Development of 9 Kinds of Plant Matrix Reference Materials for Elemental Analysis and Quantitative Characteristics
-
摘要:
随着人们对食品安全关注度的提升,尤其是对植物源食品和保健品的元素组成与功效的关注,对评价可食性植物中元素分析标准物质需求日益增加。本文研制了红豆粉无机成分分析标准物质(GBW10228)、洋葱成分分析标准物质(GBW10232)、油菜成分分析标准物质(GBW10233)、金针菇粉中元素成分分析标准物质(GBW10247)、银耳粉中元素成分分析标准物质(GBW10248)、藕粉中元素成分分析标准物质(GBW10249)、山楂粉中元素成分分析标准物质(GBW10250)、三七粉中元素成分分析标准物质(GBW10251)、茉莉花成分分析标准物质(GBW10234)共9种植物基体分析标准物质。针对物料特点确定了候选物的采集地点、制备方法、封装工艺和保存条件,经检验均匀性、稳定性良好,通过方法研究制定了标准物质定值作业指导书,由11家实验室联合对Ag、Al、As、B、Ba、Be、Bi、Br、Ca、Cd、Ce、Cl、Co、Cr、Cs、Cu、Dy、Er、Eu、F、Fe、Gd、Ge、Hg、Ho、I、K、La、Li、Lu、Mg、Mn、Mo、N、Na、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Sc、Se、Si、Sm、Sn、Sr、Tb、Th、Ti、Tl、Tm、U、V、Y、Yb、Zn共59种元素测试,定值测试针对不同的元素选用受基体影响小的准确灵敏的方法,主要有电感耦合等离子体质谱法、电感耦合等离子体发射光谱法、原子荧光光谱法、容量法等,定为标准值的元素均在40种以上,其中山楂和三七给出53种标准值及不确定度,元素分布特征明显,代表性强。与同类标准物质相比,痕量元素定值水平有所提高,常规抽检重点监测的元素Cd和Pb,在红豆、洋葱、金针菇、油菜、三七、茉莉花中形成梯度含量,如Cd的含量在10-9到10-7量级,Pb含量在10-8到10-6量级,对于食品检测质量监控其适用性更广。本系列标准物质定值元素种类丰富,适用于生物类样品测试的量值传递和质量监控,也为保健品的药用价值与元素关联性研究提供了基础数据。
Abstract:BACKGROUND With the increasing concern for food safety, especially for the elemental composition and efficacy of plant-derived foods and health products, research on the nutrient analysis of related foods is continuously carried out. At present, due to the wide variety of agricultural and health products, and the different environments in which the plant matrix grows, the elements absorbed by plants during the growth process vary greatly, making it difficult for many foods to meet the requirements of the calibration and testing system simply by using pure standards. It is necessary to combine the matrix reference materials for calibration and develop new plant-based reference materials.
OBJECTIVES To improve the situation that there are few existing plant matrix reference materials, by developing 9 kinds of plant matrix reference materials for elemental analysis. Except for the reference materials for elemental analysis in notoginseng powder, all of them were developed for the first time, which supplemented the types of plant matrix elemental analysis reference materials and were mainly used in food nutrition and safety analysis and testing technology research of plant samples.
METHODS In the early stage of development, the selection of candidate reference materials with the representative matrix were investigated and studied. The samples were pretreated, dried, crushed, sieved, and examined by a laser particle size analyzer before being packed in 45mL HDPE plastic bottles and inactivated by 60Co irradiation, which can be stored for a certain period of time. The samples were randomly selected from 30 bottles during the whole packing process, and the homogeneity test was performed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), atomic fluorescence spectrometry (AFS) and volumetric method (VOL). The long-term stability of the reference materials under the specified storage conditions and the transport stability at 60℃ were investigated and the results were evaluated by trend analysis, which showed that the samples were stable under the specified conditions. The operation guideline of reference materials characterization analysis was developed, and 11 laboratories worked together to analyze 59 elements: Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Ge, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, N, Na, Nd, Ni, P, Pb, Pr, Rb, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, Y, Yb, Zn.
RESULTS The data of the developed series of reference materials were statistically judged by Grubbs and Dixon and the suspicious values were rejected, with a rejection rate of less than 3%. Shapiro-Wilk was used to test the normality of the fixed value data, in which the element Ti in red bean, Bi, I and Th in needle mushroom, Ti in tremella, and I in jasmine had a skewed distribution of the original measurement data, and no certified value was taken only as the median value for reference, and the arithmetic mean of the customized data was used as the certified value for the remaining elements. The certified values and uncertainties of the nine reference materials were above 40, among which, 53 certified values and uncertainties were given for hawthorn and notoginseng. The uncertainty of reference materials consists of homogeneity uncertainty, stability uncertainty and characterization uncertainty. This series of reference materials was developed under the concept of metrological traceability, and a variety of quality control measures were taken to ensure the accuracy and reliability of analytical results and was applied as national level reference materials in 2021. The names and number are as follows: chemical composition of red bean (GBW10228), onion (GBW10232), rape (GBW10233), needle mushroom (GBW10247), tremella (GBW10248), root starch (GBW10249), hawthorn (GBW10250), notoginseng (GBW10251), and jasmine (GBW10234).
