中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

海河流域大清河平原区地下水化学特征及演化规律分析

孟瑞芳, 杨会峰, 白华, 徐步云. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383-395. doi: 10.15898/j.cnki.11-2131/td.202207010121
引用本文: 孟瑞芳, 杨会峰, 白华, 徐步云. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383-395. doi: 10.15898/j.cnki.11-2131/td.202207010121
MENG Ruifang, YANG Huifeng, BAI Hua, XU Buyun. Chemical Characteristics and Evolutionary Patterns of Groundwater in the Daqing River Plain Area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383-395. doi: 10.15898/j.cnki.11-2131/td.202207010121
Citation: MENG Ruifang, YANG Huifeng, BAI Hua, XU Buyun. Chemical Characteristics and Evolutionary Patterns of Groundwater in the Daqing River Plain Area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383-395. doi: 10.15898/j.cnki.11-2131/td.202207010121

海河流域大清河平原区地下水化学特征及演化规律分析

  • 基金项目:
    国家自然科学基金地质联合基金(U2244214);中国地质调查局地质调查项目(DD20190336,DD2022175);中国地质科学院基本科研业务费项目(SK202118,SK202216);河北省创新能力提升计划高水平人才团队建设专项(225A4204D)
详细信息
    作者简介: 孟瑞芳,硕士,副研究员,主要从事水文地质与水循环研究工作。E-mail: 631216332@163.com
    通讯作者: 杨会峰,博士,研究员,主要从事水文地质与水循环研究工作。E-mail: yanghuifeng@mail.cgs.gov.cn
  • 中图分类号: P641.12;P332.7

Chemical Characteristics and Evolutionary Patterns of Groundwater in the Daqing River Plain Area of Haihe Basin

More Information
  • 地下水超采引发大清河流域范围内一系列生态环境负效应,地下水与地表水关系密切,厘清大清河流域平原区地下水化学特征及演化规律,对大清河流域水资源合理开发利用具有重要意义,然而目前尚缺乏对大清河流域地下水化学特征特别是其历史以来的演变规律作系统的分析。本文以海河流域大清河平原区地下含水系统为例,采集浅层含水层组47个水样和深层含水层组32个水样,测试了主要阴离子(Cl-、SO42-、NO3-)和阳离子(K+、Na+、Ca2+、Mg2+)等指标,利用水化学类型、吉布斯模型、离子比值关系等方法,研究其水化学特征及演化规律。测试结果显示:浅层含水层组受到气象和人为因素影响较大,浅层和深层含水层组pH值(7.35~8.92)差异不大,偏碱性;浅层含水层组由于农业活动等影响,造成局部地区的硝酸盐和硫酸盐污染。水岩相互作用分析显示:硅酸盐矿物风化是研究区主要的矿物来源,硅酸盐矿物溶解、阳离子交换为主要的水化学作用。研究区浅层地下水水化学特征总体上受地形和水文地质条件的影响,由山前平原-中部平原呈规律性分布。现状地下水化学类型为沿地下水径流方向由山前的HCO3-Ca·Mg(Ca)型,经HCO3-Mg·Ca、HCO3-Mg·Ca·Na、HCO3-Na·Mg·Ca向HCO3·Cl-Na·Ca、HCO3·Cl·SO4-Na至平原中部冲湖积平原的Cl(SO4)-Na转变。水化学演变分析显示中部平原地下水由以Cl·HCO3-Ca·Na、HCO3·Cl-Ca·Na型为主,转变为当前条件下以Cl·HCO3-Ca·Na、SO4·Cl-Na·Mg型为主。总体上,研究区现状水化学类型复杂多样,且分布上虽然仍受地形与地质条件的控制,但越来越多地受到以开采为主的人类活动的影响,应重视人类活动对该区域地下水的影响,合理布置开采方案。本文利用水化学方法研究了大清河流域平原区地下水化学特征及演化规律,厘清了大清河流域平原的水化学特征以及水化学类型演变规律,初步分析了演变趋势造成的原因,特别是指明地下水化学演变越来越受到人类活动的影响,后续将在水化学未来的演变预测上进行相关的研究。

  • 加载中
  • 图 1  研究区水系分布及采样点分布

    Figure 1. 

    图 2  研究区现状地下水化学类型分布图

    Figure 2. 

    图 3  地下水样品(a, b)吉布斯图; (c)Mg2+/Na+与Ca2+/Na+比值关系图; (d)HCO3-/Na+与Ca2+/Na+比值关系图

    Figure 3. 

    图 4  研究区地下水样品主要离子比值图

    Figure 4. 

    图 5  地下水样SO42-/Ca2+与NO3-/Ca2+的比值关系图

    Figure 5. 

