中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

电子探针分析锆石Hf和Ti含量的结果意义与技术优势

李小犁. 电子探针分析锆石Hf和Ti含量的结果意义与技术优势[J]. 岩矿测试, 2023, 42(1): 89-101. doi: 10.15898/j.cnki.11-2131/td.202203070043
引用本文: 李小犁. 电子探针分析锆石Hf和Ti含量的结果意义与技术优势[J]. 岩矿测试, 2023, 42(1): 89-101. doi: 10.15898/j.cnki.11-2131/td.202203070043
LI Xiaoli. Electron Probe Microanalysis of Hf and Ti in Zircon: Significance and Advantage[J]. Rock and Mineral Analysis, 2023, 42(1): 89-101. doi: 10.15898/j.cnki.11-2131/td.202203070043
Citation: LI Xiaoli. Electron Probe Microanalysis of Hf and Ti in Zircon: Significance and Advantage[J]. Rock and Mineral Analysis, 2023, 42(1): 89-101. doi: 10.15898/j.cnki.11-2131/td.202203070043

电子探针分析锆石Hf和Ti含量的结果意义与技术优势

  • 基金项目:
    国家自然科学基金项目(41872190)
详细信息
    作者简介: 李小犁,博士,高级工程师,矿物学专业,主要从事电子探针分析、岩石矿物学研究。E-mail: xiaoli.li@pku.edu.cn
  • 中图分类号: P597.3

Electron Probe Microanalysis of Hf and Ti in Zircon: Significance and Advantage

  • 锆石是一种重要的定年矿物,其微量元素地球化学行为是解释锆石年龄地质意义的重要依据。锆石微量元素分析一般采用的是在大束斑条件下(10~50μm)的质谱仪测试方法,其结果反映的是在该束斑范围内,元素的平均含量信息。相比之下,电子探针显微分析可以在极小微区范围内(< 5μm)进行元素的定量分析,更能有效地揭示元素的地球化学行为,可作为研究锆石微量元素的重要技术补充。本文以锆石定年中常用标准锆石(TEMORA、Qinghu和Plešovice)作为研究对象,在20kV加速电压、50~300nA轰击电流以及2~5μm束斑条件下,对其中的Hf和Ti进行了定量分析,包括常规的点和线分析(Point/Line Analysis)以及网格分析(Grid Analysis),并以此为基础进行了线性拟合并建模,对元素的面分布情况进行了探讨。在较长的计数时间条件下(300s),本文得到了20μg/g(1σ)的Ti含量检测限。实验结果表明:锆石中的Zr与Hf之间具有负相关性,反映了两者的类质同象替代;其次,在概率统计方面,电子探针Hf和Ti的定量分析结果明显高于LA-ICP-MS方法,反映了其在更小微区下的含量信息以及地球化学行为,须在诸如(锆石)Ti温度计的应用中特别注意。再者,测试所用标准锆石样品的Hf含量(和Zr/Hf比值)在微区下具有环带分布特征,表现为从核部到边部具有升高(降低)的趋势,这与锆石结晶生长过程中的熔体分异程度有关。另一方面,标准锆石样品中的Ti并未表现出类似Hf的分布特征,且Hf(和Zr/Hf比值)与Ti含量之间也没有发现明显的相关性。因此,对于前人提出的Hf具有类似Ti一样的温度计指示功能的观点仍有待进一步探讨。

  • 加载中
  • 图 1  电子探针测试标准锆石(PLE、QH和TEM)中Hf和Ti含量实验结果

    Figure 1. 

    图 2  电子探针测试标准锆石(PLE、QH和TEM)中Hf和Ti含量平均值的统计计算结果

    Figure 2. 

    图 3  标准锆石的Hf与Ti含量箱型图

    Figure 3. 

    图 4  标准锆石的BSE和CL电子图像以及电子探针剖面分析Hf、Zr/Hf和Ti结果

    Figure 4. 

    图 5  标准锆石阴极发光图像以及选择的微区范围(白色点线线框)的电子探针网格分析Ti、Hf和Zr/Hf结果的面分布图建模

    Figure 5. 

    表 1  锆石的电子探针分析条件

    Table 1.  EPMA analytical conditions for zircon

    实验-Ⅰ:加速电压20kV,激发电流50nA
    谱仪通道 元素 特征谱线 分光晶体 计数模式 计数时间
    (s)
    背景测量
    位置(mm)
    背景值计数
    时间(s)
    标样 检测限
    (1σ, μg/g)
    标准偏差
    (%)
    1 Ti PET Dif 10 +1/-5 5 金红石 60 4~800
    2 Zr TAP Dif 10 +5/-4 5 锆石 220 0.25
    3 Hf LIFH Dif 10 ±5 5 铪金属 120 0.25
    4 Si TAP Dif 10 ±5 5 锆石 40 3~5
    实验-Ⅱ:加速电压20kV,激发电流300nA
    谱仪通道 元素 特征谱线 分光晶体 计数模式 计数时间
    (s)
    背景测量
    位置(mm)
    背景值计数
    时间(s)
    标样 检测限
    (1σ, μg/g)
    标准偏差
    (%)
    3 Ti PETH Dif 300 +2.5/-1.5 5 金红石 20 5~100
    下载: 导出CSV
  • [1]

    Speer J A. Orthosilicates zircon. Reviews in mineralogy[M]. Washington D C: Mineralogical Society of America, 1980.

