中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤中碘的赋存形态及迁移转化研究进展

曹寒, 张月, 金洁, 王祥学. 土壤中碘的赋存形态及迁移转化研究进展[J]. 岩矿测试, 2022, 41(4): 521-530. doi: 10.15898/j.cnki.11-2131/td.202203170055
引用本文: 曹寒, 张月, 金洁, 王祥学. 土壤中碘的赋存形态及迁移转化研究进展[J]. 岩矿测试, 2022, 41(4): 521-530. doi: 10.15898/j.cnki.11-2131/td.202203170055
CAO Han, ZHANG Yue, JIN Jie, WANG Xiangxue. Iodine Speciation, Transportation, and Transformation in Soils: A Critical Review[J]. Rock and Mineral Analysis, 2022, 41(4): 521-530. doi: 10.15898/j.cnki.11-2131/td.202203170055
Citation: CAO Han, ZHANG Yue, JIN Jie, WANG Xiangxue. Iodine Speciation, Transportation, and Transformation in Soils: A Critical Review[J]. Rock and Mineral Analysis, 2022, 41(4): 521-530. doi: 10.15898/j.cnki.11-2131/td.202203170055

土壤中碘的赋存形态及迁移转化研究进展

  • 基金项目:
    国家自然科学基金项目(U2067215)
详细信息
    作者简介: 曹寒,硕士研究生,主要研究方向为环境污染处理。E-mail: ch20210502@163.com
    通讯作者: 王祥学,博士,讲师,主要从事土壤有机质的环境地球化学行为研究和环境污染物的迁移转换规律研究。E-mail: xxwang@ncepu.edu.cn
  • 中图分类号: X53

Iodine Speciation, Transportation, and Transformation in Soils: A Critical Review

More Information
  • 查明土壤中碘的赋存形态及土壤中碘的迁移转化规律,对于评估碘的生物地球化学行为以及预防人类碘缺乏病具有重要意义。本文基于前人研究,阐述了土壤中碘的来源,并总结了土壤中碘的含量、形态及其影响因素。大气的干湿沉降、土壤母质岩石的风化作用以及植物的吸收与释放是土壤中碘的主要来源。国内外土壤中碘的平均含量约为1~5mg/kg,且主要以有机碘形态存在,有机质则是影响土壤中碘的含量及形态变化的重要因素。吸附是土壤碘迁移转化的主要过程。酸性条件下土壤矿物表面的羟基基团以质子化形式存在,有利于对碘的吸附。由于土壤中成分复杂,建立一个完整的土壤碘数据库是探究土壤碘有关方面的基础;需要进一步寻求更优的土壤碘的分析方法;研究土壤对碘的吸附作用机理以及有机质与微生物对土壤中碘的产生的作用机理也是未来研究的重要方向。

  • 加载中
  • 图 1  碘在植物中的迁移示意图

    Figure 1. 

    图 2  微生物对土壤中碘的影响

    Figure 2. 

    图 3  土壤中碘的形态与土壤中pH和Eh的关系[53]

    Figure 3. 

    图 4  一定温度下土壤pH值对碘化物及碘酸盐吸附的影响[56]

    Figure 4. 

    图 5  土壤中的碘离子与碘酸根离子与铁铝氧化物的关系

    Figure 5. 

    表 1  中国不同类型土壤中碘的含量[26-27]

    Table 1.  Iodine content in different types of soils in China[26-27]

    土壤类型 含碘量(mg/kg) 土壤类型 含碘量(mg/kg)
    砖红壤 4.78 黑土 2.57
    紫色土 1.15 红壤 7.06
    绵土 1.33 黄壤 5.56
    白浆土 1.62 暗棕壤 2.35
    水稻土 1.56 黑钙土 3.05
    灰漠土 3.59 灰钙土 1.80
    黄褐土 1.11 黑垆土 1.67
    棕漠土 1.20 潮土 1.99
    褐土 1.63 枣红土 2.64
    沼泽土 1.91 草甸土 2.14
    栗钙土 2.08 盐土 2.46
    碱土 1.17
    下载: 导出CSV

