Effect of Gas Flow Rates in Laser Ablation System on Accuracy and Precision of Zircon U-Pb Dating Analysis by LA-ICP-MS
-
摘要:
锆石U-Pb定年精度一直是激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)分析方法的研究重点,激光剥蚀系统气体流速变化影响ICP-MS信号稳定性而影响锆石U-Pb定年精度,但影响程度和机制尚不清楚。本文以锆石标样91500及Plešovice为研究对象,采用LA-ICP-MS开展了载气和补偿气流速变化对锆石U-Pb定年结果准确度和精密度影响的研究工作。实验结果表明:固定补偿气Ar流速为1.0L/min,而增大载气He流速(0.2~1.2L/min),锆石标样91500的206Pb/238U加权平均年龄增大(1002.0±10.4Ma~1083.0±6.8Ma,1σ),即样品气溶胶运输效率影响锆石U-Pb定年分析准确度,但He流速高于0.8L/min时由于大颗粒气溶胶引入使ICP-MS信号波动性和氧化物增加,导致锆石U-Pb定年分析精度降低。进一步以Plešovice锆石为例分析发现,Ar/He流速组合为0.95/0.8、0.8/0.8和0.8/0.6L/min时206Pb/238U加权平均年龄无显著性差异,但Ar/He流速均为0.8L/min时1σ单点分析相对偏差最小(1.4%),即通过控制载气和补偿气流速组合,优化样品气溶胶运输效率可提高LA-ICP-MS锆石U-Pb定年精度。在本实验条件下,0.8L/min为载气和补偿气流速最佳取值。
Abstract:BACKGROUND Despite zircon U-Pb dating analysis by LA-ICP-MS receiving wide acceptance, it remains a challenge to obtain results with high accuracy and precision. It is known that gas flow rates of LA system can affect the signal stability of ICP-MS and thus result in impacts on analytical uncertainty of zircon U-Pb dating. However, the exact effects and mechanism of gas flow rates on zircon U-Pb dating analysis are still unclear.
OBJECTIVES To thoroughly understand the influence of gas flow rates on the analytical uncertainty of zircon U-Pb dating, and to provide valuable information to propose a reliable and robust LA-ICP-MS approach for zircon U-Pb dating analysis.
METHODS By applying zircon standard samples of Harvard 91500 and Plešovice as researching subjects, ICP-MS connected to a 193nm nanosecond laser ablation system was used to investigate the influence of gas flow rate settings on accuracy and precision of U-Pb dating analysis. RESULTS: With fixed make-up gas (Ar) of 1.0L/min, the average 206Pb/238U ages of Harvard 91500 were found to increase from 1002.0±10.4Ma (1σ) to 1083.0±6.8Ma (1σ) with increasing carrier gas (He) from 0.2 to 1.2L/min. Thus, it was clear that the sample aerosol transportation efficiency can greatly affect the analytical accuracy of zircon U-Pb dating. Furthermore, when the He flow rate was higher than 0.8L/min, the analytical accuracy and precision of zircon U-Pb dating decreased due to the increased signal intensity oscillations and formation of oxides from the introduction of large particles of sample aerosols. The comparison of the data of Plešovice obtained under 0.95/0.8, 0.80/0.8 and 0.8/0.6L/min for He/Ar gas flow rate patterns indicated that there were no significant differences in U/Pb weighted average age. However, the relative deviation of 1σ single-point analysis was the smallest (1.4%) when the Ar and He flow rates were both 0.8L/min.
CONCLUSIONS The analytical accuracy and precision of zircon U-Pb dating by LA-ICP-MS can be improved by optimizing the gas flow rate setting of carrier gas and make-up gas, and highly recommending 0.8L/min of both Ar and He.
