Influence of Mining Activities in the Gold Ore Concentration Area in Western Henan on the Heavy Metals in Surrounding Farmland Soil
-
摘要:
矿业活动会促进重金属向生态系统扩散,并在周边农田土壤中累积而引发潜在生态风险。豫西金矿集区矿业生产历史悠久,但在长期的矿产资源开采、选冶、加工生产过程中,缺乏对矿区周边农田土壤重金属元素的累积、空间分布和生态风险的关注,矿业活动对环境的影响程度尚不清楚。为掌握该矿集区矿业活动对周边农田土壤重金属的影响程度,支撑服务矿集区生态修复和周边农业安全生产,本文在金矿集区周边农田采集375件土壤样品,采用冷蒸气原子荧光光谱法(CV-AFS)、氢化物发生原子荧光光谱法(HG-AFS)、电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)检测了样品中Cu、Pb、Zn、Ni、As、Hg、Cd、Cr重金属元素含量。用地累积指数法和潜在生态风险指数法研究了矿集区周边农田土壤中重金属元素的累积特征、空间分布和生态风险,分析评价了矿集区矿业活动对周边农田土壤重金属的影响。研究结果表明:①矿集区周边农田土壤中Cu、Pb、Zn、Ni、As、Hg、Cd、Cr含量平均值都低于国家农田土壤重金属污染风险筛选值,但均高于背景值,分别是背景值的1.47、3.24、2.06、1.05、1.03、1.52、2.77、1.07倍,但都低于农田土壤重金属污染风险筛选值。②区内重金属元素空间变异系数(CV)顺序为:Pb(90.72%)>Hg(85.25%)>Cd(65.65%)>Zn(44.0%)>Cu(33.66%)>As(31.72%)>Ni(24.23%)>Cr(13.61%)。Pb、Hg、Cd具有相对较高的变异系数,且分布位置均在矿业活动场所周边,显示矿业活动等外缘因素是引起重金属元素累积的主导因素。③ 8种重金属地累积指数分别为-0.1、0.74、0.33、-0.56、-0.60、-0.29、0.62、-0.49,其中Cu、Ni、As、Hg、Cr元素未累积,Cd、Pb、Zn元素为中等累积。④ 8种重金属单因子潜在生态危害指数平均值介于2.06~83.62,综合潜在生态风险指数平均值为192.07,整体表现为中等潜在生态风险。本研究揭示:①长期的矿产资源开发是造成Cd、Pb、Zn局部累积的主要因素,Ni、Cr、Cu、As、Hg以自然背景因素为主。②虽然研究区农田土壤重金属污染程度目前尚不严重,但仍需加强源头防控,避免重金属元素在土壤中进一步累积。
Abstract:BACKGROUND As the significant factor of the accumulation of heavy metals in farmland soils, mineral activities such as mining, traffic and mineral processing and smelting allow heavy metals to spread into the surrounding environment by water or atmospheric deposition, and finally collected into the soil, causing heavy metal pollution in the surrounding farmland soil. Heavy metals pollution in soils especially in farmland soils around the mining area thus has received great attention in the field of environmental pollution. Located in the middle reaches of the Yellow River watershed, the gold mining area in western Henan is an extremely important gold deposit area with great prospecting potential in China for the strong late Yanshan acidic magmatic activity and the extremely favorable metallogenic geological conditions, in which more than 40 large, medium or small gold deposits have been discovered. Under the background of ecological protection and high-quality development in the Yellow River watershed, the western Henan gold mining area, with a long history of gold mining development, lacks more attention to the accumulation, spatial distribution and ecological risk of heavy metals in farmland soil around the mining area during the years of mining, beneficiation and processing. It is particularly necessary to study the heavy metal pollution in soil, find out the impact of mining activities on heavy metals in surrounding farmland soil, and provide a scientific basis for prevention and control of heavy metal pollution in farmland soil.
OBJECTIVES To clearly understand the impact of mining activities in the western Henan mining area on heavy metals in the surrounding farmland soil, provide necessary basic data for supporting the safe production of key mineral resources, the surrounding agricultural safety, and prevent and control heavy metal pollution in farmland soil.
METHODS 375 topsoil samples from the farmland around the western Henan gold mining area at a depth of 0-20cm were systematically investigated and analyzed with reference to Code of Practice for Soil Geochemical Survey (DZ/T 0145—2017). The contents and spatial distribution characteristics of Cd, Cu, Zn, Pb, Hg, As, Cr, Ni were analyzed. The heavy metal pollution and ecological risk were evaluated by the geo-accumulation index method and potential ecological risk index method.