The existing plant matrix elemental analysis reference materials are mostly found in rice, wheat, tea and other major agricultural and sideline food, and the certified value elements are mainly macronutrients and heavy metals. The present series of reference materials cover agricultural and health products with a large amount of daily sampling, except for notoginseng, which is developed for the first time, supplementing the variety of relevant quality control samples in the food testing field, with 59 certified value elements, which can effectively reflect the composition of elements in relevant products.
In this study, more regionally representative candidates were selected, focusing on the beneficial nutritional elements K, Ca, Na, Mg, P, Zn, Fe and harmful metal elements As, Hg, Cd, Pb, whose contents can reflect the distribution characteristics of the elements in different samples and origins, such as red beans, which is a health food, and the candidates were picked from Yi'an County in Songnen Plain (one of the important commodity grain bases in China). It contains high contents of beneficial nutrients such as K (1.392g/100g), Ca (0.104g/100g), Mg (0.165g/100g), P (0.457g/100g), Zn (24μg/g) and Fe (71μg/g), and low contents of Pb (0.033μg/g), Cd (5.4ng/g) and other harmful metal elements, which are far below the national limit standards, reflecting the fertile black soil of Songnen Plain and the effectiveness of China's land management. For elements of Cd and Pb, red beans (5.4ng/g) and (0.033μg/g), onions (17ng/g) and (0.322μg/g), needle mushroom (33ng/g) and (0.126μg/g), rape (170ng/g) and (0.9μg/g), notoginseng (311ng/g) and (0.7μg/g), jasmine (420ng/g) and (1.65μg/g) form a gradient range, which is more applicable for food testing quality control. It can be found that the content of heavy metals in health products such as notoginseng and jasmine are higher than that in vegetable products such as rape and needle mushroom, which has a certain guidance for selecting suitable quality control samples in analytical testing. This is a guideline for the selection of suitable quality control samples.
Due to the progress of the current testing methods and instruments, the precision of the data for the determination of rare earths and other elements with very low contents in some samples was good, and standard values were given, such as Eu (9.4±1.7ng/g), Ge (7.8±2.3ng/g), Lu (1.7±0.5ng/g), Tb (5.3±0.9ng/g), Tm (1.8±0.6ng/g) in rape, while the previous reference materials of similar vegetable matrixes did not reach such definite levels.
CONCLUSIONS The development of the series of plant matrix reference materials is supplemental and improves the existing plant matrix reference materials, with obvious distribution characteristics of elements and wide applicability of the gradient range. This series of reference substances covers lots of elements with certified values, which is suitable for the quantity transfer and quality control of biological samples analysis and provides basis for the research on the correlation between the medicinal value and elements of health products.
-
表 1 候选物定值元素分析测试方法汇总
Table 1. Sample decomposition methods and analytical methods for candidate reference materials