    表 2  土壤有机质和碘之间的关系[5, 40-41]

    Table 2.  Relationship between concentrations of soil organic matter and iodine[5, 40-41]

    土壤来源 土壤深度(cm) 有机质含量(mg/kg) 碘含量(mg/kg)
    新疆和田 - 24.21 2.8
    四川峨眉山 0~16 39.3 3.5
    16~60 20.5 2.4
    60~100 14.0 2.2
    内蒙古扎兰屯 0~1 94.7 4.2
    1~9 27.2 3.0
    9~26 10.0 2.3
    26~34 7.6 2.1
    内蒙古扎兰屯 0~20 24.3 3.6
    20~44 17.0 3.3
    44~77 15.0 3.0
    77~100 11.9 3.6
    德比郡(北) 0~15 14.76 8.32
    15~31 8.50 9.40
    31~45 3.25 7.51
    45~61 3.47 5.82
    下载: 导出CSV

    表 3  土壤中碘形态的影响因素

    Table 3.  Influencing factors of iodine speciation in soil

    影响因素 土壤中碘形态的转化过程 参考文献
    有机质 无机碘→有机碘 [49-50]
    有机质 元素态碘、碘化氢→有机碘 [51]
    芳香碳 碘酸盐→有机碘 [52]
    过氧化氢、土壤细菌 碘离子→元素态碘、碘化氢 [51]
    下载: 导出CSV
  • [1]

    Saha S, Abu B, Jamshidi N Y, et al. Is iodine deficiency still a problem in sub-Saharan Africa?: A review[J]. Proceedings of the Nutrition Society, 2019, 78(4): 1-13.

    [2]

    Wang Z, Zhang Y L, Zhang J K, et al. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review[J]. Chemosphere, 2022, 287: 132313. doi: 10.1016/j.chemosphere.2021.132313

    [3]

    Kadowaki M, Katata G, Terada H, et al. Impacts of anthro-pogenic source from the nuclear fuel reprocessing plants on global atmospheric iodine-129 cycle: A model analysis[J]. Atmospheric Environment, 2018, 184: 278-291. doi: 10.1016/j.atmosenv.2018.04.044

    [4]

    Ota M, Terada H, Hasegawa H, et al. Processes affecting land-surface dynamics of I-129 impacted by atmospheric I-129 releases from a spent nuclear fuel reprocessing plant[J]. Science of the Total Environment, 2019, 704: 135319.

    [5]

    罗璐. 典型流域土壤水系沉积物碘的空间分布特征研究[D]. 武汉: 中国地质大学(武汉), 2019.

    Luo L. Study on the spatial distribution characteristics of iodine in soil-water sediment of a typical watershed[D]. Wuhan: China University of Geosciences (Wuhan), 2019.

    [6]

    任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901170009

    Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soils, sediments and rocks by ICP-MS after pressurized acid digestion hydroxylamine hydrochloride reduction[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901170009

    [7]

    袁燕平, 彭红星, 李悟庆, 等. 电感耦合等离子体质谱法准确测定多矿中碘的含量[J]. 饲料研究, 2019, 42(12): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SLYJ201912025.htm

    Yuan Y P, Peng H X, Li W Q, et al. Accurate determination of iodine content in polyore by inductively coupled plasma mass spectrometry[J]. Feed Research, 2019, 42(12): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SLYJ201912025.htm

    [8]

    Silva J S, Diehl L O, Frohlich A C, et al. Determination of bromine and iodine in edible flours by inductively coupled plasma mass spectrometry after microwave-induced combustion[J]. Microchemical Journal: Devoted to the Application of Microtechniques in all Branches of Science, 2017, 133: 246-250.