-
-
表 1 LA-ICP-MS工作条件
Table 1. Working conditions for LA-ICP-MS
ICP-MS工作条件 LA工作条件 仪器型号 Agilent 7700x 仪器型号 Analyte Excite 193 RF功率 1450W 波长 193nm 等离子体气(Ar)流速 15L/min 脉冲宽度 5ns 辅助气(Ar)流速 1.0L/min 频率 5Hz 补偿气(Ar)流速 0.8L/min 激光能量密度 5.9J/cm2 检测器模式 双模式 束斑直径 35μm 采样锥/截取锥 镍锥,1.0/0.45mm 采样模式 单点剥蚀 采样深度 5.0mm 脉冲数/单点 200 积分时间 40s 载气(He) Main cell:0.6L/min 数据采集模式 TRA 流速 Inner cup:0.2L/min 注:载气和补偿气流速值为默认值,条件优化时可调整。 表 2 补偿气Ar和载气He不同流速条件下锆石91500年龄LA-ICP-MS分析结果
Table 2. Results of zircon 91500 by LA-ICP-MS under different flow rates of make-up gas Ar and carrier gas He
测点 Ar气流速(L/min) He气流速(L/min) 同位素比值 同位素年龄(Ma) 谐和度(%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 91500-1 1.0 0.2 0.08354 0.00524 1.94219 0.12703 0.16736 0.00628 1283.34 122.22 1095.75 43.87 997.54 34.66 90 91500-2 0.08302 0.00489 1.95625 0.11654 0.17032 0.00623 1270.05 115.28 1100.60 40.05 1013.88 34.29 91 91500-3 0.07787 0.00486 1.81532 0.13351 0.16550 0.00628 1143.53 124.08 1051.00 48.19 987.26 34.73 93 91500-4 0.07936 0.00529 1.87112 0.12704 0.16947 0.00686 1181.17 133.33 1070.93 44.96 1009.21 37.84 94 91500-5 1.0 0.4 0.07405 0.00490 1.83186 0.12146 0.18207 0.00705 1042.60 134.42 1056.95 43.58 1078.27 38.43 98 91500-6 0.06808 0.00403 1.65237 0.10058 0.17523 0.00489 872.22 124.07 990.46 38.52 1040.86 26.84 95 91500-7 0.06937 0.00411 1.81117 0.11908 0.18546 0.00591 909.26 122.22 1049.50 43.04 1096.76 32.16 95 91500-8 0.06601 0.00440 1.59587 0.10133 0.17940 0.00600 805.56 139.65 968.60 39.66 1063.68 32.82 90 91500-9 1.0 0.8 0.07678 0.00369 1.87797 0.09634 0.17835 0.00451 1116.67 96.30 1073.35 34.00 1057.94 24.69 98 91500-10 0.07621 0.00372 1.92174 0.09133 0.18429 0.00442 1101.85 97.84 1088.67 31.75 1090.38 24.05 99 91500-11 0.07568 .00352 1.88231 0.09385 0.17939 0.00435 1087.04 93.06 1074.88 33.07 1063.67 23.80 98 91500-12 0.06916 0.00352 1.72129 0.08920 0.18076 0.00437 903.39 105.56 1016.51 33.29 1071.11 23.84 94 91500-26 1.0 1.2 0.06804 0.00370 1.72687 0.10170 0.18349 0.00602 870.05 117.59 1018.58 37.89 1086.02 32.79 93 91500-27 0.07337 0.00383 1.85591 0.10418 0.18368 0.00513 1033.34 106.64 1065.53 37.06 1087.03 27.95 98 91500-28 0.07600 0.00419 1.88984 0.10714 0.18083 0.00516 1094.45 143.06 1077.53 37.66 1071.53 28.19 99 91500-29 0.07631 0.00404 1.91539 0.09830 0.18400 0.00526 1103.39 105.56 1086.46 34.25 1088.81 28.66 99 91500-30 0.06574 0.00360 1.67245 0.09916 0.18323 0.00533 798.15 114.81 998.12 37.69 1084.62 29.06 91 表 3 补偿气Ar和载气He相同流速条件下锆石91500年龄LA-ICP-MS分析结果
Table 3. Results of zircon 91500 by LA-ICP-MS under equal flow rates of make-up Ar and carrier gas He