定值元素 分析测试方法 定值元素 分析测试方法 Ag MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-OES Mg MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DMA-ICP-OES,DAC-ICP-MS Al MW-ICP-OES,DMA-ICP-OES,A.FU-ICP-OES,FU-ICP-OES,DAC-ICP-OES,DPP-XRF Mn MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DAC-ICP-MS,MW-ICP-MS As DMA-AFS,DMA-ICP-MS,DAC-ICP-MS,MW-ICP-MS,DAC-AFS Mo MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS B MW-ICP-OES,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-MS N DS-VOL,DS-COL Ba MW-ICP-OES,DFC-ICP-MS,DAC-ICP-ES,MW-ICP-MS,DAC-ICP-OES,DAC-ICP-MS Na MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DMA-ICP-OES,DAC-ICP-MS Be MW-ICP-OES,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-MS Nd MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Bi MW-ICP-MS,DAC-ICP-MS,DF-AFS Ni MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-OES Br DAC-ICP-MS,DPP-XRF,FU-ICP-MS P MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DMA-ICP-OES,DAC-ICP-MS Ca MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DMA-ICP-OES,DAC-ICP-MS Pb MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Cd MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Pr MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Ce MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Rb MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Cl DPP-XRF,BTVOL S MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DAC-ICP-MS Co MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Sb DW-AFS,DAC-ICP-MS,MW-ICP-MS Cr MW-ICP-OES,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-MS,DAC-ICP-OES Sc MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS Cs MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Se DMA-AFS,DAC-AFS,MW-ICP-MS,MW-AFS,DAC-ICP-MS,DF-AFS Cu MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-OES Si DMA-ICP-OES,A.FU-ICP-OES,FU-ICP-OES,DAC-ICP-OES,DPP-XRF Dy MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Sm MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Er MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Sn MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Eu MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Sr MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,MW-ICP-MS,DAC-ICP-MS F DACL-ISE,DD-COL Tb MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Fe MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DAC-ICP-MS,DMA-ICP-OES Th MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Gd MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Ti MW-ICP-OES,DFC-ICP-MS,DAC-ICP-MS,MW-ICP-MS,DAC-ICP-OES,DMA-ICP-OES Ge MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Tl MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Hg MW-AFS,DAC-AFS,DAC-ICP-MS,MW-ICP-MS,DA-AFS,DF-AFS Tm MW-ICP-MS,DA-ICP-MS,DAC-ICP-MS Ho DFC-ICP-MS,DA-ICP-MS,MW-ICP-MS,DAC-ICP-MS U DFC-ICP-MS,DAC-ICP-MS,MW-ICP-MS I DAC-ICP-MS,FU-ICP-MS,MW-ICP-MS,A.FU-COL V MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS K MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DMA-ICP-OES,DAC-ICP-MS Y MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS La MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Yb MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS Li MW-ICP-MS,DFC-ICP-MS,DAC-ICP-MS Zn MW-ICP-MS,MW-ICP-OES,DFC-ICP-MS,DAC-ICP-OES,DAC-ICP-MS Lu MW-ICP-MS,DFC-ICP-MS,DA-ICP-MS,DAC-ICP-MS 注:前处理方法:MW—微波消解;DFC—混合酸加少量氢氟酸密闭分解;DAC—硝酸加过氧化氢或王水或高氯酸密闭压力分解;DMA—混合酸(硝酸加高氯酸,或加硫酸,或加过氧化氢)分解;A.FU—灰化后熔融分解;FU—碱熔或艾斯卡熔矿(碳酸钠、氧化锌烧结);DPP—粉末压片;DF—混合酸加少许氢氟酸分解;DA—王水或硝酸加过氧化氢分解;DACl—稀盐酸浸提;DD—扩散法;DS—催化蒸馏(过氧化氢、硫酸铜、硫酸钾、硫酸);DW—水浴消解法。
