Study on Geochemical Characteristics and REE Mineralization of S-enriched Monazite in the Dabie Orogenic Belt by Electron Probe Microanalysis
-
摘要:
独居石是常见的赋稀土矿物,也是许多稀土矿床中重要的矿石矿物,而含硫独居石却相对罕见,只在为数不多的一些碳酸岩、金伯利岩、变质岩中被发现。本文在大别造山带蕲春县白羊沟地区发现的富稀土矿样品中,利用偏光显微镜镜下鉴定、电子探针定性和定量分析相结合的技术手段测定富硫独居石中的硫、稀土元素等主要化学成分的含量,研究其地球化学特征以及成因。结果表明:研究区稀土矿化角闪片岩中的富硫独居石大多呈胶状、团块状,部分呈现板状、柱状自形晶体,且呈粒状集合体状,和磷灰石之间存在相互交生、包含、半包含的空间关系,或呈网脉状交代切割磷灰石,岩相学表明富硫独居石与磷灰石之间存在着类似热液蚀变的交代关系。富稀土矿样品中富硫独居石SO3含量最高达14.57%,平均含量为10.54%,是目前国内外已知的硫含量最高的独居石,同时测得富硫独居石CaO含量较高,NdO含量偏低,与花岗岩成因的独居石和热液交代的不含硫独居石成分差异较大,地球化学显示S6+与P5+呈负相关性以及(Sr, Ca)2+、S6+与REE3+、P5+呈负相关性,并可以用“硬石膏耦合”置换反应来解释其独居石含S的原因,即(Sr, Ca)2++S6+↔REE3++P5+,也就意味着白羊沟地区存在着与稀土矿化相关的热液活动,结合白羊沟地区的地质背景推断其热液来源可能与白垩世以来该地区经历了强烈的岩石圈伸展运动和岩浆活动晚期热液有关。研究结果为白羊沟地区的稀土多金属矿化成因研究提供了新线索。
Abstract:BACKGROUND Monazite is a common rare earth mineral and an important ore mineral in many rare earth deposits, while sulfur-containing monazite is relatively rare and is only found in a few carbonate rocks, kimberlites, and metamorphic rocks.
OBJECTIVES To accurately analyze the chemical composition of S-enriched monazite, and to infer its genesis.
METHODS The main chemical components of S-enriched monazite from the REE ores in the Baiyanggou area of Puchun County, Dabie orogenic belt were determined by polarized light microscopy and electron probe microanalysis.
RESULTS The sulfur-enriched monazite in the rare-earth mineralized amphibole schist in the study area was mostly colloidal and agglomerate, some were plate-like and columnar euhedral crystals, which were granular aggregates. There was mutual interaction, inclusion, and a semi-inclusion spatial relationship between sulfur-enriched monazite and apatite. Crosscut of apatite by network veins was also present. Petrography showed that there was a metasomatism similar to hydrothermal alteration between sulfur-enriched monazite and apatite. The SO3 content of S-enriched monazite in the rare earth-enriched mineral samples was as high as 14.57%, with an average content of 10.54%, which was the monazite with the highest S content. The S-enriched monazite has a higher CaO content and a low NdO content, which was quite different from the composition of the granite genesis monazite and hydrothermal metasomatic sulfur-deficient monazite. According to the negative correlation between S6+ and P5+, as well as the negative correlation between (Sr, Ca)2+, S6+ and REE3+, P5+, the S-containing monazatite can be explained by the "anhydrite coupling" displacement reaction, that is, (Sr, Ca)2++S6+↔REE3++P5+. This indicated that hydrothermal activity related to REE mineralization in the Baiyanggou area was present.
CONCLUSIONS Combined with the geological background of the Baiyanggou area, it is inferred that the source of the hydrothermal fluid may be related to the intense lithospheric extensional movement and the late magmatic activity in the study area since the Cretaceous period. This provides new clues for research on the origin of rare earth polymetallic mineralization in this area.