    [9]

    胡梦娜, 周启星, 陈翠红, 等. 高效液相色谱-电感耦合等离子体质谱法测定土壤中不同形态的无机碘[J]. 分析测试学报, 2019, 38(11): 1389-1392. doi: 10.3969/j.issn.1004-4957.2019.11.018

    Hu M N, Zhou Q X, Chen C H, et al. Determination of inorganic iodine in soil by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(11): 1389-1392. doi: 10.3969/j.issn.1004-4957.2019.11.018

    [10]

    Duborska E, Bujdo M, Urik M, et al. Iodine fractionation in agricultural and forest soils using extraction methods[J]. Catena, 2020, 195: 104749. doi: 10.1016/j.catena.2020.104749

    [11]

    Mohiuddin M, Irshad M, Ping A, et al. Bioavailability of iodine to mint from soil applied with selected amendments[J]. Chemical Speciation and Bioavailability, 2019, 31(1): 138-144.

    [12]

    姜旭宏, 侯小琳, 陈宁, 等. 环境水样中I-129分析及其在环境示踪中的应用[J]. 地球环境学报, 2017, 8(3): 203-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201703003.htm

    Jiang X H, Hou X L, Chen N, et al. Analysis of I-129 in environmental water samples and its application in environmental tracing[J]. Journal of Earth Environment, 2017, 8(3): 203-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201703003.htm

    [13]

    Mohammadi M, Azizi F, Hedayati M. Iodine deficiency status in the WHO eastern Mediterranean Region: A systematic review[J]. Environmental Geochemistry & Health, 2018, 40(1): 1-11.

    [14]

    Duborska E, Urik M, Bujdos M, et al. Aging and substrate type effects on iodide and iodate accumulation by barley (Hordeum vulgare L. )[J]. Water Air and Soil Pollution, 2016, 227(11): 407. doi: 10.1007/s11270-016-3112-8

    [15]

    黄会前, 何腾兵, 牟力. 贵州母岩(母质)对土壤类型及分布的影响[J]. 浙江农业科学, 2016, 57(11): 1816-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201611018.htm

    Huang H Q, He T B, Mou L. Effects of parent rocks on soil types and distribution in Guizhou Province[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(11): 1816-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201611018.htm

    [16]

    Legrand M, Mcconnell J R, Preunkert S, et al. Alpine ice evidence of a three-fold increase in atmospheric iodine deposition since 1950 in Europe due to increasing oceanic emissions[J]. Proceedings of the National Academy of Sciences, 2018, 115(48): 12136-12141. doi: 10.1073/pnas.1809867115

    [17]

    Roulier M, Coppin F, Bueno M, et al. Iodine budget in forest soils: Influence of environmental conditions and soil physicochemical properties[J]. Chemosphere, 2019, 224: 20-28. doi: 10.1016/j.chemosphere.2019.02.060

    [18]

    周骏. 浙江省土壤中硒、碘的环境与生物地球化学特征研究[D]. 杭州: 浙江大学, 2016.

    Zhou J. Environmental and biogeochemical characterization of selenium and iodine in soils of Zhejiang Province[D]. Hangzhou: Zhejiang University, 2016.

    [19]

    Tsukada H, Takeda1 A, Tagami K, et al. Uptake and distribution of iodine in rice plants[J]. Journal of Environmental Quality, 2008, 37(6): 2243-2247. doi: 10.2134/jeq2008.0010

    [20]

    Weng H X, Yan A L, Hong C L, et al. Biogeochemical transfer and dynamics of iodine in a soil-plant system[J]. Environmental Geochemistry & Health, 2009, 31(3): 401-411.

    [21]

    Shinonaga T, Gerzabek M H, Strebl F, et al. Transfer of iodine from soil to cereal grains in agricultural areas of Austria[J]. Science of the Total Environment, 2001, 267(1-3): 33-40. doi: 10.1016/S0048-9697(00)00764-6

    [22]

    Carpenter L J, Chance R J, Sherwen T, et al. Marine iodine emissions in a changing world[J]. Proceedings of Royal Society A: Mathematical Physical and Engineering Sciences, 2021, 477(2247): 20200824. doi: 10.1098/rspa.2020.0824

    [23]

    Junior E, Wadt L, Silva K, et al. Geochemistry of selenium, barium, and iodine in representative soils of the Brazilian Amazon rainforest[J]. Science of the Total Environment, 2022, 828: 154426. doi: 10.1016/j.scitotenv.2022.154426

    [24]

    Johnson C C. Database of iodine content of soils populated with data from published literature[M]. British Geological Survey Commissioned Report, 2003: 38.