检测方法:ICP-MS—电感耦合等离子体质谱法;ICP-OES—电感耦合等离子体发射光谱法;XRF—X射线荧光光谱法;AFS—原子荧光光谱法;BTVOL—返滴定法;VOL—容量法;COL—分光光度法;ISE—离子选择电极法。表 2 候选物测试和剔除数据组数统计
Table 2. Summary of test data and rejected data groups for candidate reference materials
候选物名称 定值数据组数 剔除数据组数 数据剔除率
(%)红豆 3247 86 2.6 洋葱 3318 76 2.3 油菜 3332 56 1.7 金针菇 3264 87 2.7 银耳 3264 74 2.3 藕粉 3243 82 2.5 山楂 3280 60 1.8 三七 3256 74 2.3 茉莉花 3317 87 2.6 表 3 标准物质标准值和不确定度
Table 3. Certified values and expanded uncertainty for reference materials
标准物质名称和编号 元素 标准值和不确定度
(×10-6)元素 标准值和不确定度
(×10-6)元素 标准值和不确定度
(×10-6)元素 标准值和不确定度
(×10-6)红豆粉无机成分分析标准物质
(GBW10228)Ag** (1.1) Cu 8.2±0.6 Mg* 0.165±0.010 Si (100) Al (136) Dy** 1.8±0.3 Mn 22.1±1.0 Sm** 2.5±0.5 As 0.017±0.006 Er** (0.97) Mo 1.13±0.08 Sn (0.03) B 12.7±1.3 Eu** 1.5±0.5 N* 3.12±0.11 Sr 6.6±0.5 Ba 5.4±0.6 F (0.75) Na (10) Tb** 0.4±0.1 Be** 2.1±0.4 Fe 71±8 Nd 0.012±0.004 Th** (5.4) Bi** (0.93) Gd 2.7±0.5 Ni 10±1 Ti (3.13▲) Br (1.9) Ge** (1.2) P* 0.457±0.013 Tl** 6.1±1.4 Ca* 0.104±0.014 Hg** (1.27) Pb 0.033±0.014 Tm** 0.13±0.05 Cd** 5.4±0.9 Ho** 0.37±0.07 Pr** 3.2±0.7 U** 1.2±0.5 Ce 0.030±0.006 I** (116) Rb 11±1 V (0.06) Cl (126) K* 1.392±0.073 S* 0.180±0.017 Y 0.3±0.1 Co 0.23±0.04 La 0.026±0.004 Sb** (4.6) Yb** 0.76±0.10 Cr (0.93) Li 0.03±0.01 Sc 0.013±0.006 Zn 24±2 Cs 0.025±0.004 Lu** 0.10±0.03 Se 0.023±0.009 洋葱成分分析标准物质
(GBW10232)Ag** 4±1 Cu 7.2±1.1 Mg* 0.12±0.01 Si* (1.595) Al (289) Dy** 9.1±2.2 Mn 10.1±1.6 Sm (0.012) As 0.104±0.043 Er** 4.7±1.0 Mo 0.222±0.026 Sn 0.054±0.010 B 11.1±1.6 Eu** 3.5±0.7 N* 1.733±0.206 Sr 27±6 Ba 7.44±0.60 F (0.99) Na* 0.074±0.011 Tb** 1.6±0.4 Be** 5.1±1.4 Fe 107±11 Nd 0.058±0.012 Th 0.032±0.011 Bi** 2.1±0.7 Gd 0.011±0.005 Ni 1.04±0.46 Ti 10.7±2.5 Br (1.7) Ge** 7±2 P* 0.302±0.077 Tl** 3.36±1.07 Ca* 0.30±0.03 Hg** 2.6±0.9 Pb 0.322±0.093 Tm** 0.63±0.23 Cd 0.017±0.006 Ho** 1.7±0.4 Pr 0.015±0.006 U 0.019±0.006 Ce 0.126±0.015 I (0.22) Rb 5.0±0.6 V 0.21±0.10 Cl* (0.098) K* 1.14±0.12 S* 0.53±0.10 Y 0.14±0.03 Co 0.062±0.011 La 0.075±0.011 Sb (0.015) Yb** 4.2±1.6 Cr 1.68±0.49 Li 0.16±0.04 Sc (0.10) Zn 18±2 Cs 0.015±0.006 Lu** 0.65±0.20 Se 0.04±0.01 油菜成分分析标准物质
(GBW10233)Ag** 4.4±1.0 Cu 2.72±0.62 Mg* 0.185±0.014 Si* (0.19) Al (447) Dy 0.03±0.01 Mn 30±4 Sm 0.045±0.016 As 0.16±0.03 Er 0.013±0.006 Mo 0.44±0.04 Sn 0.032±0.013 B 14.3±2.8 Eu** 9.7±1.4 N* 2.05±0.09 Sr 74±12 Ba 11.1±1.6 F 3.84± Na* 0.48±0.06 Tb** 5.3±0.9 Be** 9.7±1.4 Fe 267±39 Nd 0.23±0.11 Th 0.074±0.018 Bi** 6.5±1.2 Gd 0.040±0.013 Ni 1.26±0.30 Ti 22±3 Br (5.1) Ge** 7.8±2.3 P* 0.266±0.034 Tl 0.010±0.004 Ca* 0.86±0.08 Hg** 8±2 Pb 0.9±0.2 Tm** 1.8±0.6 Cd 0.17±0.03 Ho** 5±2 Pr 0.06±0.01 U 0.097±0.023 Ce 0.51±0.14 I (0.26) Rb 9±1 V 0.55±0.15 Cl* (0.63) K* 1.08±0.09 S* 0.31±0.07 Y 0.23±0.09 Co 0.13±0.03 La 0.27±0.07 Sb (0.017) Yb 0.011±0.005 Cr 3.6±0.6 Li 0.43±0.09 Sc (0.09) Zn 17±2 Cs 0.11±0.01 Lu** 1.7±0.5 Se 0.045±0.019 金针菇粉中元素成分分析标准物质
(GBW10247)Ag 0.019±0.004 Cu 6.8±0.6 Mg* 0.154±0.011 Si (441) Al* 0.017±0.006 Dy** 8.2±1.1 Mn 6±1 Sm** 11±2 As 0.25±0.03 Er** 4.2±0.5 Mo 0.049±0.012 Sn 0.024±0.009 B 7±1 Eu** 2.6±0.6 N* 2.48±0.06 Sr 2.8±0.3 Ba 1.5±0.3 F (1.95) Na 325±35 Tb** 1.43±0.18 Be** 5.1±1.7 Fe 174±14 Nd 0.06±0.01 Th 0.018▲(0.015~0.033) Bi** (1.9▲) Gd** 10.3±1.3 Ni 0.31±0.03 Ti (12) Br (5.6) Ge** 5.0±1.3 P* 0.493±0.032 Tl** 1.45±0.42 Ca 597±25 Hg 0.052±0.012 Pb 0.126±0.021 Tm** 0.58±0.11 Cd 0.033±0.006 Ho** 1.7±0.3 Pr 0.014±0.005 U** 7±2 Ce 0.117±0.015 I (0.3▲) Rb 16±1 V 0.24±0.03 Cl* (0.116) K* 2.89±0.23 S* 0.177±0.016 Y 0.15±0.03 Co 0.05±0.01 La 0.07±0.01 Sb 0.014±0.006 Yb** 3.5±0.4 Cr 0.75±0.10 Li 0.37±0.03 Sc (0.026) Zn 53±7 Cs 0.06±0.01 Lu** 0.6±0.1 Se 0.088±0.016 银耳粉中元素成分分析标准物质