-
独居石,化学式(Ce,La,Nd,Th) PO4,是一种磷酸轻稀土矿物,是稀土元素(REE)主要的赋存矿物。它主要以副矿物形式赋存于过铝质花岗岩、伟晶岩、变泥质岩、变砂质岩、碳酸岩和热液脉中,是沉积岩中的常见碎屑矿物[1],也是一种主要的富轻稀土矿物[1-3]。世界上主要有两种具有经济价值的稀土矿类型:中国南方的离子吸附型稀土矿、碳酸岩型稀土矿。独居石是碳酸岩型稀土矿最重要的矿石矿物之一[4];由于U、Th容易进入独居石的晶体结构,因此独居石还是重要的地质定年矿物[3, 5-8]。
独居石为单斜晶系矿物,自然界的独居石中的稀土含量变化很大,镧系元素(La>Nd>Pr>Sm>Gd)常成为类质同象替代Ce,成分可达1 : 1,也经常有Th、Y、U、Ca、Si及S作类质同象代替[9]。而含硫独居石却少被研究和报道,只在为数不多的一些与磷灰石矿、稀土矿密切相关的碳酸岩、金伯利岩、变质岩中被发现。如东阿尔卑斯山Schellgaden矿区相关研究表明,在富含矿石的区域,含矿云母片岩中独居石具有异常高的硫含量(SO3高达2.5%),蒙古国南戈壁的Mushgai khudag碱性火山深成杂岩REE-Sr-Fe-F-P矿化带中有富硫独居石的发现。一些学者认为含硫独居石是一种热液蚀变产物[10-17]。Chen等[18]统计了全球主要碳酸盐型稀土矿中独居石的S含量,认为含硫独居石比较稀有,统计数据中SO3含量最高仅为4%。随着独居石研究的深入,含硫独居石中SO3含量数据在不断更新。
富硫独居石的形成有着特殊的地质意义,为稀土、铀、钍等元素异常的成因研究提供了新线索。2018—2019年,湖北省核工业地质调查院对大别山罗田—蕲春地区进行铀(钍)多金属矿远景调查评价,在蕲春白羊沟—金家沟一带确定了几处较好的稀土矿化点,稀土总量(∑REE)高达6000~24000μg/g,主要富集的轻稀土含量(∑LREE)为5200~23000μg/g,且伴随强烈的放射性(U、Th)异常,异常值高达200nC/(kg·h)。并在该地区圈定了一定面积的放射性异常带,这些异常均分布于元古代变质岩中,目前有关放射性物质的来源以及成矿前景等尚未清楚,研究该地区稀土矿物成因以及稀土矿物与放射性异常的关系对于指导铀(钍)、稀土找矿具有重要意义。本文以白羊沟的独居石为研究对象,开展了岩相学、电子探针分析,重点运用电子探针定性分析与定量分析相配合的方法,保证了独居石元素含量测试的准确性,同时通过总结富硫独居石的岩相学和化学成分特点,确定白羊沟的独居石属于富硫独居石,并且讨论了富硫独居石的成因,为白羊沟地区稀土矿化的成因研究提供了证据。
1. 地质背景
大别造山带夹持于华北与扬子板块之间,自太古宙以来经历了多期次、多阶段的碰撞-扩张-聚合的演化过程,经历了漫长而又复杂的地质发展史,最终在三叠纪由华北陆块和扬子地块碰撞拼合形成[19-23],地层古生物证据显示华北、扬子两板块碰撞作用促使桐柏—大别古海槽在中三叠世关闭[24]。晚古生代—中生代以来大别造山带经历过两次重要构造事件,即碰撞折返事件(240~170Ma)和热窿伸展事件(140~85Ma)[25],白垩世以来经历了强烈的岩石圈伸展运动,岩浆活动强烈而频繁[26],为区内铀、钍、稀土等多金属矿成矿提供了有利地质条件。研究区位于商城—麻城以东的东大别造山带蕲春县白羊沟一带(图 1)。
图 1. 白羊沟地区地质简图1—K1ηγ中细粒(片麻状)黑云二长花岗岩;2—Pt1Db2大别山岩群变火山岩组;3—Pt3ηγ片麻状花岗岩;4—Pt3N变基性岩;5—vψoψ辉石角闪岩脉;6—Pt3hm红安岩群黄麦岭岩组;7—Qhal 全新世冲积物;8—断层;9—放射性异常晕(蓝、黄、红为伽玛偏高场、高场、异常场界限);10—铀矿点;11—钍、稀土矿点;12—钨矿点;13—铜钼矿点;14—铜矿点;15—取样位置。地质底图由湖北地质调查院2015年湖北蕲春狮子口地区地质矿产图修编,放射性异常晕为2019年实测。Figure 1. Geological map of the Baiyanggou area2. 实验部分
2.1 实验样品
本次取样点位于大同岩体边缘白羊沟附近(图 1),采样点的主体岩石为南大别群变质杂岩中的角闪片岩,野外发现稀土矿化角闪片岩显示明显的碎裂片理化构造,与未蚀变的角闪片岩相比其结构明显松散(图 2a)。野外采集的样品在中国核工业集团有限公司二三〇研究所磨制成厚度为35μm的电子探针抛光片,镜下研究发现样品在角闪片岩的基础上经历了复杂的蚀变,形成富含铀、钍、稀土矿物的角闪片岩,富硫独居石赋存其中。
2.2 样品测试方法
本次实验先在偏光显微镜下详细观察电子探针抛光片中的矿物,圈出感兴趣的微区,所用偏光显微镜为Zeizz Scope.A1研究级偏光显微镜,再进行电子探针成分分析。
电子探针定性、定量成分分析在武汉微束检测公司完成,仪器型号为Jeol-8230电子探针显微分析仪,配备五道谱仪,每道谱仪分别配备PETL、LIH、TAPL、LED1L、LED2L五种晶体中的两块,且这五种晶体都是新型的大分光晶体,具有更大的信号接触面积。
电子探针定性分析条件:测试加速电压15kV,加速电流50nA,束斑直径20μm,用PETL、LIH、TAPL、LED1L四块晶体组合做定性分析,驱动晶体开始位置L值(样品与分光晶体之间的距离)为70mm,结束位置为250mm,此四块晶体组合和驱动晶体L值可覆盖从C到U的所有元素的特征X射线。
电子探针定量分析条件:测试加速电压15kV,加速电流20nA,束斑直径1μm。P、S、Ca、Th、U、Pb、F、Al、Sr、La、Ce、Pr、Nd元素特征峰的测量时间为10s,Ti元素特征峰的测量时间为20s,上下背景的测量时间分别是峰测量时间的一半。测试元素所用的标样为:磷灰石(P)、橄榄石(Si)、重晶石(S)、透辉石(Ca)、钍单质(Th)、晶质铀矿(U)、方铅矿(Pb)、黄玉(F)、镁铝榴石(Al)、天青石(Sr)、独居石(La)、独居石(Ce)、含Pr玻璃(Pr)、独居石(Nd)、金红石(Ti)。P、Si、Al、S、Ca、F、Ti选用Kα谱线系,Th、U、Pb选用Mα线系,Sr、La、Ce、Nd选用Lα线系,Pr选用Lβ线系,最后采用ZAF校正。
3. 结果与讨论
3.1 含富硫独居石角闪片岩的岩相学特征