    [2]

    Watson E B, Cherniak D J. Oxygen diffusion in zircon[J]. Earth and Planetary Science Letters, 1997, 148: 527-544. doi: 10.1016/S0012-821X(97)00057-5

    [3]

    Harley S L, Kelly N M. Zircon: Tiny but timely[J]. Elements, 2007, 3(1): 13-18. doi: 10.2113/gselements.3.1.13

    [4]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    Wu Y B, Zheng Y F. Zircon genetic mineralogy constraints on its U-Pb age interpretation[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [5]

    Cherniak D J, Watson B E. Pb diffusion in zircon[J]. Chemical Geology, 2001, 172: 5-24. doi: 10.1016/S0009-2541(00)00233-3

    [6]

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027

    [7]

    Cherniak D J, Watson B F. Diffusion in zircon[J]. Review in Mineralogy and Geochemistry, 2003, 53: 113-143. doi: 10.2113/0530113

    [8]

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308: 841-844. doi: 10.1126/science.1110873

    [9]

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151: 413-433. doi: 10.1007/s00410-006-0068-5

    [10]

    Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154: 429-437. doi: 10.1007/s00410-007-0201-0

    [11]

    高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102006.htm

    Gao X Y, Zheng Y F. On the Zr in rutile and Ti in zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102006.htm

    [12]

    Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry: Applications and limitations[J]. Contributions to Mineralogy and Petrology, 2008, 156, 197-215. doi: 10.1007/s00410-008-0281-5

    [13]

    Zhang L, Chen R X, Zheng Y F, et al. Geochemical constraints on the protoliths of eclogites and blue schists from North Qilian, northern Tibet[J]. Chemical Geology, 2016, 421: 26-43. doi: 10.1016/j.chemgeo.2015.11.026

    [14]

    Harrison T M, Schmidt A K. High sensitivity mapping of Ti distributions in Hadean zircons[J]. Earth and Planetary Science Letters, 2007, 261: 9-18. doi: 10.1016/j.epsl.2007.05.016

    [15]

    Ferriss E D A, Essene E J, Becker U. Computational study of the effect of pressure on the Ti-in-zircon geothermometer[J]. European Journal of Mineralogy, 2008, 20: 745-755. doi: 10.1127/0935-1221/2008/0020-1860

    [16]

    蔺梦, 张贵宾, 宋述光, 等. 低温高压榴辉岩锆石Ti温度计的有效性[J]. 地球科学, 2019, 44(12): 4034-4041. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912009.htm

    Lin M, Zhang G B, Song S G, et al. The validity of Ti-in-zircon thermometry in low-temperature/high-pressure eclogites[J]. Earth Science, 2019, 44(12): 4034-4041. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912009.htm

    [17]

    Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261: 346-369. doi: 10.1016/j.chemgeo.2008.04.012

    [18]

    Li X, Zhang L, Wei C, et al. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites[J]. Journal of Metamorphic Geology, 2018, 36: 1-22. doi: 10.1111/jmg.12280

    [19]

    Hoskin P W O, Rodgers K A. Raman spectral shift in the isomorphous series (Zr1-xHfx)SiO4[J]. European Journal of Solid State Inorganic Chemistry, 1996, 33: 1111-1121.

    [20]

    Vervoort J D, Kemp A I S. Clarifying the zircon Hf isotope record of crust-mantle evolution[J]. Chemical Geology, 2016, 425: 65-75. doi: 10.1016/j.chemgeo.2016.01.023

    [21]

    Barth A P, Wooden J L. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas[J]. Chemical Geology, 2010, 277: 149-159. doi: 10.1016/j.chemgeo.2010.07.017

    [22]

    Claiborne L L, Miller C F, Walker B A, et al. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada[J]. Mineralogical Magazine, 2006, 70: 517-543. doi: 10.1180/0026461067050348

    [23]

    Claiborne L L, Miller C F, Wooden J L. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada[J]. Contributions to Mineralogy and Petrology, 2010, 160: 511-531. doi: 10.1007/s00410-010-0491-5

    [24]

    Compston W, Meyer C. U-Pb geochronology of zircons from lunar braccia 73217 using sensitive high-resolution ion microprobe[J]. Journal of Geophysical Research, 1984, 89(502): 525-534.