    [25]

    孙自军, 刘延霞. 碘的分析方法研究进展[J]. 化学工程师, 2013, 27(4): 54-57. doi: 10.3969/j.issn.1002-1124.2013.04.017

    Sun Z J, Liu Y X. Advances in the analysis of iodine[J]. Chemical Engineer, 2013, 27(4): 54-57. doi: 10.3969/j.issn.1002-1124.2013.04.017

    [26]

    谢恬, 陈建斌, 胡超, 等. 土壤中碘的来源和分布及影响因素[J]. 安徽农业科学, 2010, 38(21): 11350-11351, 11354. doi: 10.3969/j.issn.0517-6611.2010.21.115

    Xie T, Chen J B, Hu C, et al. Study on the distribution of iodine in soil and its influencing factors[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11350-11351, 11354. doi: 10.3969/j.issn.0517-6611.2010.21.115

    [27]

    洪春来. 土壤-蔬菜系统中碘的生物地球化学行为与蔬菜对外源碘的吸收机制研究[D]. 杭州: 浙江大学, 2007.

    Hong C L. Biogeochemical behavior of iodine in soil-vegetable systems and the uptake mechanism of exogenous iodine by vegetables[D]. Hangzhou: Zhejiang University, 2007.

    [28]

    韦后明. 甲基橙氧化褪色光度法测定食盐中碘酸钾的改进[J]. 中国调味品, 2018, 43(2): 139-141. doi: 10.3969/j.issn.1000-9973.2018.02.032

    Wei H M. Improvement of spectrophotometric determin-ation of potassium iodate in salt by oxidation bleaching with methyl orange[J]. Chinese Condiment, 2018, 43(2): 139-141. doi: 10.3969/j.issn.1000-9973.2018.02.032

    [29]

    于立娟, 李广义, 袁玉霞, 等. 容量法测定卤水中碘含量的不确定度评定[J]. 无机盐工业, 2020, 52(8): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202008020.htm

    Yu L J, Li G Y, Yuan Y X, et al. Evaluation of uncertainty in determination of iodine content in brine by volumetric method[J]. Inorganic Chemical Industry, 2020, 52(8): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202008020.htm

    [30]

    Pournaghi A, Keshvari F, Bahram M. Colorimetric determination of iodine based on highly selective and sensitive anti-aggregation assay[J]. Journal of the Iranian Chemical Society, 2018, 16(1): 143-149.

    [31]

    刘宝友, 李凤. 离子选择性电极法测定离子液体中的氟离子[J]. 广州化学, 2019, 44(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX201901007.htm

    Liu B Y, Li F. Determination of fluoride ions in ionic liquids by ion-selective electrode method[J]. Guangzhou Chemistry, 2019, 44(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX201901007.htm

    [32]

    计萍. 有机改进剂用于离子色谱法测碘化物的研究[J]. 环境与可持续发展, 2017, 42(1): 170-171. doi: 10.3969/j.issn.1673-288X.2017.01.052

    Ji P. Determination of iodide by ion chromatography with organic improver[J]. Environment and Sustainable Development, 2017, 42(1): 170-171. doi: 10.3969/j.issn.1673-288X.2017.01.052

    [33]

    相萍萍, 徐书杭, 刘超. 食物中碘的测定方法[J]. 中国食物与营养, 2017, 23(10): 34-37, 41. doi: 10.3969/j.issn.1006-9577.2017.10.008

    Xiang P P, Xu S H, Liu C. Determination of iodine in food[J]. Food and Nutrition in China, 2017, 23(10): 34-37, 41. doi: 10.3969/j.issn.1006-9577.2017.10.008

    [34]

    双龙, 阿拉木斯, 金丹, 等. 四甲基氢氧化铵提取-电感耦合等离子体质谱法测定多种食品中的碘[J]. 分析科学学报, 2022, 38(1): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202201023.htm