    表 1  研究区地下水水化学参数统计

    Table 1.  Statistical results of groundwater hydrochemical parameters in the study area

    地下水类型 特征值 pH TDS
    (mg/L)
    K+
    (mg/L)
    Na+
    (mg/L)
    Ca2+
    (mg/L)
    Mg2+
    (mg/L)
    Cl-
    (mg/L)
    SO42-
    (mg/L)
    HCO3-
    (mg/L)
    NO3-
    (mg/L)
    浅层含水层组 最小值 7.35 254.10 0.26 7.61 12.88 14.44 5.26 6.48 177.30 0.20
    最大值 8.92 6015.00 2.69 1393.00 194.00 341.40 693.30 3091.00 558.30 298.40
    平均值 7.90 664.14 1.14 87.49 76.15 47.60 70.66 162.27 333.28 28.78
    标准偏差 0.35 907.40 0.66 218.22 39.03 51.66 120.67 483.46 90.21 48.99
    变异系数 0.04 1.37 0.58 2.49 0.51 1.09 1.71 2.98 0.27 1.70
    深层含水层组 最小值 7.40 197.10 0.30 8.26 4.43 1.12 1.75 4.99 155.60 0.71
    最大值 8.80 691.40 2.61 189.80 58.29 20.82 86.22 255.70 305.10 17.46
    平均值 8.03 278.58 1.46 56.52 28.98 10.60 15.37 27.41 221.23 4.55
    标准偏差 0.38 88.95 0.65 37.97 14.91 5.54 19.14 43.89 39.67 4.05
    变异系数 0.05 0.32 0.45 0.67 0.51 0.52 1.25 1.60 0.18 0.89
    Note: The test results showed that the largest deviation was in the water sample from Hanbao Village, Liu Lizhuang Town, Anxin County, Baoding City, Hebei Province, which was from the shallow aquifer groups, and the maximum TDS reached 6015.00mg/L. The TDS of the shallow aquifer groups ranged from 254.10 to 6015.00mg/L, with an average of 664.14mg/L, with a large coefficient of variation and a large variation in TDS, indicating that the shallow aquifer groups were affected by meteorological and human factors. The TDS of the deep aquifer group ranged from 197.10 to 691.40mg/L, with an average of 278.58mg/L, and the coefficient of variation was small, indicating that the groundwater of the deep aquifer groups was less affected by meteorological and human activities than that of the shallow aquifer groups. The pH values of the shallow and deep aquifer groups in the study area were not significantly different (7.35-8.92) and were alkaline. The NO3-maximum value of 298.40mg/L and the SO42-maximum value of 3091.00mg/L in the shallow aquifer groups, but the average value is not significant, indicating that the shallow aquifer groups have caused local nitrate and sulfate pollution due to agricultural activities and other influences.
    下载: 导出CSV
  • [1]

    何宝南, 何江涛, 孙继朝, 等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203005.htm

    He B N, He J T, Sun J C, et al. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions[J]. Earth Science Frontiers, 2022, 29(3): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203005.htm

    [2]

    陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499-510. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202111300190

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Bejing[J]. Rock and Mineral Analysis, 2022, 41(3): 499-510. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202111300190

    [3]

    胡宗义, 何冰洋, 李毅. 中国流域水污染协同治理研究[J]. 中国软科学, 2022(5): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK202205007.htm

    Hu Z Y, He B Y, Li Y, et al. Research on collaborative governance of water pollution in river basin[J]. China Soft Science, 2022(5): 66-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK202205007.htm

    [4]

    Said I, Merz C, Salman E R, et al. Identification of hydrochemical processes using multivariate statistics in a complex aquifer system of Sohag region, Egypt[J]. Environmental Earth Sciences, 2020, 79(8): 1-14.

    [5]

    Ahmed A, Clark I. Groundwater flow and geochemical evolution in the central Flinders Ranges, South Australia[J]. Science of the Total Environment, 2016, 572(1): 837-851.

    [6]

    Han D M, Liang X, Jin M G, et al. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China[J]. Environmental Management, 2009, 44(2): 243-255. doi: 10.1007/s00267-009-9301-0

    [7]

    Chen J, Qian H, Gao Y Y, et al. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions[J]. Journal of Hydrology, 2020, 581, 124386. doi: 10.1016/j.jhydrol.2019.124386

    [8]

    Xiao Y, Shao J L, Cui Y L, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China[J]. Journal of Earth System Science, 2017, 126(2): 1-16.

    [9]

    Jla B, Ywa B, Cza B, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730: 1-11.

    [10]

    刘君, 陈宗宇, 王莹, 等. 大规模开采条件下我国北方区域地下水水化学变化特征[J]. 地球与环境, 2017, 45(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201704004.htm

    Liu J, Chen Z Y, Wang Y, et al. Evaluation of hydrochemical characteristics of regional groundwater systems in northern China under the conditions of large-scale exploitation[J]. Earth and Environment, 2017, 45(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201704004.htm

    [11]

    赵奕博, 尹钊, 史常青, 等. 大清河流域河岸植被带污染物净化能力研究[J]. 水土保持学报, 2022, 36(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202205018.htm

    Zhao Y B, Yin Z, Shi C Q, et al. Study on pollutant purification capacity of riparian vegetation zonein daqing river basin[J]. Journal of Soiland Water Conservation, 2022, 36(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202205018.htm

    [12]

    杨忠俭, 董思远. BIM技术在京杭运河大清河航道工程中的应用[J]. 山东交通科技, 2022(2): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE202202047.htm

    Yang Z J, Dong S Y. Application of BIM technology in the Daqing River waterway project of the Beijing—Hangzhou Canal[J]. Shandong Communications Technology, 2022(2): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE202202047.htm

    [13]

    姜鲁光, 杨成, 封志明, 等. 面向多目标情景的大清河流域水资源利用权衡[J]. 资源科学, 2021, 43(8): 1649-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202108012.htm

    Jiang L G, Yang C, Feng Z M, et al. Multi-scenario trade-off on water resources utilization in Daqing River Basin[J]. Resources Science, 2021, 43(8): 1649-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202108012.htm

    [14]

    王钰升. 大清河流域平原区地下水人工补给方式研究[D]. 长春: 吉林大学, 2021.