通过偏光显微镜观察,含富硫独居石角闪片岩主要由普通角闪石、石英、黑云母等组成。其中角闪石(图 2中c、d)含量约为70%,角闪石蚀变作用较强,多呈半自形菱形状,两组菱形解理发育,浅绿色,吸收性明显。黑云母(图 2c)含量约为5%,多呈不规则片状,褐色,蚀变作用较强,发生褪色反应,并在其解理缝中析出钛铁质,暗色矿物的蚀变可以作为岩石受到热液改造的一种证据;石英含量约为10%,呈他形粒状分布在角闪石粒间。磷灰石、独居石和锆石(图 2中d、e、f)在该岩石中含量较大,总体约占15%,且磷灰石、独居石含量均在5%以上,其中磷灰石多呈他形粒状,一级灰白干涉色。按照一般认识,磷灰石在岩石中很难蚀变,而样品中磷灰石多蚀变强烈,蚀变矿物呈网脉状交代切割磷灰石。锆石(图 2d)多呈柱状、长柱状、四边形状,具鲜艳的三、四级干涉色。通过岩石主要矿物共生组合和结构构造鉴定,可大致地判断其为角闪片岩类岩石,属典型的中级变质相岩石。
岩石中的富硫独居石大多呈胶状、团块状(图 2f),部分呈现板状、柱状自形晶体,且呈粒状集合体状。自形晶显黄褐色、较高级的干涉色,其边缘的溶蚀反应边类似于环带结构。与前人对独居石形态研究结果进行对比,认为这种富硫独居石的形态更倾向于热液作用参与形成[6, 27-28],同时镜下能明显地看到独居石和磷灰石之间存在相互交生、包含、半包含的空间关系(图 2f)。
Al Ani等[29]认为在碳酸岩有关的稀土矿床中,独居石可部分或完全交代磷灰石,被交代的磷灰石显示开裂的状态。张龙等[30]研究了龙华山热液铀矿蚀变带中的独居石,发现独居石和磷灰石之间存在交代关系。汪双双等[31]研究了西秦岭阳山金矿带中的热液作用形成的独居石,观察到独居石和磷灰石之间相互交生,甚至界限模糊,认为独居石与磷灰石同属磷酸盐矿物,二者之间存在交代关系。本文研究区中的独居石与磷灰石之间也存在着类似的交代关系,图 2中c、d展示了磷灰石晶体呈交代残留状分布在独居石中或直接被包含于独居石中,这种现象可以作为热液参与交代作用的证据。
综上,通过岩相学研究表明含富硫独居石角闪片岩经历了较为复杂的热液蚀变与交代作用。
在电子探针背散图(BSE)下可以观察到富硫独居石与磷灰石、锆石、榍石、磁铁矿、黄铁矿、石英共生(图 3中a~f);晶体呈他形,或以不规则集合体形态存在,与磷灰石之间存在相互交生、包含、半包含的空间关系,或呈网脉状交代切割磷灰石(图 3中c, d);也可与黄铁矿和磁铁化物交生,并形成与黄铁矿和磁铁矿成分相关的边缘(图 3c);少部分以包裹体形式产于次生石英、角闪石中(图 3f),一些存在于次生石英中的富硫独居石常呈自形和棱柱状;富硫独居石颗粒的边部出现晶棱圆化、港湾状结构等外形特征;同时,独居石内部并不均匀,部分微区含有异常高的Th元素,显示相对强的背散射(图 3c)。矿物学特征显示了富硫独居石更接近热液成因的独居石特征[6]。
3.2 研究区富硫独居石地球化学特征以及地球化学成因讨论
3.2.1 富硫独居石地球化学特征
对富硫独居石进行电子探针定量分析之前,为了防止漏测、少测元素,首先选取合适的点位进行全元素定性分析,定性分析对本次实验S元素的发现起到重要作用。电子探针定性分析图谱见图 4,在第二道谱仪、PETL晶体L值为172.07mm的位置出现了明显的S特征峰值,同时也发现该富硫独居石中仅存在La、Ce、Pr、Nd四种轻稀土元素,这为电子探针定量分析选定元素作了充分准备。
电子探针定量分析数据见表 1,富硫独居石中的SO3含量介于1.44%~14.57%之间,含量变化较大,平均含量10.54%,是目前国内外已知的含硫量最高的独居石。其P2O5含量介于18.99%~29.41%之间,均值在21.85%,相比普通独居石的P2O5含量偏低[28, 30-33],而且大致显示S含量越高、P含量越低的特征。CaO含量较高,介于3.72%~5.56%;ThO2含量变化较大,最高可达11.91%,最低只0.26%,这可能与富钍独居石和独居石之间的类质同象有关; 该独居石中很少或几乎不含UO2;F含量介于未检出至1.37%,Al2O3含量介于0.05%~0.38%,SrO含量介于0.50%~1.35%。由于独居石中更易富集轻稀土[1],因此本文主要测试该独居石中的轻稀土,La2O3含量介于8.15%~13.80%,Ce2O3介于23.23%~29.30%,Pr2O3介于1.84%~7.84%,Nd2O3介于3.66%~6.91%,其主要成分分布特征见图 5(图 5中对比数据来源于文献[5])。通过对比发现本次测得的富硫独居石与花岗岩成因的独居石和热液交代的不含硫独居石成分差异较大,其中较为明显的是Ca含量偏高,Nd含量偏低。
表 1. 白羊沟地区富硫独居石EPMA定量点分析数据Table 1. Analysis data of EPMA quantitative points of S-enriched monazite in the Baiyanggou area元素 富硫独居石中各成分含量(%) P2O5 18.99 20.15 20.20 19.57 21.49 21.85 29.41 21.99 20.90 22.69 20.50 21.18 25.07 SO3 13.64 13.06 14.04 14.57 10.27 10.83 1.44 10.91 13.20 4.42 14.46 13.60 2.57 CaO 5.36 5.08 5.33 5.53 5.22 4.98 3.72 5.04 5.56 5.22 5.42 5.30 4.27 TiO2 ND 0.85 ND ND ND 0.15 0.10 2.06 0.32 0.37 ND ND 0.02 ThO2 4.10 2.35 3.08 2.72 11.91 0.26 0.54 2.60 3.44 0.47 0.58 0.82 8.24 UO2 ND 0.18 ND ND 0.12 ND ND 0.02 0.12 ND ND ND 0.05 F 0.42 ND 0.45 0.58 0.61 0.80 1.37 0.78 0.43 0.92 0.96 0.78 0.74 Al2O3 0.20 0.11 0.12 0.13 0.16 0.16 0.38 0.15 0.13 0.12 0.09 0.05 0.27 SrO 1.04 0.75 0.99 1.20 1.35 0.58 0.50 0.52 0.72 0.69 0.78 0.92 0.83 SiO2 0.27 0.01 0.15 0.08 0.18 0.14 0.04 0.09 0.24 0.14 0.08 0.13 0.04 La2O3 12.36 13.44 13.80 12.61 11.56 10.38 13.33 9.53 8.15 10.82 8.44 8.78 8.81 Ce2O3 