(GBW10248)Ag** 2.8±0.5 Cu 0.8±0.1 Mg 313±18 Si* (0.019) Al (113) Dy** 1.8±0.3 Mn 3.1±0.3 Sm** 2.1±0.3 As 0.08±0.02 Er** 1.0±0.2 Mo 0.141±0.012 Sn (0.017) B 2.0±0.3 Eu** 0.55±0.12 N* 0.93±0.08 Sr 1.63±0.24 Ba 0.85±0.10 F (1.5) Na 418±32 Tb** 0.35±0.12 Be** 1.4±0.2 Fe 19±2 Nd 0.012±0.005 Th** 3.3±1.0 Bi** (0.8) Gd** 2.3±0.3 Ni 0.08±0.02 Ti (0.65▲) Br (2.3) Ge** 1.23±0.18 P* 0.225±0.023 Tl** 0.35±0.14 Ca 227±20 Hg** (3.3) Pb 0.041±0.011 Tm** 0.16±0.04 Cd 0.032±0.007 Ho** 0.42±0.17 Pr** 3.2±0.5 U** 2.1±0.6 Ce 0.018±0.006 I (0.27) Rb 8±1 V (0.030) Cl* (0.043) K* 1.08±0.08 S 722±53 Y 0.23±0.08 Co** 7±2 La 0.022±0.008 Sb** 5±2 Yb** 0.92±0.21 Cr (0.2) Li 0.14±0.02 Sc** (7) Zn 17±2 Cs 0.048±0.006 Lu** 0.17±0.04 Se 0.026±0.010 藕粉中元素成分分析标准物质
(GBW10249)Ag** 2.5 ±0.9 Cu 1.92±0.22 Mg 297±18 Si (62) Al (98) Dy** 0.53±0.18 Mn 13.4±1.5 Sm** 0.72±0.11 As 0.11±0.02 Er** 0.3±0.1 Mo 0.34±0.03 Sn** (10.1) B 2.0±0.3 Eu** 0.43±0.14 N* 0.91±0.08 Sr 3.3±0.2 Ba 1.3±0.2 F (1.7) Na 330±21 Tb** 0.108±0.021 Be** 0.55±0.16 Fe 14.5±2.4 Nd** 4.0±0.8 Th** (2.5) Bi** (0.76) Gd** 0.8±0.2 Ni 0.21±0.03 Ti (1.7) Br (1.8) Ge** 1.54±0.28 P* 0.113±0.008 Tl** 0.53±0.13 Ca 475±31 Hg** 5.5±1.4 Pb 0.034±0.013 Tm** 0.049±0.015 Cd** 9±1 Ho** 0.11±0.04 Pr** 1.1±0.3 U 0.016±0.004 Ce** 8.9±1.1 I (0.23) Rb 3.12±0.16 V (0.033) Cl* (0.07) K* 0.25±0.02 S* 0.077±0.010 Y 0.18±0.07 Co 0.019±0.007 La (0.011) Sb** (4.3) Yb** 0.22±0.07 Cr (0.13) Li 0.03±0.01 Sc** (5.7) Zn 10±2 Cs** 4.4±0.8 Lu** 0.04±0.01 Se 0.033±0.012 山楂粉中元素成分分析标准物质
(GBW10250)Ag** 3±1 Cu 3.6±0.3 Mg 711±32 Si 785±182 Al* 0.018±0.006 Dy** 10±2 Mn 11±2 Sm 0.013±0.006 As 0.05±0.01 Er** 4.8±0.5 Mo 0.03±0.01 Sn 0.056±0.013 B 29±4 Eu** 5±1 N* 0.45±0.05 Sr 7.1±1.1 Ba 12±2 F (1.2) Na 46±8 Tb** 1.8±0.4 Be** 6.0±1.2 Fe 211±27 Nd 0.07±0.01 Th 0.024±0.004 Bi** 4.2±1.1 Gd 0.013±0.005 Ni 1.24±0.21 Ti 8±1 Br (2.6) Ge** 5.7±1.2 P* 0.08±0.01 Tl** 3.88±0.93 Ca* 0.29±0.03 Hg** 4.7±1.2 Pb 0.57±0.14 Tm** 0.68±0.16 Cd 0.03±0.01 Ho** 1.74±0.34 Pr (0.02) U** 5.0±1.2 Ce 0.16±0.03 I (0.25) Rb 12±1 V (0.21) Cl* 0.014 K* 0.74±0.13 S* 0.068±0.011 Y 0.17±0.03 Co 0.20±0.03 La 0.10±0.02 Sb 0.021±0.009 Yb** 4.1±0.5 Cr 3.0±0.5 Li 0.19±0.05 Sc 0.03±0.01 Zn 133±11 Cs 0.08±0.02 Lu** 0.6±0.2 Se 0.03±0.01 三七粉中元素成分分析标准物质
(GBW10251)Ag** 4±1 Cu 4.5±0.9 Mg* 0.140±0.017 Si* 0.134±0.036 Al* 0.072±0.011 Dy 0.078±0.012 Mn 45±7 Sm 0.105±0.011 As 0.76±0.14 Er 0.04±0.01 Mo 0.09±0.02 Sn 0.039±0.014 B 17±2 Eu 0.024±0.007 N* 1.338±0.092 Sr 13±3 Ba 16±2 F (3) Na 70±8 Tb 0.014±0.004 Be 0.022±0.004 Fe 552±63 Nd 0.56±0.10 Th 0.113±0.029 Bi** 7±1 Gd 0.112±0.016 Ni 2.2±0.3 Ti (28) Br (2.4) Ge (0.013) P* 0.203±0.038 Tl 0.042±0.008 Ca* 0.245±0.040 Hg 0.023±0.008 Pb 0.7±0.1 Tm** 5.5±0.9 Cd 0.311±0.022 Ho 0.015±0.006 Pr 0.14±0.02 U 0.04±0.01 Ce 1.36±0.17 I (0.20) Rb 9.5±0.7 V 1.9±0.7 Cl* (0.022) K* 1.317±0.086 S* 0.10±0.01 Y 0.66±0.09 Co 0.55±0.07 La 0.7±0.1 Sb 0.11±0.05 Yb 0.034±0.009 Cr 2.12±0.34 Li 0.45±0.12 Sc 0.16±0.07 Zn 13.8±1.1 Cs 0.129±0.023 Lu** 5.3±1.0 Se 0.024±0.008 茉莉花成分分析标准物质