    Wang Y S. Study of groundwater artificial recharge modes in plain area of Daqing River Basin[D]. Changchun: Jilin University, 2021.

    [15]

    赵婧彤. 地下水人工补给过程中的促渗技术研究——以大清河流域典型区为例[D]. 长春: 吉林大学, 2021.

    Zhao J T. Study on infiltration promotion techniques during artificial recharge of groundwater——A case study of Daqing River Basin[D]. Changchun: Jilin University, 2021.

    [16]

    庄玉峰. 大清河中下游地下水水源评价区水量安全性评价[J]. 水利规划与设计, 2017(5): 24-25, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201705008.htm

    Zhuang Y F. Water safety assessment of groundwater source assessment area in the middle and lower reaches of Daqing River[J]. Water Resources Planning and Design, 2017(5): 24-25, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201705008.htm

    [17]

    董冬, 边静. 趋势面分析法在地下水动态预测中的应用[J]. 吉林地质, 2020, 39(2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ202002018.htm

    Dong D, Bian J. Application of trend surface analysis method in groundwater dynamic prediction[J]. Jilin Geology, 2020, 39(2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ202002018.htm

    [18]

    刘旭东, 张瑞, 万宝. 基于Piper-PCA-MLP神经网络的矿井涌水水源识别方法研究[J]. 中国煤炭地质, 2022, 34(7): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202207010.htm

    Liu X D, Zhang R, Wan B. Study on mine water inrush source discrimination method based on Piper-PCA-MLP neural network[J]. Coal Geology of China, 2022, 34(7): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202207010.htm

    [19]

    Ma B, Jin M G, Liang X, et al. Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators[J]. Hydrogelogy Journal, 2018, 26: 233-250.

    [20]

    陈毅. 白洋淀流域平原区地下水-孔隙水的水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 2018.

    Chen Y. Pore-water and groundwater hydrochemical characteristics and hydrogeochemical processes in Baiyangdian Lake Basin[D]. Beijing: China University of Geosciences (Beijing), 2018.

    [21]

    秦怡, 唐小惠, 李艳龙, 等. 枣庄市南部地下水水化学特征及其主要控制因素[J]. 安全与环境工程, 2022, 29(6): 132-138, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202206016.htm

    Qin Y, Tang X H, Li Y L, et al. Hydrochemical characteristics and main controlling factor of the ground water in southern Zaozhuang[J]. Safety and Environmental Engineering, 2022, 29(6): 132-138, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202206016.htm

    [22]

    李锴雯. 河北省自然地理环境对植物的影响[J]. 现代农村科技, 2016(6): 73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201606073.htm

    Li K W. Influence of natural geographical environment on plants in Hebei Province[J]. Modern Rural Science and Technology, 2016(6): 73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201606073.htm

    [23]

    侯思琰, 徐鹤, 刘德文, 等. 大清河流域主要河流与湿地生态水量计算与保障分析[J]. 吉林水利, 2021(8): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JLSL202108002.htm

    Hou S Y, Xu H, Liu D W, et al. Calculation and guarantee analysis of ecological water volume of main rivers and wetlands in Daqing River Basin[J]. Jilin Water Conservancy, 2021(8): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JLSL202108002.htm

    [24]

    任宇, 曹文庚, 潘登, 等. 2010—2020年黄河下游河南典型灌区浅层地下水中砷和氟的演化特征及变化机制[J]. 岩矿测试, 2021, 40(6): 846-859. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202110090143

    Ren Y, Cao W G, Pan D, et al. Evolution characteristics and change mechanism of arsenic and fluorine in shallow groundwater from a typical irrigation area in the lower reaches of the Yellow River (Henan) in 2010—2020[J]. Rock and Mineral Analysis, 2021, 40(6): 846-859. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202110090143

    [25]

    李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120-132. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202110080140

    Li J C, Cao W G, Pan D, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202110080140

    [26]

    曹文庚, 杨会峰, 高媛媛, 等. 南水北调中线受水区保定平原地下水质量演变预测研究[J]. 水利学报, 2020, 51(8): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008005.htm

    Cao W G, Yang H G, Gao Y Y, et al. Prediction of groundwater quality evolution in the Baoding Plain of the SNWDP benefited regions[J]. Journal of Hydraulic Engineering, 2020, 51(8): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008005.htm

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1127
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2022-07-01
修回日期:  2022-08-16
录用日期:  2022-11-05
刊出日期:  2023-03-28

目录