26.31 27.43 26.96 27.30 23.23 29.30 27.16 26.46 26.97 28.96 28.31 27.41 25.14 Pr2O3 1.99 2.43 2.13 2.26 1.84 7.36 6.82 6.76 6.67 7.49 7.17 7.84 7.60 Nd2O3 6.48 6.58 6.32 6.91 5.98 4.30 4.86 3.66 3.74 4.02 4.49 4.35 4.01 Total 91.15 92.41 93.57 93.47 93.92 91.10 89.65 90.57 90.58 86.32 91.28 91.16 87.66 P 10.70 11.36 11.38 11.03 12.11 12.31 16.57 12.39 11.78 12.78 11.55 11.93 14.13 S 5.46 5.23 5.62 5.83 4.11 4.34 0.58 4.37 5.28 1.77 5.79 5.45 1.03 Ca 3.83 3.63 3.81 3.95 3.73 3.56 2.66 3.60 3.97 3.73 3.87 3.79 3.05 Ti ND 0.51 ND ND ND 0.09 0.06 1.23 0.19 0.22 ND ND 0.01 Th 3.60 2.06 2.71 2.39 10.47 0.23 0.47 2.28 3.02 0.41 0.51 0.72 7.24 U ND 0.16 ND ND 0.11 ND ND 0.02 0.10 ND ND ND 0.04 F 0.42 ND 0.45 0.58 0.61 0.80 1.37 0.78 0.43 0.92 0.96 0.78 0.74 Al 0.11 0.06 0.06 0.07 0.08 0.09 0.20 0.08 0.07 0.06 0.05 0.02 0.14 Sr 0.88 0.64 0.84 1.01 1.14 0.49 0.42 0.44 0.61 0.58 0.66 0.78 0.70 Si 0.13 ND 0.07 0.04 0.08 0.07 0.02 0.04 0.11 0.06 0.04 0.06 0.02 La 10.54 11.46 11.76 10.75 9.86 8.85 11.37 8.12 6.95 9.23 7.20 7.49 7.51 Ce 22.46 23.42 23.01 23.31 19.83 25.02 23.18 22.59 23.02 24.72 24.17 23.41 21.47 Pr 1.70 2.07 1.82 1.93 1.57 6.29 5.82 5.78 5.70 6.40 6.13 6.69 6.49 Nd 5.56 5.64 5.42 5.92 5.13 3.69 4.17 3.13 3.20 3.44 3.85 3.73 3.44 P 10.70 11.36 11.38 11.03 12.11 12.31 16.57 12.39 11.78 12.78 11.55 11.93 14.13 La/Nd 1.90 2.03 2.17 1.82 1.92 2.40 2.73 2.59 2.17 2.68 1.87 2.01 2.18 注:ND表示低于检测限,未检出。 3.2.2 富硫独居石的地球化学成因讨论
独居石微粒中普遍存在成分不均匀分布的特征(图 3c),不同地质成因独居石的稀土分布模式差异明显[3, 5-6]。王濮等[9]统计了世界各地的不同类型的岩浆、伟晶、热液成因的独居石, 认为岩浆、伟晶作用形成的独居石其La/Nd比值较低,一般小于1.6,而热液作用形成的独居石其La/Nd比值较高,一般介于1.6~4.5,本文所测富硫独居石的La/Nd比值介于1.815~2.727。
独居石是富含轻稀土元素的矿物,广泛产出于沉积岩、变质岩以及过铝质火成岩中,它本身具有比较特殊的化学组成,REE、Nd、Ta、Zr、Hf、U、Th、Pb等元素常以微量组分的形式出现,这是由于Nd、Ta、U、Th、Y等离子半径大、价态高,使得它们不能包含在许多硅酸盐造岩矿物中,趋向于在残余熔体中富集,而独居石的晶体结构可广泛容纳不同比例的稀土元素,因此独居石成为岩石中U、Th、REE的主要寄主矿物[6]。白羊沟地区有较高的放射性异常,伽马能谱测量显示为Th异常,含富硫独居石角闪片岩全岩Th含量高达2900~3350μg/g,自然界的富钍独居石和独居石之间存在着Th与REE之间的置换,即:Th4++Ca2+↔2Ce3+,导致Th和铈族稀土元素存在着相反的消长关系,通过此相反的消长关系说明Th可以代替独居石中的铈族稀土元素[34]。从图 6中a、b可知,富硫独居石中的REE与Th存在着相反的消长关系,说明白羊沟地区富硫独居石同样存在着Ce、REE和Th、Ca之间的置换。
研究表明,岩浆成因独居石微量元素含量相对比较高(受其较大的类质同象置换容量影响),而热液和沉积成因独居石由于其矿物的类质同象置换容量比较小,化学组成更加纯净,杂质元素比较少,因此热液和沉积成因独居石的微量元素含量比较低[5-6]。不同成因的独居石有不同的Th、U、Y及Th /U比值[5-6]:岩浆独居石的Y、U、Th较高(Th含量在3%~ 7%以上),热液和沉积成因的独居石Y、U、Th较低(Th通常小于1%),岩浆独居石常与磷钙钍石(富钍) 共生,而热液独居石则常与斜钍石(低钍) 共生相一致。本次研究发现富硫独居石与斜钍石共生(图 3e)。将本实验样品定量测试点投于图 7独居石成因的地球化学判别图[35]显示,这些独居石具备热液、岩浆和变质多种成因,本地区富硫独居石采用图 7地球化学判别图来判别其独居石富硫成因类型并不完全适用,但可以进一步说明研究区富硫独居石成因的复杂性。
关于富硫独居石的富硫机制,国外学者开展了一些工作。Chen等[18]认为在Ca2+代替Ce3+的过程中,可能存在着络阴离子[SO4]2-部分代替[PO4]3-,从而保持晶格中的电价平衡,因此本文研究的独居石在置换过程中可能存在着阴离子[SO4]2-代替[PO4]3-的反应。对自然界的独居石样品而言,独居石中的S置换P相对来说并不常见,因此这方面的研究工作也较少,Kukharenko等[36]研究工作表明,S通过“硬石膏耦合”置换作用置换出独居石中的[PO4]3-,这种置换反应与“斜硬石膏”、“硬石膏-天青石”之间的置换反应相似,即:(Sr, Ca)2++S6+↔REE3++P5+,在置换过程中形成S和Ca、Sr之间的正相关关系以及S和P之间的负相关关系,这种相关性关系是“硬石膏耦合”置换直接的证据。Williams等[1]还提出了一种Si、S与P呈类质同象形式的置换,即:S6++Si4+↔2P5+。本次研究中的Si含量都在电子探针波谱法定量点分析的检出限附近,在检出限附近的值波动性较大,不确定性较大,虽然Si与P有一定的负相关性,但是相关性不是很明显,且Si含量不确定性较大。因此,本文不讨论富硫独居石中Si、P之间的置换反应。