RESULTS (1) The contents variation range of Cu, Pb, Zn, Ni, As, Hg, Cd, Cr are 1.00-71.72, 2.00-524.79, 8.00-320.37, 2.00-52.77, 2.29-24.64, 0.0067-0.268, 0.04-1.30, 28.20-107.93, respectively, and the average are 35.33, 74.43, 137.69, 31.60, 12.39, 0.064, 0.43, 76.27, respectively, showing significant differences between the 8 heavy metals. Compared with the soil background value in the middle reaches of the Yellow River, the average contents of Cu, Pb, Zn, Ni, As, Hg, Cd, Cr are 1.47, 3.24, 2.06, 1.05, 1.03, 1.52, 2.77 and 1.07 times of them, respectively, but lower than the value of risk screening values for soil contamination of agricultural land.
(2) The characteristics of coefficients of variation show that Pb(90.72%)>Hg(85.25%)>Cd(65.65%)>Zn(44.0%)>Cu(33.66%)>As(31.72%)>Ni(24.23%)>Cr(13.61%), the Pb, Hg, Cd are the primary factors causing the soil pollution as the external input by mineral activities for the high coefficients of variation and special relation with mining. The main ore-forming elements in the gold deposit area are Au and Mo, and the associated elements are Cu, Pb, Zn, Ni, As, Hg, Cd, which may diffuse into the surrounding environment during ore transportation, waste rock and slag piling along the river, and processing. Alongside the Daping River, the two gold mining areas and concentrators are distributed around the farmland, and the gold ore heap leaching site on the east side is located at the top of the hillside and hill. The heavy metals produced by mining activities can diffuse in the downstream agricultural areas through atmospheric deposition, rainwater leaching, river drainage, and can accumulate in the surrounding agricultural soil, causing heavy metal pollution in the agricultural soil around the mining area.
(3) The geo-accumulation index of 8 heavy metals is -0.1, 0.74, 0.33, -0.56, -0.60, -0.29, 0.62, -0.49 with the order Pb>Cd>Zn>Cu>Hg>Cr>Ni>As, in which Cu, Hg, Cr, Ni, As show no influence to the quality of soils for the average geo-accumulation index lower than 0, and Pb, Cd, Zn show moderate pollution for the average geo-accumulation index between 0-1. Among them, the proportion of samples with a Cd element of medium or higher impact grade is 20.27%, the proportion of samples with medium to strong impact grade is 7.73%, and the proportion of samples with strong impact grade is 1.07%. The proportion of samples with a Pb element above the moderate impact level is 18.93%, and the proportion of samples with moderate to strong impact level is 10.40%. Hg and Zn also have 7.46% and 13.33% of the samples reaching the moderate impact level, indicating that Hg, Cd and Pb in the soil at local sampling sites have different degrees of impact on farmland soil quality.
(4) The average value of the single-factor potential ecological risk index of eight heavy metals is between 2.06 and 83.62, among which the single-factor potential ecological risk index of As, Cr, Ni, Cu and Zn is a slight potential ecological risk. Pb is mainly subject to slight potential ecological risks for 92% of samples, moderate potential ecological risks for 7.47% of samples and strong potential ecological risks for 0.53% of samples. Cd is dominated by moderate potential ecological risks, with 46.14% of samples, and there are 25.33% and 10.93% of samples reaching strong and very strong potential ecological risks respectively. For the ecological risk index of Hg, there are 35.47%, 11.46%, 4.27% and 3.20% of the samples that reach moderate, strong, very strong and very strong degree. The comprehensive potential ecological risk index (RI) ranges from 51.66 to 689.64, with an average of 192.07. The proportion of samples with slight, moderate, strong and very strong impact degree is 46.40%, 41.07%, 11.20% and 1.33%, respectively. The overall comprehensive potential ecological risk index shows moderate potential ecological risks.
CONCLUSIONS Compared with the risk screening values for soil contamination of agricultural land, the contents of Cd, Cu, Zn, Pb, Cr, Ni, As, Hg are all lower than the standard, indicating low risk for the soil environment. There were different degrees of accumulation surrounding the intense mining area of Cd, Pb, and Zn by longtime mineral development. Cu, Ni, As, Hg, and Cr were influenced by the natural factor. The farmland area with strong and very strong comprehensive potential ecological risks is 349.4 hectares and 11.71 hectares, respectively. Cd and Hg are the main contributing elements, with higher risk to the soil ecology, which should be monitored and controlled from source to avoid the further accumulation of heavy metal elements in the soil.