(GBW10234)Ag (0.011) Cu 8.0±1.1 Mg* 0.199±0.035 Si* (0.21) Al* 0.035±0.006 Dy 0.03±0.01 Mn 101±10 Sm 0.041±0.015 As 0.5±0.1 Er 0.015±0.006 Mo 0.41±0.06 Sn 0.14±0.04 B 34±3 Eu** 9.2±1.4 N* 2.86±0.21 Sr 9.7±1.1 Ba 7.8±1.3 F 6.9±1.3 Na 94±11 Tb** 5.4±1.0 Be 0.013±0.004 Fe* 0.14±0.02 Nd 0.24±0.04 Th 0.07±0.02 Bi** 8±2 Gd 0.04±0.01 Ni 1.53±0.19 Ti 25±6 Br (3.7) Ge 0.017±0.007 P* 0.33±0.04 Tl 0.16±0.04 Ca* 0.673±0.044 Hg** 9.7±1.6 Pb 1.65±0.21 Tm** 2.22±0.31 Cd 0.42±0.04 Ho** 6±1 Pr 0.062±0.008 U 0.022±0.007 Ce 0.56±0.17 I (0.37▲) Rb 33±2 V 1.22±0.14 Cl* (.07) K* 2.36±0.34 S* 0.29±0.04 Y 0.28±0.04 Co 0.32±0.06 La 0.39±0.07 Sb 0.066±0.024 Yb 0.013±0.005 Cr 2.24±0.31 Li 0.41±0.07 Sc 0.086±0.012 Zn 49±6 Cs 0.34±0.02 Lu** 1.95±0.40 Se 0.13±0.02 注:加“*”含量单位为10-2,加“**”含量单位为10-9;括号内数据为信息值,▲为中位值,其后为置信限。 -
[1] 凤星宇. 我国土壤环境调查、评价与监测[J]. 科技创新与应用, 2019(4): 61-62. doi: 10.3969/j.issn.2095-2945.2019.04.028
Feng X Y. Investigation, assessment and monitoring of soil environment in China[J]. Technology Innovation and Application, 2019(4): 61-62. doi: 10.3969/j.issn.2095-2945.2019.04.028
[2] 成瑾, 袁旭音, 章海燕, 等. 云贵地区磷矿分布区农田土壤重金属污染特征及对农产品质量的影响[J]. 生态与农村环境学报, 2021, 37(5): 636-643. doi: 10.19741/j.issn.1673-4831.2020.0818
Cheng J, Yuan X Y, Zhang H Y, et al. Characteristics of heavy metal pollution in soils of Yunnan—Guizhou phosphate ore areas and their effects on quality of agricultural products[J]. Journal of Ecology and Rural Environment, 2021, 37(5): 636-643. doi: 10.19741/j.issn.1673-4831.2020.0818
[3] 韦业川, 张新英, 秦贱荣, 等. 广西铅锌矿企业周边农产品重金属污染及健康风险评估[J]. 南宁师范大学学报(自然科学版), 2020, 37(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ202001016.htm
Wei Y C, Zhang X Y, Qin J R, et al. Heavy metal pollution and health risk assessment of agricultural products around lead-zinc mining industries in Guangxi[J]. Journal of Nanning Normal University (Natural Science Edition), 2020, 37(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ202001016.htm
[4] 吴娟娟, 朱斌, 史娟, 等. 药用植物种植与生产地重金属污染分析与评价[J]. 西北农林科技大学学报(自然科学版), 2022, 50(2): 103-114. doi: 10.13207/j.cnki.jnwafu.2022.02.012
Wu J J, Zhu B, Shi J, et al. Analysis and evaluation of soil heavy metal pollution in planting and production areas of medicinal plants[J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(2): 103-114. doi: 10.13207/j.cnki.jnwafu.2022.02.012
[5] 鲍丽萍, 陈芸, 杨海博, 等. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价[J]. 食品安全质量检测学报, 2022, 13(15): 5062-5069. doi: 10.3969/j.issn.2095-0381.2022.15.spaqzljcjs202215038
Bao L P, Chen Y, Yang H B, et al. Risk assessment of heavy metal pollution in grains and vegetables in rare earth mining areas in northwestern Hubei[J]. Journal of Food Safety & Quality, 2022, 13(15): 5062-5069. doi: 10.3969/j.issn.2095-0381.2022.15.spaqzljcjs202215038
[6] 施姜丹, 史可欣, 黄雨佳, 等. 中国大米和蔬菜重金属/类金属污染及其健康风险[J]. 环境卫生学杂志, 2022, 12(7): 479-487. doi: 10.13421/j.cnki.hjwsxzz.2022.07.002
Shi J D, Shi K X, Huang Y J, et al. Heavy metal and metalloid contamination of rice and vegetables and their health risk in China[J]. Journal of Environmental Hygiene, 2022, 12(7): 479-487. doi: 10.13421/j.cnki.hjwsxzz.2022.07.002
[7] Ahiakwo B O, Kingsley C. Heavy metals contamination and potential human health risk via consumption of vegetables from selected communities in ONELGA, Rivers State, Nigeria[J]. European Journal of Nutrition & Food Safety, 2019, 9(2): 134-151.