测点 Ar气流速(L/min) He气流速(L/min) 同位素比值 同位素年龄(Ma) 谐和度(%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 91500-17 0.6 0.6 0.08128 0.00847 2.00782 0.20392 0.18118 0.00618 1227.78 205.56 1118.16 68.95 1073.43 33.74 95 91500-18 0.06985 0.00686 1.67127 0.16873 0.17916 0.00576 924.07 206.48 997.67 64.22 1062.36 31.50 93 91500-19 0.08061 0.00751 1.97547 0.19369 0.18117 0.00497 1212.96 184.11 1107.17 66.19 1073.35 27.15 96 91500-20 0.05234 0.00585 1.22046 0.14060 0.17705 0.00510 301.91 283.30 809.99 64.38 1050.84 27.92 74 91500-13 0.8 0.8 0.07169 0.00400 1.80023 0.10036 0.18115 0.00310 977.47 114.05 1045.54 36.41 1073.27 16.94 97 91500-14 0.07139 0.00371 1.78865 0.08726 0.18297 0.00374 968.52 106.64 1041.33 31.78 1083.18 20.41 96 91500-15 0.07282 0.00442 1.78181 0.09366 0.18039 0.00364 1009.26 124.08 1038.84 34.20 1069.09 19.87 97 91500-16 0.07160 0.00464 1.78184 0.10613 0.18258 0.00390 975.93 132.57 1038.85 38.76 1081.06 21.27 96 91500-21 1.0 1.0 0.07806 0.00412 1.89970 0.10648 0.17703 0.00655 1150.01 105.09 1080.99 37.30 1050.70 35.88 97 91500-22 0.07359 0.00397 1.92183 0.11762 0.19014 0.00823 1031.49 113.89 1088.70 40.90 1122.11 44.55 96 91500-23 0.07296 0.00362 1.76294 0.08237 0.17623 0.00554 1012.96 100.46 1031.93 30.28 1046.36 30.36 98 91500-24 0.06455 0.00350 1.67356 0.09517 0.18578 0.00648 761.12 113.72 998.54 36.16 1098.49 35.23 90 91500-25 0.07517 0.00432 1.82203 0.10655 0.17604 0.00674 1072.23 115.28 1053.41 38.35 1045.30 36.93 99 表 4 补偿气Ar和载气He不同流速组合条件下Plešovice锆石年龄LA-ICP-MS分析结果
Table 4. Results of Plešovice by LA-ICP-MS under different flow rate setings of make-up gas Ar and carrier gas He
测点 Ar气流速(L/min) He气流速(L/min) 同位素比值 同位素年龄(Ma) 谐和度(%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ PL-1 0.95 0.8 0.05495 0.00228 0.40140 0.01711 0.05284 0.00099 409.31 89.81 342.67 12.40 331.93 6.07 96 PL-2 0.05182 0.00189 0.38639 0.01529 0.05384 0.00104 275.99 87.95 331.73 11.20 338.06 6.38 98 PL-3 0.05536 0.00229 0.40526 0.01687 0.05312 0.00100 427.83 92.58 345.46 12.19 333.63 6.12 96 PL-4 0.06113 0.00219 0.47801 0.01731 0.05690 0.00112 642.61 77.77 396.71 11.89 356.77 6.83 89 PL-5 0.05457 0.00214 0.41876 0.01747 0.05560 0.00112 394.50 87.03 355.16 12.51 348.79 6.86 98 PL-6 0.8 0.8 0.05565 0.00257 0.41391 0.01841 0.05350 0.00075 438.94 103.69 351.69 13.22 335.95 4.56 95 PL-7 0.05852 0.00252 0.45879 0.01993 0.05630 0.00082 550.04 92.58 383.42 13.87 353.08 5.01 91 PL-8 0.05507 0.00234 0.40524 0.01615 0.05316 0.00071 416.72 94.44 345.44 11.67 333.88 4.33 96 PL-9 0.05542 0.00234 0.40653 0.01682 0.05283 0.00077 427.83 94.44 346.37 12.14 331.85 4.68 95 PL-10 0.8 0.6 0.06033 0.00260 0.46339 0.02002 0.05556 0.00095 616.69 92.58 386.61 13.89 348.55 5.82 89 PL-11 0.05084 0.00254 0.37078 0.01836 0.05296 0.00092 235.25 112.02 320.23 13.60 332.66 5.62 96 PL-12 0.04740 0.00259 0.35224 0.01939 0.05397 0.00092 77.87 116.66 306.41 14.56 338.83 5.64 89 PL-13 0.04869 0.00248 0.36907 0.01863 0.05526 0.00084 131.57 123.13 318.97 13.82 346.73 5.13 91 -
[1] Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 390: 159-162. doi: 10.1038/36554
[2] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122
[3] Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172(1-2): 5-24.