如图 6中c、d拟合图所示,研究区富硫独居石的电子探针定量分析实验数据表明:S6+与P5+呈负相关性,(Sr, Ca)2+、S6+与REE3+、P5+呈负相关性,其线性拟合的斜率绝对值约为1,与置换反应式(Sr, Ca)2++S6+↔REE3++P5+吻合。所以白羊沟地区的富硫独居石可以用S通过“硬石膏耦合”置换作用置换出独居石中的[PO4]3-来解释。
一些学者认为含硫独居石是一种热液蚀变产物[10-17]。如东阿尔卑斯山Schellgaden矿区相关研究表明,在富含矿石的区域,含矿云母片岩中独居石具有异常高的硫(SO3含量高达2.5%),并可以利用“硬石膏耦合”即S6++(Ca, Sr)2+=REE3++P5+置换反应来解释其独居石含S的原因,同时利用Th-U-Pb等时线法计算结果表明在该地区阿尔卑斯造山运动期间具有强烈的富硫流体活动[10]。Enkhbayar等[11]对蒙古国南戈壁的Mushgai khudag碱性火山深成杂岩REE-Sr-Fe-F-P矿化带相关实验研究表明,独居石是通过流体的作用在宿主磷灰石中形成的,富硫独居石的形成同样可以用“硬石膏耦合”置换反应来解释。还有一些研究成因是与基岩风化有关,如纳米比亚尤里卡的硅化碳酸盐岩中发现的含硫独居石,但没有证据表明尤里卡有大量的热液蚀变,局部蚀变包括小尺度石英脉和碳酸盐再结晶,然而没有证据表明这些事件与含硫独居石的形成有关,而被认为是在长期风化过程中通过溶解-沉淀机制形成的,S来自于基岩风化,并认为次生含S独居石的形成可能是测定古风化层年代的可行矿物[34],并证明了硫主要以硫酸盐的形式存在,可以通过斜岩-硬石膏型耦合取代机制来解释。
结合上文提及的偏光镜下结构特征分析,富硫独居石存在一定的热液交代结构,因此本文认为热液作用下的“硬石膏耦合”置换交代作用是形成此处富硫独居石的主要原因。
对于用热液作用下的“硬石膏耦合”置换反应来解释独居石含S的原因,前人作了较多研究。Nikolenko等[37]利用Mushgai-Khudag碱性杂岩中磷灰石的矿物学、熔体和流体包裹体数据以及微量元素特征,重建了磁铁矿-磷灰石岩的形成、岩浆热液演化,并阐明了稀土矿化的起源:磁铁矿-磷灰石岩石在约830~850℃的温度下,从含有高含量磷酸盐和硫酸盐成分的盐熔体中结晶出来。对于磁铁矿-磷灰石岩石的起源可以用发生在碱性正长岩结晶阶段的硅酸盐-盐不混溶性来解释。在大约500~580℃的温度下,伴随着重晶石、天青石和铈独居石的形成,盐熔体进一步演化为碳酸盐-(氟化物)-氯化物-硫酸盐组成的卤水。磷灰石的溶解和石膏的结晶以及磷灰石之后的磷菱铁矿和铈独居石假晶形成是在热液阶段与流体反应发生的,该流体从碳酸盐-氯化物为主要成分(250~350℃)逐渐演变为氯化物为主要成分(150~250℃)。硫酸盐组分的高活性活动和岩石中稀土元素的显著富集也发生在热液晚期。
白羊沟富硫独居石的地质背景以及特征与Nikolenko等[37]的研究对象有很多相似之处,电子显微镜下发现含富硫独居石的黑云角闪片岩中结晶了大量的磷灰石、磁铁矿和锆石,后期铈独居石逐步交代磷灰石并形成独居石的磷灰石假晶,最后富硫独居石逐渐置换先期形成的独居石,并伴有黄铁矿和重晶石等含硫矿物的结晶(图 3中c,d)。
3.3 富硫独居石形成的地质意义
上文从岩相学特征、地球化学研究的角度进一步证实白羊沟地区热液蚀变是富硫独居石富S的主要原因,也就意味着白羊沟地区存在着与稀土矿化相关的热液活动。
白羊沟采样点为大同岩体的外接触带,大同岩体边缘发育有较多的大别群捕虏体,而外接触带内花岗岩脉体发育,赋矿围岩为大别群的角闪岩相变质岩,该变质岩经历复杂的构造运动,研究区内北西向以及北东向断裂构造发育,为热液的运移、沉淀创造了条件。中生代晚期大别造山带伸展减薄,岩浆活动强烈,大同岩体的形成时间正好对应这个时期[26, 38-41]。前人在白羊沟附近的梨木岭地区发现了石英脉型的钼矿化点,认为是大同岩体岩浆晚期的热液作用形成[42-43]。可以推测,富硫独居石的形成可能与大同岩体的岩浆晚期热液有关,而大量的岩浆、热液活动是铀、钍、稀土矿化的有利条件,这为该地区寻找热液相关的稀土、放射性矿产提供了新的思路。
4. 结论
本文以白羊沟的富硫独居石为研究对象,开展岩相学、电子探针分析,通过总结富硫独居石的岩相学和化学成分特点,进一步分析了其地球化学特征及成因。推测富硫独居石的形成与热液作用有关,并可以用“硬石膏耦合”置换反应来解释其独居石含S的原因,即:(Sr, Ca)2++S6+↔REE3++P5+,热液作用导致S主要以硫酸根的形式存在于独居石中。
大别造山带中白羊沟地区的富硫独居石的发现丰富了中国稀土矿物的研究资料,为稀土矿物学的对比研究提供了参考。作为白羊沟稀土矿化点的重要稀土矿物之一,富硫独居石的发现也为研究区铀、钍、稀土、铜钼矿的找矿工作提供了新的线索和研究方向。当然,富硫独居石形成的地质作用仍然存在诸多疑问,诸如流体来源、热液作用的时代等都有必要开展进一步研究。
致谢
感谢湖北省核工业地质调查院孟涛、王闯以及李孝坤等野外项目部人员对本文野外工作的支持,感谢东华理工大学李满根教授对论文工作的指导,感谢中南大学谷湘平教授对实验工作的指导。
要点
(1) 大别造山带白羊沟稀土矿化点的富硫独居石含有异常高的硫,SO3含量最高达14.47%,平均10.54%,是目前国内外已知的硫含量最高的独居石。
(2) 应用电子探针精确测定了富硫独居石的主要成分为LREE2O3、P2O5、SO3、ThO2、Ca、F等,其中LREE2O3含量约为48.2%。
(3) 可以用“硬石膏耦合”置换反应来解释其独居石含S的原因,即:(Sr, Ca)2++S6+↔REE3++P5+,结合岩相学研究证明白羊沟地区存在着与稀土矿化相关的热液活动。
(4) 热液蚀变作用是富硫独居石形成和稀土矿化的主要地质作用。
HIGHLIGHTS
(1) S-enriched monazite at the rare earth mineralization occurrence of Baiyanggou in the Dabie orogenic belt has unusually high sulfur content, with a maximum SO3 content of 14.47% and an average of 10.54%, which is the known monazite with the highest sulfur content.