    Shuang L, Lamusi A, Jin D, et al. Determination of iodine in various foods by extraction of tetramethylammonium hydroxide and inductively coupled plasma mass spectrometry[J]. Journal of Analytical Sciences, 2022, 38(1): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202201023.htm

    [35]

    李冰, 史世云, 何红蓼, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅱ. 土壤及沉积物标准物质分析[J]. 岩矿测试, 2001, 20(4): 241-246. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010471

    Li B, Shi S Y, He H L, et al. Simultaneous determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅱ. Analysis of soil and sediment standard materials[J]. Rock and Mineral Analysis, 2001, 20(4): 241-246. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010471

    [36]

    上官俊, 郑建刚, 李志宏. 江西省不同土壤和水中碘含量调查[J]. 现代预防医学, 2016, 43(10): 1763-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201610012.htm

    Shang G J, Zheng J G, Li Z H. Investigation of iodine content in different soil and water in Jiangxi Province[J]. Modern Preventive Medicine, 2016, 43(10): 1763-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201610012.htm

    [37]

    Yi P, Yu Z, Chen P, et al. Late Holocene pathway of Asian summer monsoons imprinted in soils and societal implications[J]. Quaternary Science Reviews, 2019, 215: 35-44. doi: 10.1016/j.quascirev.2019.05.002

    [38]

    Mohiuddin M, Irshad M, Hussain Z, et al. Leachability of iodine from soils of different land uses as affected by selected amendments[J]. Environmental Engineering and Management Journal, 2019, 18(9): 2095-2103. doi: 10.30638/eemj.2019.199

    [39]

    薛江凯, 邓娅敏, 杜尧, 等. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学, 2021, 46(11): 4140-4149. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111026.htm

    Xue J K, Deng Y M, Du Y, et al. Molecular composition of organic matter in groundwater along the middle reaches of the Yangtze River and its indication for iodine enrichment[J]. Earth Science, 2021, 46(11): 4140-4149. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111026.htm

    [40]

    吴世汉, 邢光熹. 我国主要土壤类型中溴和碘的分布特性[J]. 土壤学报, 1996(1): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA601.003.htm

    Wu S H, Xing G X. Distribution characteristics of bromine and iodine in the main soil types in China[J]. Journal of Soil Science, 1996(1): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA601.003.htm

    [41]

    Dai J L, Zhang M, Zhu Y G. Adsorption and desorption of iodine by various Chinese soils: Ⅰ. Iodate[J]. Environment International, 2004, 30(4): 525-530. doi: 10.1016/j.envint.2003.10.007

    [42]

    王涵. 基于催化氧化还原反应的比色法的构建与应用[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2019.

    Wang H. Construction and application of colorimetric method based on catalytic REDOX reaction[D]. Yantai: University of Chinese Academy of Sciences (Yantai Coastal Zone Research Institute, Chinese Academy of Sciences), 2019.

    [43]

    姚旭, 刘淑香. 过氧化氢体系苯芴酮光度法测定金红石样品中锡元素[J]. 中国石油和化工标准与质量, 2018, 38(19): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201819028.htm

    Yao X, Liu S X. Spectrophotometric determination of tin in rutile by benzfluorenone with hydrogen peroxide system[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(19): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201819028.htm

    [44]

    仲惟. 碘化钾-淀粉光度法测定肉制品中亚硝酸钠含量[J]. 中国食品添加剂, 2021, 32(7): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSTJ202107017.htm

    Zhong W. Determination of sodium nitrite in meat products by potassium iodide-starch spectrophotometry[J]. China Food Additives, 2021, 32(7): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSTJ202107017.htm

    [45]

    李洪伟, 刘晓端, 李保山. 地下水和土壤中不同形态碘的分离测定[J]. 岩矿测试, 2009, 28(4): 337-341. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090407

    Li H W, Liu X D, Li B S. Separation and determination of different forms of iodine in groundwater and soil[J]. Rock and Mineral Analysis, 2009, 28(4): 337-341. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090407

    [46]

    刘崴. 碘元素形态分析及环境地球化学应用研究[D]. 北京: 中国地质科学院, 2007.