[8] Rose M, Julius K, Stephen N, et al. Heavy metal contamination of water, soil and vegetables in urban streams in Machakos Municipality, Kenya[J]. Scientific African, 2020, 9: e00539. doi: 10.1016/j.sciaf.2020.e00539
[9] 孙帅, 耿柠波, 郭崔崔, 等. 我国东部沿海地区蔬菜中重金属累积分布特征及居民膳食暴露评估[J]. 环境科学, 2021, 42(11): 5519-5525. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202111050.htm
Sun S, Geng N B, Guo C C, et al. Accumulation characteristics and dietary exposure estimation of heavy metals in vegetables from the eastern coastal region of China[J]. Environmental Science, 2021, 42(11): 5519-5525. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202111050.htm
[10] 郭巨先, 罗文龙, 符梅, 等. 基施富硒肥对菜薹生长和营养元素的影响[J]. 中国农学通报, 2020, 36(28): 52-56. doi: 10.11924/j.issn.1000-6850.casb2020-0022
Guo J X, Luo W L, Fu M, et al. Effects of basal application of selenium-enriched fertilizer on growth and nutrient elements' content of Chinese flowering cabbage[J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 52-56. doi: 10.11924/j.issn.1000-6850.casb2020-0022
[11] 邹小智, 康德灿, 罗佳, 等. 食药用菌富硒食品的研发概况[J]. 食用菌, 2022, 44(3): 1-3, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-SIYJ202203001.htm
Zou X Z, Kang D C, Luo J, et al. Research and development of edible and medicinal mushroom selenium-enriched food[J]. Edible Fungi, 2022, 44(3): 1-3, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-SIYJ202203001.htm
[12] 夏炎, 宋延斌, 侯进凯, 等. 河南洛阳市土壤和农作物中钼分布规律与影响因素研究[J]. 岩矿测试, 2021, 40(6): 820-832. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202104130052
Xia Y, Song Y B, Hou J K, et al. Distribution law and influencing factors of molybdenum in soils and crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820-832. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202104130052
[13] Li A R, Qiao X X, Ji H W, et al. Investigation report on the effects of selenium on human health in Guanzhong area[J]. IOP Conference Series: Earth and Environmental Science, 2020, 514(5): 052029.
[14] 赵方慧, 李大鹏, 汪聪, 等. 我国富硒产品认证发展现状与对策建议[J]. 安徽农业科学, 2019, 47(3): 262-264, 267. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201903079.htm
Zhao F H, Li D P, Wang C, et al. The current situation and countermeasures of selenium-enriched products certification in China[J]. Journal of Anhui Agricultural Sciences, 2019, 47(3): 262-264, 267. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201903079.htm
[15] 蒋慧颖, 马玉仙, 黄建锋, 等. 茉莉花茶保健功效及相关保健产品研究现状[J]. 山西农业大学学报(自然科学版), 2016, 36(8): 604-608. https://www.cnki.com.cn/Article/CJFDTOTAL-SXNY201608016.htm
Jiang H Y, Ma Y X, Huang J F, et al. The research status of Jasmine tea health care efficacy and related health care products[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(8): 604-608. https://www.cnki.com.cn/Article/CJFDTOTAL-SXNY201608016.htm
[16] 林洁, 赵致, 罗春丽, 等. 三七矿质营养元素的分布特征[J]. 山地农业生物学报, 2020, 39(2): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNS202002011.htm
Lin J, Zhao Z, Luo C L, et al. Distribution characteristics of mineral nutrients in Panax notoginseng[J]. Journal of Mountain Agriculture and Biology, 2020, 39(2): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNS202002011.htm
[17] 兰丽平. ICP-MS法测定植物性保健品中十六种稀土元素[J]. 海峡药学, 2017, 29(10): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HAIX201710021.htm
Lan L P. ICP-MS method for determination of 16 kinds of rare earth elements in plant health products[J]. Strait Pharmaceutical Journal, 2017, 29(10): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HAIX201710021.htm
[18] 吴振宇, 刘璐莹, 艾林芳. 用微波消解-ICP-MS法同时测定中药中16种稀土元素[J]. 湿法冶金, 2022, 41(3): 278-281. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202203017.htm
Wu Z Y, Liu L Y, Ai L F. Simultaneous determination of 16 rare earth elements in traditional Chinese Medicine by microwave digestion-ICP-MS[J]. Hydrometallurgy of China, 2022, 41(3): 278-281. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202203017.htm
[19] 李秀琴, 逯海, 李红梅, 等. 食品安全化学计量技术与标准物质发展[J]. 食品安全质量检测学报, 2018, 9(15): 3891-3896. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201815003.htm
Li X Q, Lu H, Li H M, et al. Development of food safety chemical metrology technology and standard material[J]. Journal of Food Safety and Quality Inspection, 2018, 9(15): 3891-3896. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201815003.htm
[20] 刘素丽, 王宏伟, 赵梅, 等. 食品中基体标准物质研究进展[J]. 食品安全质量检测学报, 2019, 10(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201901003.htm
Liu S L, Wang H W, Zhao M, et al. Research progress of matrix reference materials for food[J]. Journal of Food Safety and Quality, 2019, 10(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201901003.htm
[21] 倪晓丽. 生物标准物质的研制现状及展望[J]. 中国计量, 1999(12): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JILA199912034.htm
Ni X L. Development status and prospect of biological reference materials[J]. China Metrology, 1999(12): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JILA199912034.htm
[22] 郭玲玲, 徐慧, 匡华. 食品安全检测基体标准物质研究进展[J]. 食品与生物技术学报, 2022, 41(7): 71-83. https://www.cnki.com.cn/Article/CJFDTOTAL-WXQG202207006.htm
Guo L L, Xu H, Kuang H. Research progress in matrix reference materials for food safety detection[J]. Journal of Food Science and Biotechnology, 2022, 41(7): 71-83. https://www.cnki.com.cn/Article/CJFDTOTAL-WXQG202207006.htm
[23] 高雅晓玲. 不同土壤类型中大豆的产量与品质对增温的响应[D]. 南京: 南京信息工程大学, 2021.