(2) The composition of S-enriched monazite was accurately determined by electron probe microanalysis. The main components were LREE2O3, P2O5, SO3, ThO2, Ca and F, of which the LREE2O3 content was about 48.2%.
(3) The "anhydrite coupling" substitution reaction can be used to explain the high content of S in monazite, namely: (Sr, Ca)2++S6+↔REE3++P5+. Combined with petrographic studies, it has been proved that there is hydrothermal activity related to rare earth mineralization in the Baiyanggou area.
(4) Hydrothermal alteration is the main geological process for the formation of S-enriched monazite and rare earth mineralization.
-
图 5 白羊沟地区富硫独居石与不同成因独居石的成分分布特征(对比数据来源于洪文兴等[5])
Figure 5.
图 7 白羊沟地区富硫独居石成因的地球化学判别图[35]
Figure 7.
表 1 白羊沟地区富硫独居石EPMA定量点分析数据
Table 1. Analysis data of EPMA quantitative points of S-enriched monazite in the Baiyanggou area
元素 富硫独居石中各成分含量(%) P2O5 18.99 20.15 20.20 19.57 21.49 21.85 29.41 21.99 20.90 22.69 20.50 21.18 25.07 SO3 13.64 13.06 14.04 14.57 10.27 10.83 1.44 10.91 13.20 4.42 14.46 13.60 2.57 CaO 5.36 5.08 5.33 5.53 5.22 4.98 3.72 5.04 5.56 5.22 5.42 5.30 4.27 TiO2 ND 0.85 ND ND ND 0.15 0.10 2.06 0.32 0.37 ND ND 0.02 ThO2 4.10 2.35 3.08 2.72 11.91 0.26 0.54 2.60 3.44 0.47 0.58 0.82 8.24 UO2 ND 0.18 ND ND 0.12 ND ND 0.02 0.12 ND ND ND 0.05 F 0.42 ND 0.45 0.58 0.61 0.80 1.37 0.78 0.43 0.92 0.96 0.78 0.74 Al2O3 0.20 0.11 0.12 0.13 0.16 0.16 0.38 0.15 0.13 0.12 0.09 0.05 0.27 SrO 1.04 0.75 0.99 1.20 1.35 0.58 0.50 0.52 0.72 0.69 0.78 0.92 0.83 SiO2 0.27 0.01 0.15 0.08 0.18 0.14 0.04 0.09 0.24 0.14 0.08 0.13 0.04 La2O3 12.36 13.44 13.80 12.61 11.56 10.38 13.33 9.53 8.15 10.82 8.44 8.78 8.81 Ce2O3 26.31 27.43 26.96 27.30 23.23 29.30 27.16 26.46 26.97 28.96 28.31 27.41 25.14 Pr2O3 1.99 2.43 2.13 2.26 1.84 7.36 6.82 6.76 6.67 7.49 7.17 7.84 7.60 Nd2O3 6.48 6.58 6.32 6.91 5.98 4.30 4.86 3.66 3.74 4.02 4.49 4.35 4.01 Total 91.15 92.41 93.57 93.47 93.92 91.10 89.65 90.57 90.58 86.32 91.28 91.16 87.66 P 10.70 11.36 11.38 11.03 12.11 12.31 16.57 12.39 11.78 12.78 11.55 11.93 14.13 S 5.46 5.23 5.62 5.83 4.11 4.34 0.58 4.37 5.28 1.77 5.79 5.45 1.03 Ca 3.83 3.63 3.81 3.95 3.73 3.56 2.66 3.60 3.97 3.73 3.87 3.79 3.05 Ti ND 0.51 ND ND ND 0.09 0.06 1.23 0.19 0.22 ND ND 0.01 Th 3.60 2.06 2.71 2.39 10.47 0.23 0.47 2.28 3.02 0.41 0.51 0.72 7.24 U ND 0.16 ND ND 0.11 ND ND 0.02 0.10 ND ND ND 0.04 F 0.42 ND 0.45 0.58 0.61 0.80 1.37 0.78 0.43 0.92 0.96 0.78 0.74 Al 0.11 0.06 0.06 0.07 0.08 0.09 0.20 0.08 0.07 0.06 0.05 0.02 0.14 Sr 0.88 0.64 0.84 1.01 1.14 0.49 0.42 0.44 0.61 0.58 0.66 0.78 0.70 Si 0.13 ND 0.07 0.04 0.08 0.07 0.02 0.04 0.11 0.06 0.04 0.06 0.02 La 10.54 11.46 11.76 10.75 9.86 8.85 11.37 8.12 6.95 9.23 7.20 7.49 7.51 Ce 22.46 23.42 23.01 23.31 19.83 25.02 23.18 22.59 23.02 24.72 24.17 23.41 21.47 Pr 1.70 2.07 1.82 1.93 1.57 6.29 5.82 5.78 5.70 6.40 6.13 6.69 6.49 Nd 5.56 5.64 5.42 5.92 5.13 3.69 4.17 3.13 3.20 3.44 3.85 3.73 3.44 P 10.70 11.36 11.38 11.03 12.11 12.31 16.57 12.39 11.78 12.78 11.55 11.93 14.13 La/Nd 1.90 2.03 2.17 1.82 1.92 2.40 2.73 2.59 2.17 2.68 1.87 2.01 2.18 注:ND表示低于检测限,未检出。 -
[1] Williams M L, Jercinovic M J, Hetherington C J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology[J]. Annual Review of Earth & Planetary Sciences, 2007, 35: 137-175.
