012, 28(2): 19-21. doi: 10.3969/j.issn.1009-4806.2012.02.022
Zhang X Y, Lin K H, Xie H B. Overview of perlite at home and abroad and analysis of its application in construction field[J]. Guangdong Building Materials, 2012, 28(2): 19-21. doi: 10.3969/j.issn.1009-4806.2012.02.022
[5] Lin Y F, Li X G, Huang Q H. Preparation and character-ization of expanded perlite/wood-magnesium composites as building insulation materials[J]. Energy and Buildings, 2021, 231: 1-9.
[6] Bageri B, Ahmed A. Effect of perlite particles on the properties of oil-well class G cement[J]. Journal of Petroleum Science and Engineering, 2021, 199: 1-8.
[7] Huang G P, Deepak P, Rajender G, et al. Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures[J]. Construction and Building Materials, 2021, 274: 1-13.
[8] Mohamed A, Basfar S, Elkatatny S, et al. Impact of perlite on the properties and stability of water-based mud in elevated-temperature applications[J]. ACS Omega, 2020, 5(50): 32573-32582. doi: 10.1021/acsomega.0c04853
[9] 王世香, 邹法俊. 膨胀珍珠岩生产工艺及废气治理措施研究[J]. 环境科学与技术, 2015, 38(S2): 349-352. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2015S2070.htm
Wang S X, Zou F J. Research on swelling perlite production technology and control measures of exhaust gas[J]. Environment Science & Technology, 2015, 38(S2): 349-352. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2015S2070.htm
[10] 马万征, 刘帅帅, 马万敏, 等. 改性硅藻土与珍珠岩联合处理氨氮废水的研究[J]. 应用化工, 2015, 44(11): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201511017.htm
Ma W Z, Liu S S, Ma W M, et al. Study on treatment of waste water containing ammonia nitrogen by modified diatomite and perlite[J]. Applied Chemistry Industry, 2015, 44(11): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201511017.htm
[11] 胡雨彤, 时连辉, 刘登民, 等. 不同比例珍珠岩对污泥堆肥理化性状与孔雀草生长的影响[J]. 生态学杂志, 2014, 25(7): 1949-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201407016.htm
Hu Y T, Shi L H, Liu D M, et al. Effects of different perlite additions on physical and chemical properties of sewage sludge compost and growth of Tagetes patula[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 1949-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201407016.htm
[12] 李坦平, 娄晓明, 李爱阳. 食品助滤剂珍珠岩中有害金属元素的质谱分析[J]. 食品与发酵工业, 2020, 46(10): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202010036.htm
Li T P, Lou X M, Li A Y. Determination of harmful metal elements in food filter aid perlite by inductively coupled plasma tandem mass spectrometry[J]. Food and Fermentation Industries, 2020, 46(10): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202010036.htm
[13] 李晓兰, 于志龙. 浅析珍珠岩助滤剂的精深加工制备研究[J]. 冶金与材料, 2020, 40(6): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ202006019.htm
Li X L, Yu Z L. Study on the deep processing and preparation of perlite filter aid[J]. Metallurgy and Materials, 2020, 40(6): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ202006019.htm
[14] Ni S Y, Wang N N, Guo X, et al. Li4SiO4-based sorbents from expanded perlite for high-temperature CO2 capture[J]. Chemical Engineering Journal, 2021, 410: 1-11.
[15] Li R J, Zhao Y J. Enhanced thermal conductivity of com-posite phase change materials based on carbon modified expanded perlite[J]. Materials Chemistry and Physics, 2021, 124226.
[16] Babas H, Kaichouh G, Khachani M, et al. Equilibrium and kinetic studies for removal of antiviral sofosbuvir from aqueous solution by adsorption on expanded perlite: Experimental, modelling and optimization[J]. Surfaces and Interfaces, 2021, 100962.
[17] Sebestova P, Cerny V, Drochytka R. Study of calcium-silicate composite lightened by waste expanded perlite[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1039(1): 012014.
[18] Lapčík L, Vašina M, Lapčíková B, et al. Study of the material engineering properties of high-density poly(ethylene)/perlite nanocomposite materials[J]. Nanotechnology Reviews, 2020, 9(1): 1491-1499.