    [25]

    王彦斌, 张拴宏, 赵越, 等. 锆石SHRIMP年龄测定数据处理时系统偏差的避免——标准锆石分段校正的必要性[J]. 岩矿测试, 2006, 25(1): 9-14. doi: 10.15898/j.cnki.11-2131/td.2006.01.003 http://www.ykcs.ac.cn/cn/article/id/ykcs_20060103

    Wang Y B, Zhang S H, Zhao Y, et al. Avoidance of systematic bias of SHRIMP zircon U-Pb dating: Necessity of staged calibrations[J]. Rock and Mineral Analysis, 2006, 25(1): 9-14. doi: 10.15898/j.cnki.11-2131/td.2006.01.003 http://www.ykcs.ac.cn/cn/article/id/ykcs_20060103

    [26]

    刘建辉, 刘敦一, 张玉海, 等. 使用SHRIMP测定锆石铀-铅年龄的选点技巧[J]. 岩矿测试, 2011, 30(3): 265-268. doi: 10.3969/j.issn.0254-5357.2011.03.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20110303

    Liu J H, Liu D Y, Zhang Y H, et al. Techniques for choosing target points during SHRIMP dating of zircon U-Pb ages[J]. Rock and Mineral Analysis, 2011, 30(3): 265-268. doi: 10.3969/j.issn.0254-5357.2011.03.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20110303

    [27]

    Hoskin P W O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques[J]. Journal of Trace and Microprobe Techniques, 1998, 16(3): 301-326.

    [28]

    Yuan H, Gao S, Dai M, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003

    [29]

    肖志斌, 柳小明, 李正辉, 等. 激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量[J]. 岩矿测试, 2012, 31(2): 229-233. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120206

    Xiao Z B, Liu X M, Li Z H, et al. Accurate determination of Ti in zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(2): 229-233. http://www.ykcs.ac.cn/cn/article/id/ykcs_20120206

    [30]

    周剑雄, 毛水和. 电子探针分析[M]. 北京: 地质出版社, 1988.

    Zhou J X, Mao S H. Electron microprobe analysis[M]. Beijing: Geological Publishing House, 1988.

    [31]

    徐萃章. 电子探针分析原理[M]. 北京: 科学出版社, 1990.

    Xu C Z. The principle of electron microprobe analysis[M]. Science Press, 1990.

    [32]

    李小犁. 电子探针微量元素分析的一些思考[J]. 高校地质学报, 2021, 27(3): 306-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103007.htm

    Li X L. Several perspectives on microprobe trace elements analysis[J]. Geological Journal of China Universities, 2021, 27(3): 306-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103007.htm

    [33]

    李小犁, 张立飞, 魏春景, 等. 俄罗斯白海地区太古代榴辉岩的金红石Zr温度计应用及其地质意义[J]. 岩石学报, 2017, 33(10): 3263-3277. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710018.htm

    Li X L, Zhang L F, Wei C J, et al. Application of Zr-in-rutile thermometry and its interpretation on the Archean eclogite from Belomorian Province, Russia[J]. Acta Petrologica Sinica, 2017, 33(10): 3263-3277. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710018.htm

    [34]

    Cui J Q, Yang S Y, Jiang S Y, et al. Improved accuracy for trace element analysis of Al and Ti in quartz by electron probe microanalysis[J]. Microscopy and Microanalysis, 2019, 25: 47-57.

    [35]

    崔继强, 郭晟彬, 张若曦, 等. 电子探针多道波谱仪同时测试同一个元素的方法: 以石英中Al和Ti含量的测试为例[J]. 高校地质学报, 2021, 27(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103010.htm

    Cui J Q, Guo S B, Zhang R X, et al. EPMA simultaneous determination of an element by multi-spectrometer: A case study of the determination of Al and Ti contents in quartz[J]. Geological Journal of China Universities, 2021, 27(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103010.htm

    [36]

    Donovan J J, Lowers H A, Rusk B. Improved electron probe microanalysis of trace elements in quartz[J]. American Mineralogist, 2011, 96: 274-282.

    [37]

    Widenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses[J]. Geostandard Newsletter, 1995, 19: 1-23.

    [38]

    Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200: 155-170.

    [39]

    Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology, 2004, 205: 115-140.

    [40]

    Slama J, Kosler J, Condon D J. et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2007, 249: 1-35.

    [41]

    李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm

    Li X H, Tang G Q, Guo B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm

    [42]

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500.

    [43]

    路凤香, 桑隆康. 岩石学[M]. 北京: 地质出版社, 2001.

    Lu F X, Sang L K. Petrology[M]. Beijing: Geological Publishing House, 2001.

    [44]

    Cann J R. Rayleigh fractionation with continuous removal of liquid[J]. Earth and Planetary Science Letters, 1982, 60(1): 114-116.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  2120
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2022-03-07
修回日期:  2022-04-12
录用日期:  2022-04-30
刊出日期:  2023-01-28

目录