    Liu W. Analysis of iodine speciation and its application in environmental geochemistry[D]. Beijing: Chinese Academy of Geological Sciences, 2007.

    [47]

    Korobova E, Kolmykova L, Ryzhenko B, et al. Distribution and speciation of iodine in drinking waters from geochemically different areas of Bryansk region contaminated after the Chernobyl Accident in relation to health and remediation aspects[J]. Journal of Geochemical Exploration, 2018, 184: 311-317.

    [48]

    Keppler F, Borchers R, Elsner P, et al. Formation of volatile iodinated alkanes in soil: Results from laboratory studies[J]. Chemosphere, 2003, 52(2): 477-483.

    [49]

    Ahmad S, Bailey E H, Arshad M, et al. Multiple geo-chemical factors may cause iodine and selenium deficiency in Gilgit-Baltistan, Pakistan[J]. Environmental Geochemistry and Health, 2021, 43: 4493-4513.

    [50]

    Yamaguchi N, Nakano M, Takamatsu R, et al. Inorganic iodine incorporation into soil organic matter: Evidence from iodine K-edge X-ray absorption near-edge structure[J]. Journal of Environmental Radioactivity, 2010, 101(6): 451-457.

    [51]

    Li H P, Yeager C M, Brinkmeyer R, et al. Bacterial production of organic acids enhances H2O2-dependent iodine oxidation[J]. Environmental Science & Technology, 2012, 46(9): 4837-4844.

    [52]

    Mohiuddin M, Irshad M, Farig M, et al. Extractability of iodine from soils using different methods in relation to soil properties[J]. Arabian Journal of Geosciences, 2021, 14(5): 1-9.

    [53]

    Fuge R, Johnson C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.

    [54]

    Duborska E, Urik M, Bujdos M, et al. Influence of physicochemical properties of various soil types on iodide and iodate sorption[J]. Chemosphere, 2019, 214: 168-175.

    [55]

    Soderlund M, Virkanen J, Aromaa H, et al. Sorption and speciation of iodine in boreal forest soil[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 311(1): 549-564.

    [56]

    Lusa M, Bomberg M, Aromaa H, et al. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: Insights into the microbial impact[J]. Journal of Environmental Radioactivity, 2015, 143(5): 110-122.

    [57]

    Hong C L, Weng H X, Jilani G, et al. Evaluation of iodine and iodate for adsorption-desorption characteristics and bioavailability in three types of soil[J]. Biological Trace Element Research, 2012, 146(2): 262-271.

    [58]

    Yeager C M, Amachi S, Grandbois R, et al. Microbial transformation of iodine: From radioisotopes to iodine deficiency[J]. Advances in Applied Microbiology, 2017, 101: 83-136.

    [59]

    Qian K, Li J, Chi Z, et al. Natural organic matter-enhanced transportation of iodine in groundwater in the Datong Basin: Impact of irrigation activities[J]. Science of the Total Environment, 2020, 730: 138460.

    [60]

    Yoshida Y M S. Effects of microorganisms on the fate of iodine in the soil environment[J]. Geomicrobiology Journal, 1999, 16(1): 85-93.

    [61]

    Neeway J J, Kaplan D I, Bagwell C E, et al. A review of the behavior of radioiodine in the subsurface at two DOE sites[J]. Science of the Total Environment, 2019, 691: 466-475.

    [62]

    严爱兰. 土壤碘的环境地球化学迁移研究[J]. 安徽农业科学, 2014, 42(16): 5056-5057. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201416042.htm

    Yan A L. Environmental geochemical migration of iodine in soil[J]. Journal of Anhui Agricultural Sciences, 2014, 42(16): 5056-5057. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201416042.htm

  • 加载中

(5)

(3)

计量
  • 文章访问数:  3841
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2022-03-17
修回日期:  2022-05-10
录用日期:  2022-06-24
刊出日期:  2022-07-28

目录