[19] 曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082
Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082
[20] 刘妹, 顾铁新, 潘含江, 等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试, 2018, 37(5): 558-571. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002
Liu M, Gu T X, Pan H J, et al. Preparation of seven reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5): 558-571. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002
[21] 赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 90-97. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201711230185
Zhao X L, Li Z W, Wang Y, et al. Preparation and certification of niobium-tantalum concentrate reference materials[J]. Rock and Mineral Analysis, 2018, 37(6): 90-97. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201711230185
[22] 田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202001070008
Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202001070008
[23] 杨榕, 顾铁新, 潘含江. GWB10010a大米标准物质复(研)制及数据特征[J]. 岩矿测试, 2020, 39(6): 866-877. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005210073
Yang R, Gu T X, Pan H J. Preparation of reference materials GBW10010a for rice component and data characteristics[J]. Rock and Mineral Analysis, 2020, 39(6): 866-877. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005210073
[24] 全国标准物质管理委员会. 标准物质目录[M]. 北京: 中国质检出版社, 中国标准出版社, 2017.
National Administrative Committee for Certified Reference Materials. List of standard substances[M]. Beijing: Quality Inspection of China Press, Standards Press of China, 2017.
[25] 戚学祥. 河南信阳珍珠岩矿床特征及其应用[J]. 矿物岩石地球化学通报, 1997(Z1): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH7S1.062.htm
Qi X X. Characteristics and application of perlite deposit in Xinyang, Henan Province[J]. Bulletin of Minerals, Petrology and Geochemistry, 1997(Z1): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH7S1.062.htm
[26] 韩复兴, 杨大干, 黄晨. 信阳上天梯珍珠岩矿绿色建设思路分析[J]. 陶瓷, 2020(9): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TACI202009008.htm
Han F X, Yang D G, Huang C. Analysis on green construction of Shangtianti perlite mine in Xinyang[J]. Ceramics, 2020(9): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TACI202009008.htm
[27] 张晗, 薛爱芳, 陈浩, 等. 轻质萃取剂的分散液液微萃取-石墨炉原子吸收光谱法测定生活用水中痕量Pb与Cd[J]. 光谱学与光谱分析, 2018, 38(10): 3264-3268. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201810053.htm
Zhang H, Xue A F, Chen H, et al. Low-density solvent based dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry for the determination of trace lead and cadmium in domestic water[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3264-3268. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201810053.htm
[28] 刘香英, 袁建, 崔建勇, 等. 改进的原子吸收法测定土壤样品中的6种重金属元素[J]. 世界核地质科学, 2019, 36(2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201902007.htm
Liu X Y, Yuan J, Cui J Y, et al. Determination of six heavy metal elements in soil samples by improved atomic absorption spectrometry[J]. World Nuclear Geoscience, 2019, 36(2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201902007.htm
[29] 赵小学, 位志鹏, 王建波, 等. 王水水浴消解/ICP-MS法测定土壤及水系沉积物中As、Se、Sb、Hg、Bi的适用性研究[J]. 中国测试, 2021, 47(9): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202109010.htm
Zhao X Y, Wei Z P, Wang J B, et al. Study on determination of As, Se, Sb, Hg and Bi in soil and sediment by ICP-MS with water bath[J]. China Measurement & Test, 2021, 47(9): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202109010.htm
[30] 郑智慷, 王家松, 曾江萍, 等. 微波消解-原子荧光光谱法测定化探样品中的砷和锑[J]. 地质调查与研究, 2019, 42(4): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904006.htm
Zheng Z K, Wang J S, Zeng J P, et al. Determination of arsenic and antimony in geochemical samples by microwave digestion-atomic fluorescence spectrometry[J]. Geological Survey and Research, 2019, 42(4): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904006.htm
[31] 刘宇, 魏双. 高压消解-电感耦合等离子体质谱法测定铌钽矿石中铌钽含量[J]. 地质调查与研究, 2018, 41(3): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm
Liu Y, Wei S. Determination of niobium and tantalum content in Nb-Ta ore by high pressure digestion-inductively coupled plasma mass spectrometry[J]. Geological Survey and Research, 2018, 41(3): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm
[32] 方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 华北地质, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. North China Geology, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
[33] 李洁. ICP-MS直接定量分析细粒岩石中的微量金属元素[J]. 世界有色金属, 2017(5): 138-139. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201705078.htm
Li J. Direct quantitative analysis of trace metal elements in fine rock by ICP-MS[J]. World Nonferrous Metals, 2017(5): 138-139. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201705078.htm