Gao Y X L. Response of soybean yield and quality to temperature enhancement in different soil types[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
[24] 吴启堂, 王广寿, 谭秀芳, 等. 不同水稻、菜心品种和化肥形态对作物吸收累积镉的影响[J]. 华南农业大学学报, 1994(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB404.000.htm
Wu Q T, Wang G S, Tan X F, et al. Effect of crop cultivars and chemical fertilizers on the cadmium accumulation in plants[J]. Journal of South China Agricultural University, 1994(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB404.000.htm
[25] 李垄清, 吴正云, 张强, 等. 气候变化对作物矿质元素利用率影响研究进展[J]. 生态学报, 2014, 34(5): 1053-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201405002.htm
Li L Q, Wu Z Y, Zhang Q, et al. State-of-the-art review of the impact of climatic change on bioavailability of mineral elements in crops[J]. Acta Ecologica Sinica, 2014, 34(5): 1053-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201405002.htm
[26] 杨榕, 顾铁新, 潘含江, 等. GBW10010a大米标准物质复(研)制及数据特征[J]. 岩矿测试, 2020, 39(6): 866-877. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005210073
Yang R, Gu T X, Pan H J, et al. Preparation of reference materials GBW10010a for rice component and data characteristics[J]. Rock and Mineral Analysis, 2020, 39(6): 866-877. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005210073
[27] 王瑾, 田有国, 徐晶莹, 等. 化肥成分分析系列标准物质研制[J]. 中国无机分析化学, 2022, 12(1): 178-192. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202201028.htm
Wang J, Tian Y G, Xu J Y, et al. Development of certified reference materials for the chemical composition of chemical fertilizers[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(1): 178-192. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202201028.htm
[28] 鄢明才, 顾铁新, 程志中. 地球化学标准物质的研制与应用[J]. 物探化探计算技术, 2007, (S1): 257-261. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT2007S1058.htm
Yan M C, Gu T X, Cheng Z Z. Development and application of geochemical reference standards[J]. Geophysical and Geochemical Exploration Computing Technology, 2007, (S1): 257-261. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT2007S1058.htm
[29] 刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681-693. http://www.ykcs.ac.cn/cn/article/id/be7f4a99-23f3-461f-bea1-ac90d0835111
Liu Y X, Li X J, Bai J F, et al. Sample pretreatment method and determination technique for analysis of inorganic elements in plant samples[J]. Rock and Mineral Analysis, 2013, 32(5): 681-693. http://www.ykcs.ac.cn/cn/article/id/be7f4a99-23f3-461f-bea1-ac90d0835111
[30] 刘亚轩, 张勤, 黄珍玉, 等. ICP-MS法测定地球化学样品中As、Cr、Ge、V等18种微量痕量元素的研究[J]. 化学世界, 2006(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSS200601006.htm
Liu Y X, Zhang Q, Huang Z Y, et al. Study on determination of 18 trace elements including As, Cr, Ge, V in geochemical samples by ICP-MS[J]. World of Chemistry, 2006(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSS200601006.htm
[31] 赵红坤, 于阗, 肖志博, 等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析, 2021, 41(3): 755-762. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103015.htm
Zhao H K, Yu T, Xiao Z B, et al. Application of powder tableting-X-ray fluorescence spectroscopy in the uniformity test of geochemical reference standards[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 755-762. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103015.htm
[32] 袁建, 王亚平, 许春雪, 等. 北京市重金属污染土壤成分分析标准物质研制[J]. 安徽农业科学, 2021, 49(17): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202117002.htm
Yuan J, Wang Y P, Xu C X, et al. Preparation of heavy metal contaminated soil reference materials of Beijing for chemical composition analysis[J]. Journal of Anhui Agricultural Sciences, 2021, 49(17): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202117002.htm
[33] 全国标准物质管理委员会. 标准物质定值原则和统计学原理[M]. 北京: 中国质检出版社, 2011.
National Reference Materials Management Committee. Principles for reference materials and statistics[M]. Beijing: Quality Inspection of China Press, 2011.
[34] 杨榕, 尹刚伟, 张菊霞, 等. 痕量金及金矿石标准物质复制[J]. 岩矿测试, 2021, 40(5): 751-762. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202106110005
Yang R, Yin G W, Zhang J X, et al. Preparation of trace gold and gold ore reference materials[J]. Rock and Mineral Analysis, 2021, 40(5): 751-762. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202106110005