-
表 1 各指标分析测试检出限
Table 1. Detection limit of analyzed indicators
元素 检出限
(μg/g)元素 检出限
(μg/g)Hg 0.005 Ni 0.2 As 0.2 Zn 0.03 Cr 0.2 Cd 0.021 Cu 0.5 Pb 0.5 表 2 地累积指数(Igeo)评价指标体系
Table 2. Index of geo-accumulation and classification of the influence effect degree
Igeo
(Forstner)级别 污染程度 Igeo
(Anon)级别 污染程度 <0 1 无影响 <0 1 无影响~轻度影响 0~1 2 无影响~中度影响 0~1 2 中度影响 1~2 3 中度影响 1~3 3 中度影响~强影响 2~3 4 中度影响~强影响 3~5 4 强影响 3~4 5 强影响 >5 5 极强影响 4~5 6 强影响~极强影响 >5 7 极强影响 表 3 风险因子、潜在生态危害系数及生态风险程度等级
Table 3. Risk factor (Eri), potential ecological risk index (RI)and the ecological risk degree
Eri RI 生态危害程度 <40 <150 轻微 40~80 150~300 中等 80~160 300~600 强 160~320 ≥600 很强 ≥320 - 极强 表 4 研究区农田土壤重金属含量特征
Table 4. Heavy metal content characteristics of farmland soils in the study area
参数 pH Cu Pb Zn Ni As Hg Cd Cr 样品数量(件) 87 375 373 375 375 375 375 375 375 最小值(mg/kg) 5.11 1.00 2.00 8.00 2.00 2.29 0.0067 0.04 28.20 最大值(mg/kg) 8.75 71.72 524.79 320.37 52.77 24.64 0.268 1.30 107.93 平均值(mg/kg) 7.74 35.33 74.43 137.69 31.60 12.39 0.064 0.43 76.27 标准差(mg/kg) 0.74 11.89 67.52 60.58 7.66 3.90 0.055 0.29 10.38 变异系数(CV,%) 9.52 33.66 90.72 44.00 24.23 31.72 85.25 66.65 13.61 黄河中游土壤背景值(mg/kg) - 24 23 67 30 12.0 0.042 0.155 71 表层土壤筛选值(mg/kg) - 100 170 300 190 25 3.4 0.6 250 表 5 研究区农田土壤重金属元素地累积指数(Igeo)及影响程度分级比例
Table 5. Ground accumulation index of heavy metals in farmland soils and the ratio of different influence degree in the study area
元素 重金属元素地累积指数(Igeo) 各级样品数所占比例(%) 最小值 最大值 平均值 0级 1级 2级 3级 4级 5级 6级 Cu -5.17 2.45 -0.10 65.33 31.47 2.93 0.27 0 0 0 Pb -4.11 10.29 0.74 28.00 40.00 18.93 10.40 1.87 0.27 0.53 Zn -3.65 2.33 0.33 33.87 51.73 13.33 1.07 0 0 0 Ni -4.49 0.93 -0.56 97.07 2.93 0 0 0 0 0 As -2.97 2.92 -0.60 96.27 2.93 0.27 0.53 0 0 0 Hg -3.23 6.31 -0.29 71.47 16.80 7.46 2.66 0.80 0.53 0.27 Cd -2.54 3.53 0.62 28.00 42.93 20.27 7.73 1.07 0 0 Cr -1.92 2.02 -0.49 98.93 0.80 0 0.27 0 0 0 表 6 研究区农田土壤重金属潜在生态风险指数及危害程度等级比例
Table 6. Potential ecological risk index of heavy metals in farmland soils and the ratio of different hazard degree in the study area
评价指标 元素 毒性系数 最小值 最大值 平均值 各级样品数所占比例(%) 轻微 中度 强 很强 极强 Eri Cu 5 0.21 15.85 7.37 100 0 0 0 0 Pb 5 0.43 114.08 16.18 92 7.47 0.53 0 0 Zn 1 0.12 4.88 2.06 100 0 0 0 0 Ni 5 0.33 8.79 5.27 100 0 0 0 0 As 10 1.91 23.38 10.35 100 0 0 0 0 Hg 40 6.38 476.81 65.09 45.60 35.47 11.46 4.27 3.20 Cd 30 7.74 260.86 83.62 17.6 46.14 25.33 10.93 0 Cr 2 0.79 2.15 3.25 100 0 0 0 0 RI - - 51.66 689.64 192.07 46.40 41.07 11.20 1.33 0 -
[1] Zhang Y M, Li S, Chen Z, et al. A systemic ecological risk assessment based on spatial distribution and source apportionment in the abandoned lead acid battery plant zone, China[J]. Journal of Hazardous Materials, 2018, 354: 170-179. doi: 10.1016/j.jhazmat.2018.04.054
[2] Huang D W, Gui H R, Lin M L, et al. Chemical speciation distribution characteristics and ecological risk assessment of heavy metals in soil from Sunan mining area, Anhui Province, China[J]. Human and Ecological Risk Assessment: An International Journal, 2018, 24(6): 1694-1079. doi: 10.1080/10807039.2017.1422973
