中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

贵州埃迪卡拉系陡山沱组磷块岩中硫酸根硫同位素测定与硫来源研究

李宣孛, 王瑞敏, 黄天正, 帅歌伟, 沈冰. 贵州埃迪卡拉系陡山沱组磷块岩中硫酸根硫同位素测定与硫来源研究[J]. 岩矿测试, 2022, 41(4): 531-540. doi: 10.15898/j.cnki.11-2131/td.202202210026
引用本文: 李宣孛, 王瑞敏, 黄天正, 帅歌伟, 沈冰. 贵州埃迪卡拉系陡山沱组磷块岩中硫酸根硫同位素测定与硫来源研究[J]. 岩矿测试, 2022, 41(4): 531-540. doi: 10.15898/j.cnki.11-2131/td.202202210026
LI Xuanbo, WANG Ruimin, HUANG Tianzheng, SHUAI Gewei, SHEN Bing. Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province[J]. Rock and Mineral Analysis, 2022, 41(4): 531-540. doi: 10.15898/j.cnki.11-2131/td.202202210026
Citation: LI Xuanbo, WANG Ruimin, HUANG Tianzheng, SHUAI Gewei, SHEN Bing. Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province[J]. Rock and Mineral Analysis, 2022, 41(4): 531-540. doi: 10.15898/j.cnki.11-2131/td.202202210026

贵州埃迪卡拉系陡山沱组磷块岩中硫酸根硫同位素测定与硫来源研究

  • 基金项目:
    国家自然科学基金项目(41772359)
详细信息
    作者简介: 李宣孛,硕士研究生,古生物学与地层学专业。E-mail: 1901210174@pku.edu.cn
    通讯作者: 沈冰,博士,研究员,从事生物地球化学研究。E-mail: bingshen@pku.edu.cn
  • 中图分类号: O657.63

Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province

More Information
  • 贵州地区埃迪卡拉系陡山沱组磷矿床沉积是新元古代晚期全球性成磷事件的典型代表,与气候突变及生命演化等存在密切联系。然而,目前对磷矿床沉积的研究仅局限于成磷机制和磷质来源等问题,而通过同位素地球化学指标研究该矿床成磷过程及与同期古海洋环境的关联研究较为薄弱。本文以贵州省息烽地区陡山沱组磷块岩为研究对象,在野外剖面观察和镜下岩石学特征研究基础上,利用元素分析仪-同位素质谱(EA-IRMS)连续流分析技术精确测得陡山沱组磷块岩的硫酸根硫同位素变化范围为32.7‰~36.9‰(n=32,平均值34.1‰),比同时期海水的硫同位素值低11‰,两者的差异表明磷块岩中的硫并不全部来自表层海水。理想化早期海洋(>520Ma)化学分带模型指示同时期海水中存在相对亏损34S的H2S带,结合磷块岩中磷质来源与上升流关系密切的认识,可以认为陡山沱组磷块岩的硫酸根硫同位素组成代表了表层海水和上升流的混合信号。

  • 加载中
  • 图 1  (a) 扬子地区埃迪卡拉纪陡山沱期岩相古地理(据文献[15]修改); (b)息烽地区陡山沱组地层柱状图

    Figure 1. 

    图 2  息烽地区陡山沱组磷块岩的岩石学特征

    Figure 2. 

    图 3  息烽地区陡山沱组PAS及同时期CAS和蒸发岩硫同位素组成; CAS和蒸发岩的硫同位素数据分别来自文献[36]和[21]

    Figure 3. 

    图 4  早期海洋化学分带模型示意图(据文献[46]修改)

    Figure 4. 

    表 1  息烽地区陡山沱组PAS硫同位素组成数据

    Table 1.  Sulfur isotopic composition data of PAS of Doushantuo Formation in Xifeng area

    样品编号 PAS硫同位素数据δ34S(‰) 样品编号 PAS硫同位素数据δ34S(‰)
    XF-1 33.8 XF-17 32.8
    XF-2 33.0 XF-18 33.9
    XF-3 33.5 XF-19 32.9
    XF-4 33.9 XF-20 33.2
    XF-5 33.7 XF-21 33.8
    XF-6 36.9 XF-22 34.3
    XF-7 35.7 XF-23 34.2
    XF-8 34.2 XF-24 35.3
    XF-9 34.3 XF-25 35.1
    XF-10 35.2 XF-26 34.4
    XF-11 33.0 XF-27 34.1
    XF-12 32.7 XF-28 34.2
    XF-13 34.7 XF-29 34.3
    XF-14 33.8 XF-30 34.3
    XF-15 35.4 XF-31 32.7
    XF-16 34.4 XF-32 34.4
    下载: 导出CSV
  • [1]

    张亚冠, 杜远生, 刘建中, 等. 贵州震旦系陡山沱组磷块岩成磷作用及与新元古代末期氧化事件(NOE)的耦合[J]. 古地理学报, 2020, 22(5): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005007.htm