[2] Chakhmouradian A R, Wall F. Rare earth elements: Min-erals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333-340. doi: 10.2113/gselements.8.5.333
[3] 梁晓, 徐亚军, 訾建威, 等. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约[J]. 地球科学, 2022, 47(4): 1383-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202204014.htm
Liang X, Xu Y J, Zi J W, et al. Genetic mineralogy of monazite and constraints on the interpretation of U-Th-Pb ages[J]. Earth Science, 2022, 47(4): 1383-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202204014.htm
[4] Verplanck P L. The role of fluids in the formation of rare earth element deposits[J]. Procedia Earth and Planetary Science, 2017, 17: 758-761. doi: 10.1016/j.proeps.2017.01.014
[5] 洪文兴, 朱祥坤. 独居石微粒微区成分分布的研究[J]. 高校地质学报, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009
Hong W X, Zhu X K. A microanalysis study on monazite composition distribution[J]. Geological Journal of China Universities, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009
[6] 邱昆峰, 杨立强. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析[J]. 岩石学报, 2011, 27(9): 2721-2732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109021.htm
Qiu K F, Yang L Q. Genetic feature of monazite and its U-Th-Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2721-2732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109021.htm
[7] Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365-418. doi: 10.2138/rmg.2017.83.12
[8] 吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
Wu L G, Li X H. Isotopic and elemental microanalyses of monazite and its geological application[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2020, 39(6): 18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
[9] 王濮, 潘兆橹, 翁玲宝, 等. 系统矿物学[M]. 北京: 地质出版社, 1987.
Wang P, Pan Z L, Weng L B, et al. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1987.
[10] Krenn E, Putz H, Finger F, et al. Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, eastern Alps)[J]. Mineralogy and Petrology, 2011, 102(1-4): 51-62. doi: 10.1007/s00710-011-0170-x
[11] Enkhbayar D, Seo J, Choi S G, et al. Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, alkaline volcanic-plutonic complex, South Mongolia[J]. International Journal of Geosciences, 2016, 7(1): 20-31. doi: 10.4236/ijg.2016.71003
[12] Prokopyev I R, Doroshkevich A G, Ponomarchuk A V, et al. Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (central Aldan, Russia)[J]. Ore Geology Reviews, 2017, 81: 296-308. doi: 10.1016/j.oregeorev.2016.10.012
[13] Chakhmouradian A R, Mitchell R H. Niobian ilmenite, hydroxylapatite and sulfatian monazite: Alternative hosts for incompatible elements in calcite kimberlite from Internatsional'naya, Yakutia[J]. Canadian Mineralogist, 1999, 37: 1177-1189.
[14] Suzuki K, Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data[J]. Gondwana Research, 2008, 14(4): 569-586. doi: 10.1016/j.gr.2008.01.005
[15] Prsek J, Ondrejka M, Baík P, et al. Metamorphic-hydrothermal REE minerals in the Bacúch magnetite deposit, western Carpathians, Slovakia: (Sr, S)-rich monazite-(Ce) and Nd-dominant hingganite[J]. The Canadian Mineralogist, 2010, 48(1): 81-94. doi: 10.3749/canmin.48.1.81
[16] Ondrejka M, Putiš M, Uher P, et al. Fluid-driven destab-ilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (western Carpathians, Slovakia)[J]. Mineralogy and Petrology, 2016, 110(5): 561-580. doi: 10.1007/s00710-016-0432-8
[17] Laurent A T, Seydoux-Guillaume A M, Duchene S, et al. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts[J]. Contributions to Mineralogy and Petrology, 2016, 171(11): 94. doi: 10.1007/s00410-016-1301-5
[18] Chen W, Honghui H, Bai T, et al. Geochemistry of monazite within carbonatite related REE deposits[J]. Resources, 2017, 6(4): 51. doi: 10.3390/resources6040051
[19] 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学: 地球科学, 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm
Zhang G W, Meng Q R, Yu Z P, et al. Orogenic process and dynamic characteristics of Qinling orogenic belt[J]. Science in China: Earth Sciences, 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm
[20] 许长海. 大别造山带碰撞后构造热/岩浆演化过程[D]. 上海: 同济大学, 2002.
Xu C H. Tectonic thermal/magmatic evolution after collision in the Dabieshan Orogen[D]. Shanghai: Tongji University, 2002.
[21] 张国伟, 董云鹏, 赖绍聪, 等. 秦岭—大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学: 地球科学, 2003, 33(12): 1121-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm
Zhang G W, Dong Y P, Lai S C, et al. The Mianlue structural belt and the Mianlue suture in the southern margin of the Qinling—Dabie orogenic belt[J]. Science in China: Earth Sciences, 2003, 33(12): 1121-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm
[22] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling—Tongbai—Hong'an—Dabie—Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007
[23] 刘晓春, 李三忠, 江博明. 桐柏—红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 2015, 45(8): 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm
Liu X C, Li S Z, Jiang B M. Tectonic evolution of the Tongbai—Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision[J]. Science in China: Earth Sciences, 2015, 45(8): 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm
[24] 李锦铁. 中朝地块与扬子地块碰撞的时限与方式——长江中下游地区震旦纪—侏罗纪沉积环境的演变[J]. 地质学报, 2001, 75(1): 25-34. doi: 10.3321/j.issn:0001-5717.2001.01.003
Li J T. Pattern and time of the collision between the Sino—Korean and Yangtze blocks: Evolution of the Sinian—Jurassic sedimentary settings in the middle-lower reaches of the Yangtze River[J]. Acta Geologica Sinica, 2001, 75(1): 25-34. doi: 10.3321/j.issn:0001-5717.2001.01.003
[25] 许长海, 周祖翼, 马昌前, 等. 大别造山带140~85Ma热窿伸展作用——年代学约束[J]. 中国科学: 地球科学, 2001, 31(11): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200111006.htm