[4] Nardi L V S, Formoso M L L, Müller I F, et al. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology, 2013, 335: 1-7. doi: 10.1016/j.chemgeo.2012.10.043
[5] 王先广, 刘战庆, 刘善宝, 等. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究[J]. 岩矿测试, 2015, 34(5): 592-599. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.016
Wang X G, Liu Z Q, Liu S B, et al. LA-ICP-MS zircon U-Pb dating and petrologic geochemistry of fine-grained granite from Zhuxi Cu-W deposit, Jiangxi Province and its geological significance[J]. Rock and Mineral Analysis, 2015, 34(5): 592-599. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.016
[6] Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities[J]. Chemical Geology, 2015, 402: 89-110. doi: 10.1016/j.chemgeo.2015.02.028
[7] Kröner A, Wan Y S, Liu X M, et al. Dating of zircon from high-grade rocks: Which is the most reliable method?[J]. Geoscience Frontiers, 2014, 5(4): 515-523. doi: 10.1016/j.gsf.2014.03.012
[8] Liu Y, Li X H, Li Q L, et al. Precise U-Pb zircon dating at a scale of <5micron by the CAMECA 1280 SIMS using a Gaussian illumination probe[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(4): 845-851. doi: 10.1039/c0ja00113a
[9] Fryer B J, Jackson S E, Longerich H P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology[J]. Chemical Geology, 1993, 109(1-4): 1049-1064.
[10] Klotzli U, Klotzli E, Gunes Z, et al. Accuracy of laser ablation U-Pb zircon dating: Results from a test using five different reference zircons[J]. Geostandards & Geoanalytical Research, 2009, 33(1): 5-15.
[11] 范晨子, 胡明月, 赵令浩, 等. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J]. 岩矿测试, 2012, 31(1): 29-46. doi: 10.3969/j.issn.0254-5357.2012.01.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20120105
Fan C Z, Hu M Y, Zhao L H, et al. Advances in in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 29-46. doi: 10.3969/j.issn.0254-5357.2012.01.004 http://www.ykcs.ac.cn/cn/article/id/ykcs_20120105
[12] Solari L A, Ortega-Obregón C, Bernal J P. U-Pb zircon geochronology by LA-ICPMS combined with thermal annealing: Achievements in precision and accuracy on dating standard and unknown samples[J]. Chemical Geology, 2015, 414: 109-123. doi: 10.1016/j.chemgeo.2015.09.008
[13] Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China: Earth Sciences, 2015, 58(10): 1722-1730. doi: 10.1007/s11430-015-5110-x
[14] Allen C M, Campbell I H. Identification and elimination of a matrix-induced systematic error in LA-ICP-MS 206Pb/238U dating of zircon[J]. Chemical Geology, 2012, 332-333: 157-165. doi: 10.1016/j.chemgeo.2012.09.038
[15] Luo T, Hu Z C, Zhang W, et al. Water vapor-assisted "universal" nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(15): 9016-9024. doi: 10.1021/acs.analchem.8b01231
[16] Košler J, Jackson S, Yang Z, et al. Effect of oxygen in sample carrier gas on laser-induced elemental fractionation in U-Th-Pb zircon dating by laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 832-840. doi: 10.1039/C3JA50386K
[17] 王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201903010029
Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201903010029
[18] 周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201701160007
Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201701160007
[19] 于超, 杨志明, 周利敏, 等. 激光焦平面变化对LA-ICPMS锆石U-Pb定年准确度的影响[J]. 矿床地质, 2019, 38(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901002.htm