    Zhang Y G, Du Y S, Liu J Z, et al. Phosphogenesis of phosphorite from the Sinian Doushantuo Formation in Guizhou Province and its coupling relation with the Neoproterozoic Oxygenation Event (NOE)[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(5): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005007.htm

    [2]

    Filippelli G M. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective[J]. Chemosphere, 2011, 84(6): 759-766. doi: 10.1016/j.chemosphere.2011.02.019

    [3]

    Anderson R P, Macdonald F A, Jones D S, et al. Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia[J]. Geology, 2017, 45(12): 1079-1082. doi: 10.1130/G39576.1

    [4]

    Pufahl P K, Hiatt E E. Oxygenation of the Earth's atmosphere-ocean system; a review of physical and chemical sedimentologic responses[J]. Marine and Petroleum Geology, 2012, 32(1): 1-20. doi: 10.1016/j.marpetgeo.2011.12.002

    [5]

    Pufahl P K, Groat L A. Sedimentary and igneous phosphate deposits; formation and exploration; an invited paper[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2017, 112(3): 483-516. doi: 10.2113/econgeo.112.3.483

    [6]

    Hiatt E E, Pufahl P K, Edwards C T. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85Ga Michigamme Formation, Michigan, USA[J]. Sedimentary Geology, 2015, 319: 24-39. doi: 10.1016/j.sedgeo.2015.01.006

    [7]

    Caird R A, Pufahl P K, Hiatt E E, et al. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil; phosphogenesis during the Neoproterozoic Oxygenation Event[J]. Sedimentary Geology, 2017, 350: 55-71. doi: 10.1016/j.sedgeo.2017.01.005

    [8]

    王志罡, 谢宏, 杨旭, 等. 贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J]. 岩矿测试, 2018, 37(3): 256-265. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201710310172

    Wang Z G, Xie H, Yang X, et al. Stepwise extraction study on the occurrence of uranium in Tongren Bahuang Phosphorite, Guizhou[J]. Rock and Mineral Analysis, 2018, 37(3): 256-265. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201710310172

    [9]

    Baturin G N. The origin of marine phosphorites[J]. International Geology Review, 1989, 31(4): 327-342. doi: 10.1080/00206818909465885

    [10]

    张亚冠, 杜远生, 陈国勇, 等. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制[J]. 古地理学报, 2019, 21(2): 351-368. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902011.htm

    Zhang Y G, Du Y S, Chen G Y, et al. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 351-368. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902011.htm

    [11]

    Goldberg T, Poulton S W, Strauss H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution[J]. Precambrian Research, 2005, 137(3-4): 223-241. doi: 10.1016/j.precamres.2005.03.003

    [12]

    Qiao W L, Lang X G, Peng Y B, et al. Sulfur and oxygen isotopes of sulfate extracted from early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform[J]. Journal of Earth Science (Wuhan, China), 2016, 27(2): 170-179.

    [13]

    Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1-2): 7-61. doi: 10.1016/j.palaeo.2007.03.025

    [14]

    刘静江, 李伟, 张宝民, 等. 上扬子地区震旦纪沉积古地理[J]. 古地理学报, 2015, 17(6): 735-753. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506002.htm

    Liu J J, Li W, Zhang B M, et al. Sedimentary palaeo-geography of the Sinian in Upper Yangtze Region[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(6): 735-753. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506002.htm

    [15]

    Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849. doi: 10.1016/j.gr.2011.01.006

    [16]

    杨爱华, 朱茂炎, 张俊明, 等. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比[J]. 古地理学报, 2015, 17(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501001.htm

    Yang A H, Zhu M Y, Zhang J M, et al. Sequence stratigraphic subdivision and correlation of the Ediacaran (Sinian) Doushantuo Formation of Yangtze Plate, South China[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501001.htm

    [17]

    徐丽, 邢蓝田, 王鑫, 等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15-20. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201701130005

    Xu L, Xing L T, Wang X, et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analyzer-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15-20. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201701130005

    [18]

    高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201908120128

    Gao J F, Xu Y M, Fan C F, et al. Analysis of sulfur isotope composition of gypsum samples by elemental analyzer-isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201908120128

    [19]

    Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate[J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459

    [20]

    Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event[J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.epsl.2011.10.030

    [21]

    Crockford P W, Kunzmann M, Bekker A, et al. Claypool continued: Extending the isotopic record of sedimentary sulfate[J]. Chemical Geology, 2019, 513: 200-225. doi: 10.1016/j.chemgeo.2019.02.030

    [22]

    Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622. doi: 10.1146/annurev-earth-060313-054802

    [23]

    Gomes M L, Hurtgen M T. Sulfur isotope fractionation in modern euxinic systems: Implications for paleo-environmental reconstructions of paired sulfate-sulfide isotope records[J]. Geochimica et Cosmochimica Acta, 2015, 157: 39-55. doi: 10.1016/j.gca.2015.02.031