Xu C H, Zhou Z Y, Ma C Q, et al. Thermal extension of the Dabie orogenic belt from 140 to 85Ma—Chronological constraints[J]. Science in China: Earth Sciences, 2001, 31(11): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200111006.htm
[26] 张超, 马昌前. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U-Pb年龄和Hf同位素制约[J]. 矿物岩石, 2008, 28(4): 71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013
Zhang C, Ma C Q. Large-scale late mesozoic magmatism in the Dabie mountain: Constraints from zircon U-Pb dating and Hf isotopes[J]. Mineralogy and Petrology, 2008, 28(4): 71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013
[27] 刘玉龙, 陈江峰, 李惠民, 等. 白云鄂博矿床白云石型矿石中独居石单颗粒U-Th-Pb-Sm-Nd定年[J]. 岩石学报, 2005, 21(3): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503028.htm
Liu Y L, Chen J F, Li H M, et al. Single-grain U-Th-Pb-Sm-Nd dating of monazite from dolomite type ore of the Bayan Obo deposit[J]. Acta Petrologica Sinica, 2005, 21(3): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503028.htm
[28] 陈益平, 潘家永, 胡凯, 等. 贵州遵义镍-钼富集层中独居石的发现及成因意义[J]. 岩石矿物学杂志, 2007, 26(4): 340-344. doi: 10.3969/j.issn.1000-6524.2007.04.007
Chen Y P, Pan J Y, Hu K, et al. Discovery of monazite in the Ni-Mo sulfide layer of Zunyi, Guizhou Province, and its genetic significance[J]. Acta Petrological et Mineralogica, 2007, 26(4): 340-344. doi: 10.3969/j.issn.1000-6524.2007.04.007
[29] Al Ani T, Sarapää O. Geochemistry and mineral phases of REE in Jammi carbonatite veins and fenites, southern end of the Sokli complex, NE Finland[J]. Geochemistry: Exploration, Environment, Analysis, 2013, 13(3): 217-224. doi: 10.1144/geochem2011-088
[30] 张龙, 陈振宇, 汪方跃, 等. 电子探针技术研究粤北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174-184. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109070118
Zhang L, Chen Z Y, Wang F Y, et al. Application of electron microprobe to textural and compositional characteristics of alteration coronas of monazite from the Longhuashan granite, northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174-184. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109070118
[31] 汪双双, 吴春俊, 李艳广, 等. 西秦岭阳山金矿带花岗斑岩中独居石的矿物学特征及成因指示[J]. 矿物岩石地球化学通报, 2018, 37(3): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803015.htm
Wang S S, Wu C J, Li Y G, et al. Mineralogical characteristics and their genetic implication of monazite in granite porphyries from the Yangshan gold metallogenic belt, West Qinling mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803015.htm
[32] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086
Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086
[33] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uraniumare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
[34] Broom-Fendley S, Smith M P, Andrade M B, et al. Sulfur-bearing monazite-(Ce) from the Eureka carbonatite, Namibia: Oxidation state, substitution mechanism, and formation conditions[J]. Mineralogical Magazine, 2019, 84(1): 35-48.
[35] Wu L G, Li X H, Ling X X, et al. Further characterization of the RW-1 monazite: A new working reference material for oxygen and neodymium isotopic microanalysis[J]. Minerals, 2019, 9(10): 583. doi: 10.3390/min9100583
[36] Kukharenko A A, Orlova M P, Bulakh A G, et al. The Caledonian Complex of ultrabasic alkaline rocks and carbonatites of the Kola Peninsula and northern Karelia[R]. Russia: Nedra Press Leningrad, 1965.
[37] Nikolenko A M, Redina A A, Doroshkevich A G, et al. The origin of magnetite-apatite rocks of Mushgai—Khudag Complex, South Mongolia: Mineral chemistry and studies of melt and fluid inclusions[J]. Lithos, 2018, 320: 567-582.
[38] Okay A I, Xu S, Sengor A M C. Coesite from the Dabie Shan eclogites, central China[J]. European Journal of Mineralogy, 1989, 1(4): 595-598. doi: 10.1127/ejm/1/4/0595
[39] Jahn B, Wu F, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 1999, 157(1): 119-146.
[40] 马昌前, 杨坤光, 明厚利, 等. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学: 地球科学, 2003, 33(9): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200309000.htm
Ma C Q, Yang K G, Ming H L, et al. The time when the Mesozoic crust in the Dabie Mountains changed from compression to extension: Evidence for granites[J]. Science in China: Earth Sciences, 2003, 33(9): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200309000.htm
[41] 杨谦, 施炜, 侯贵廷. 中国东部及邻区晚中生代伸展拆离构造——综述与新认识[J]. 地球学报, 2019, 40(4): 511-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201904002.htm
Yang Q, Shi W, Hou G T. Late mesozoic extensional detachment structures in eastern China and adjacent areas: Overview and new insight[J]. Acta Geoscientica Sinica, 2019, 40(4): 511-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201904002.htm
[42] 李石, 王彤. 桐柏山—大别山花岗岩类地球化学[M]. 武汉: 中国地质大学出版社, 1991.
Li S, Wang T. Geochemistry of granitoids in Tongbaishan—Dabieshan, central China[M]. Wuhan: China University of Geosciences Press, 1991.
[43] 龚银杰, 朱江, 陈冬明, 等. 大别山南麓梨木岭钼矿床辉钼矿Re-Os同位素年龄及地质意义[J]. 矿床地质, 2017, 36(4): 992-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704013.htm
Gong Y J, Zhu J, Chen D M, et al. Re-Os isotopic ages of Limuling molybdenum deposit in southern Dabie Mountain and their geological significance[J]. Mineral Deposits, 2017, 36(4): 992-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704013.htm
期刊类型引用(4)
1. 邱啸飞,卢山松,谭娟娟,童喜润,吴年文,杨小莉,邵鑫,刘飞,杨小丽. 独居石LA-ICP-MS U-Pb法测定北大别木子店片麻杂岩变质年龄. 岩矿测试. 2025(01): 75-87 . 本站查看
2. 董亚妮,熊英,裴若会,张笑,谢光晋,崔长征. 砷矿石化学物相分析——雌黄和雄黄选择性分离条件研究. 岩矿测试. 2024(02): 270-280 . 本站查看
3. 梁培伟. 电子探针在地质实验测试中的应用. 世界有色金属. 2024(04): 78-80 . 百度学术
4. 刘建栋,王秉璋,李五福,金婷婷,张新远,王春涛,曹锦山,郑英,赵忠国. 电子探针技术研究东昆仑大格勒角闪石岩中铌和稀土元素的含量和赋存状态. 岩矿测试. 2023(04): 721-736 . 本站查看
其他类型引用(0)
-