[3] Chileshe M N, Syampungani S, Festin E S, et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration[J]. Journal of Forestry Research, 2020, 31(4): 1283-1293. doi: 10.1007/s11676-019-00921-0
[4] 姚春卉, 张春荣, 李少勇, 等. 胶州湾沿岸土壤重金属元素分布特征及其生态风险评价[J]. 中国科技论文, 2021, 16(1): 112-120. doi: 10.3969/j.issn.2095-2783.2021.01.017
Yao C H, Zhang C R, Li S Y, et al. Spatial distribution and ecological risk assessment of heavy metals in soils along the coast of Jiaozhou Bay[J]. Chinese Scientific Papers, 2021, 16(1): 112-120. doi: 10.3969/j.issn.2095-2783.2021.01.017
[5] 况琴, 黄庭, 向京, 等. 鄂西北某农田保护区土壤重金属分布特征及生态风险评价[J]. 环境工程, 2019, 37(5): 45-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201905009.htm
Kuang Q, Huang T, Xiang J, et al. Distribution characteristics and ecological risk assessment of heavy metals in the soil of a farmland protection area in northwest Hubei[J]. Environmental Engineering, 2019, 37(5): 45-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201905009.htm
[6] 邵啸. 浅析土壤重金属污染的现状与治理[J]. 资源节约与环保, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061
Shao X. Current situation and treatment of heavy metal pollution in soil[J]. Resource Conservation and Environmental Protection, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061
[7] 杨国栋, 张梦竹, 冯涛, 等. 土壤重金属污染修复技术研究现状及展望[J]. 现代化工, 2020, 40(12): 50-54, 58. doi: 10.16606/j.cnki.issn0253-4320.2020.12.010
Yang G D, Zhang M Z, Feng T, et al. Research status and prospect of remediation technology for heavy metal pollution in soil[J]. Modern Chemical Industry, 2020, 40(12): 50-54, 58. doi: 10.16606/j.cnki.issn0253-4320.2020.12.010
[8] 赵沁娜, 杨凯. 发达国家污染土地置换开发管理实践及对我国的启示[J]. 环境污染与防治, 2006(7): 540-544. doi: 10.3969/j.issn.1001-3865.2006.07.016
Zhao Q N, Yang K. Contaminated redevelopment management of developed countries and the inspirations to China[J]. Environmental Pollution and Prevention, 2006(7): 540-544. doi: 10.3969/j.issn.1001-3865.2006.07.016
[9] 郭朝晖, 涂卫佳, 彭驰, 等. 典型铅锌矿区河流沿岸农田土壤重金属分布特征及潜在生态风险评价[J]. 农业环境科学学报, 2017, 36(10): 2029-2938. doi: 10.11654/jaes.2017-0386
Guo Z H, Tu W J, Peng C, et al. Distribution characteristics and potential ecological risk assessment of heavy metals in farmland soil along river banks in typical lead-zinc mining areas[J]. Journal of Agricultural and Environmental Sciences, 2017, 36(10): 2029-2038. doi: 10.11654/jaes.2017-0386
[10] Rai S, Gupta S, Mittal P C. dietary intakes and health risk of toxic and essential heavy metals through the food chain in agricultural, industrial, and coal mining areas of Northern India[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(4): 913-933. doi: 10.1080/10807039.2014.946337
[11] 于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408-424. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011300154
Yu F, Wang W, Yu Y, et al. Distribution characteristics ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202011300154
[12] Yang Y, Li H L, Peng L, et al. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food Chemistry, 2015, 197(Part A): 482-488.