Yu C, Yang Z M, Zhou L M, et al. Impact of laser focus on accuracy of U-Pb dating of zircons by LA-ICPMS[J]. Mineral Deposits, 2019, 38(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901002.htm
[20] Günther D, Horn I, Hattendorf B. Recent trends and developments in laser ablation-ICP-mass spectrometry[J]. Fresenius Journal of Analytical Chemistry, 2000, 368(1): 4-14. doi: 10.1007/s002160000495
[21] Schilling G D, Andrade F J, Barnes J H, et al. Contin-uous simultaneous detection in mass spectrometry[J]. Analytical Chemistry, 2007, 79(20): 7662-7668. doi: 10.1021/ac070785s
[22] Hattendorf B, Hartfelder U, Günther D. Skip the beat: Minimizing aliasing error in LA-ICP-MS measurements[J]. Analytical and Bioanalytical Chemistry, 2019, 411(3): 591-602. doi: 10.1007/s00216-018-1314-1
[23] Norris C A, Danyushevsky L, Olin P, et al. Elimination of aliasing in LA-ICP-MS by alignment of laser and mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(4): 733-739. doi: 10.1039/D0JA00488J
[24] Tan X J, Koch J, Günther D, et al. In situ element analy-sis of spodumenes by fs-LA-ICPMS with non-matrix-matched calibration: Signal beat and accuracy[J]. Chemical Geology, 2021, 583: 120463. doi: 10.1016/j.chemgeo.2021.120463
[25] Tunheng A, Hirata T. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 932-934. doi: 10.1039/b402493a
[26] Müller W, Shelley M, Miller P, et al. Initial performance metrics of a new custom-designed ArF excimer LA-ICP-MS system coupled to a two-volume laser-ablation cell[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(2): 209-214. doi: 10.1039/B805995K
[27] Hu Z C, Liu Y S, Gao S, et al. A "wire" signal smoo-thing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta: Part B, 2012, 78: 50-57. doi: 10.1016/j.sab.2012.09.007
[28] Kon Y, Yokoyama T D, Ohata M. Analytical efficacy of a gas mixer and stabilizer for laser ablation ICP mass spectrometry[J]. ACS Omega, 2020, 5(43): 28073-28079. doi: 10.1021/acsomega.0c03658
[29] Günther D, Heinrich C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1363-1368. doi: 10.1039/A901648A
[30] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[31] Ludwig K R. User's manual for Isoplot/Ex, version 3.75. A geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, 2012: 1-75.
[32] Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144-157. doi: 10.1016/S0169-4332(02)01324-7
[33] Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
[34] Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
[35] Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655-1663. doi: 10.1039/C8JA00163D
[36] 栾燕, 何克, 谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm
Luan Y, He K, Tan X J. In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS[J]. Geological Bulletin of China, 2019, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm
[37] 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
Li Y G, Wang S S, Liu M W, et al. U-Pb dating study of baddeleyite by LA-ICP-MS: Technique and application[J]. Acta Geologica Sinica, 2015, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
[38] 汪双双, 韩延兵, 李艳广, 等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349-357. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.003
Wang S S, Han Y B, Li Y G, et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349-357. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.003
[39] Xiong D Y, Guo L F, Liu C X, et al. Analytical effect of stabilizer volume and shape on zircon U-Pb dating by nanosecond LA-ICP-QMS[J]. Journal of Analytical Science and Technology, 2022, 13(13): 1-12.
-