    [24]

    Wang W, Guan C, Zhou C, et al. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution[J]. Geobiology, 2017, 15(4): 552-571. doi: 10.1111/gbi.12226

    [25]

    Bristow T F, Grotzinger J P. Sulfate availability and the geological record of cold-seep deposits[J]. Geology, 2013, 41(7): 811-814. doi: 10.1130/G34265.1

    [26]

    Present T M, Gutierrez M, Paris G, et al. Diagenetic controls on the isotopic composition of carbonate-associated sulphate in the Permian Capitan Reef Complex, West Texas[J]. Sedimentology, 2019, 66(7): 2605-2626. doi: 10.1111/sed.12615

    [27]

    Horacek M, Brandner R, Richoz S, et al. Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy[J]. Palaeogeography, Palaeocli-matology, Palaeoecology, 2010, 290(1-4): 65-70. doi: 10.1016/j.palaeo.2010.02.016

    [28]

    Prince J, Rainbird R H, Wing B A. Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 2019, 47(4): 375-379. doi: 10.1130/G45464.1

    [29]

    Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756. doi: 10.1016/S0016-7037(01)00884-5

    [30]

    Paytan A, Mearon S, Cobb K M, et al. Origin of marine barite deposits: Sr and S isotope characterization[J]. Geology, 2002, 30(8): 747-750. doi: 10.1130/0091-7613(2002)030<0747:OOMBDS>2.0.CO;2

    [31]

    Griffith E M, Paytan A. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6): 1817-1835. doi: 10.1111/j.1365-3091.2012.01327.x

    [32]

    Paris G, Adkins J F, Sessions A L, et al. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies[J]. Science, 2014, 346(6240): 739-741.

    [33]

    Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate[J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004

    [34]

    Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1561. doi: 10.1002/2014GC005295

    [35]

    Ma H R, Dong L, Shen B, et al. Sulfur and oxygen isotopic compositions of carbonate associated sulfate (CAS) of Cambrian ribbon rocks: Implications for the constraints on using CAS to reconstruct seawater sulfate sulfur isotopic compositions[J]. Chemical Geology, 2021, 580: 120369. doi: 10.1016/j.chemgeo.2021.120369

    [36]

    Wu N, Farquhar J, Fike D A. Ediacaran sulfur cycle: Insights from sulfur isotope measurements (Δ33S and δ34S) on paired sulfate-pyrite in the Huqf Supergroup of Oman[J]. Geochimica et Cosmochimica Acta, 2015, 164: 352-364. doi: 10.1016/j.gca.2015.05.031

    [37]

    Wang R M, Lang X G, Ding W M, et al. The coupling of Phanerozoic continental weathering and marine phosphorus cycle[J]. Scientific Reports, 2020, 10(1): 5794. doi: 10.1038/s41598-020-62816-z

    [38]

    Hawkings J, Wadham J, Tranter M, et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic[J]. Global Biogeochemical Cycles, 2016, 30(2): 191-210. doi: 10.1002/2015GB005237

    [39]

    Compton J, Mallinson D, Glenn C R, et al. Variations in the global phosphorus cycle[J]. Special Publication-Society for Sedimentary Geology, 2000, 66: 21-33.

    [40]

    Zhenbing S, Strother P, Papineau D. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: Microbial diversity and C isotopes[J]. Precambrian Research, 2014, 251: 62-79. doi: 10.1016/j.precamres.2014.06.004

    [41]

    Cui H, Xiao S, Chuanming Z, et al. Phosphogenesis asso-ciated with the Shuram Excursion; petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China[J]. Sedimentary Geology, 2016, 341: 134-146. doi: 10.1016/j.sedgeo.2016.05.008

    [42]

    Nelson G J, Pufahl P K, Hiatt E E. Paleoceanographic constraints on Precambrian phosphorite accumulation, Baraga Group, Michigan, USA[J]. Sedimentary Geology, 2010, 226(1-4): 9-21. doi: 10.1016/j.sedgeo.2010.02.001

    [43]

    Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. doi: 10.1126/science.1154499

    [44]

    Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369

    [45]

    Johnston D T, Poulton S W, Dehler C, et al. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA[J]. Earth and Planetary Science Letters, 2010, 290(1-2): 64-73. doi: 10.1016/j.epsl.2009.11.059

    [46]

    Li C, Cheng M, Algeo T J, et al. A theoretical prediction of chemical zonation in early oceans (>520Ma)[J]. Science China: Earth Sciences, 2015, 58(11): 1901-1909. doi: 10.1007/s11430-015-5190-7

    [47]

    Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-220. doi: 10.7185/geochempersp.1.1

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1638
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2022-02-21
修回日期:  2022-04-08
录用日期:  2022-04-29
刊出日期:  2022-07-28

目录