[13] 张江华, 徐友宁, 陈华清, 等. 小秦岭金矿区土壤-小麦重金属累积效应对比研究[J]. 西北地质, 2020, 53(3): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003029.htm
Zhang J H, Xu Y N, Chen H Q, et al. Comparative study of the accumulated effect of heavy metals on soil and wheat in Xiaoqinling gold mining area[J]. Northwest Geology, 2020, 53(3): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003029.htm
[14] 林荩, 梁文静, 焦旸, 等. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm
Lin J, Liang W J, Jiao Y, et al. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shanxi Province[J]. Geology in China, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm
[15] 曹见飞, 段欣荣, 吴泉源, 等. 金矿区周边农田土壤重金属源解析研究——以焦家金矿为例[J]. 环境污染与防治, 2021, 43(5): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202105003.htm
Cao J F, Duan X R, Wu Q Y, et al. Source apportionment of soil heavy metals in surrounding farmland of gold mining: A case study of Jiaojia gold mine[J]. Environmental Pollution and Prevention, 2021, 43(5): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202105003.htm
[16] 刘子赫, 孟瑞红, 代辉祥, 等. 基于改进地累积指数法的沉积物重金属污染评价[J]. 农业环境科学学报, 2019, 38(9): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909019.htm
Liu Z H, Meng R H, Dai H X, et al. Evaluation of heavy metals pollution in surface sediments using an improved geo-accumulation index method[J]. Journal of Agro-Environment Science, 2019, 38(9): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909019.htm
[17] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14: 975-1001. doi: 10.1016/0043-1354(80)90143-8
[18] Loska K, Wiechula D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30(2): 159-165. doi: 10.1016/S0160-4120(03)00157-0
[19] 侯叶青, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
Hou Y Q, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.
[20] Forstner U. Lecture notes in earth sciences (contaminated sediments)[M]. Berlin: Springer Verlag, 1989: 107-109.
[21] 胡艳霞, 周连第, 魏长山, 等. 北京水源保护地土壤重金属空间变异及污染特征[J]. 土壤通报, 2013, 44(6): 1483-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201306036.htm
Hu Y X, Zhou L D, Wei C S, et al. Study on spatial variability of soil heavy metals environments and its pollution characteristics in Beijing water protective area[J]. Chinese Journal of Soil Science, 2013, 44(6): 1483-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201306036.htm
[22] 徐争启, 倪军师, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm
Xu Z Q, Ni J S, Tuo X G, et al. Calculation of toxicity coefficient of heavy metals in potential ecological hazard index evaluation[J]. Environment Science and Technology, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm
[23] Tang Z E, Deng R J, Zhang J, et al. Regional distribution characteristics and ecological risk assessment of heavy metal pollution of different land use in an antimony mining area—Xikuangshan, China[J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(7): 1779-1794. doi: 10.1080/10807039.2019.1608423
[24] 周骏驰, 刘孝利, 雷鸣, 等. 湖南典型矿区耕地土壤重金属空间特征研究[J]. 地理空间信息, 2018, 16(8): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201808030.htm
Zhou J C, Liu X L, Lei M, et al. Spatial characteristics of heavy metals in cultivated soils of typical mining areas in Hunan Province[J]. Geospatial Information, 2018, 16(8): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201808030.htm
[25] 毛朝明, 蒋灵华. 松阳县毛竹林地土壤养分空间变异特征分析[J]. 浙江林业科技, 2020, 40(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLK202002010.htm
Mao Z M, Jiang L H. Spatial variability of soil nutrient content in phyllostachys edulis stands in Songyang County[J]. Zhejiang Forestry Technology, 2020, 40(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLK202002010.htm
[26] 刘政, 赵文廷, 王爱军. 盂县煤矿区及周边农田土壤重金属溯源分析[J]. 煤炭学报, 2018, 43(S2): 532-545. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2023.htm
Liu Z, Zhao W T, Wang A J. Traceability analysis of heavy metals in soil of coal mining area and surrounding farmland in Yuxian County[J]. Journal of China Coal Society, 2018, 43(S2): 532-545. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2023.htm
[27] 李传章, 欧小辉, 张超兰, 等. 环江沿岸农田土壤重金属污染与空间变异性分析[J]. 江西农业大学学报, 2018, 40(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201806030.htm
Li C Z, Ou X H, Zhang C L, et al. Analysis of heavy metal pollution and spatial variability in farmland soil along the Huanjiang River[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201806030.htm
[28] 王全九, 毕磊, 张继红. 新疆包头湖灌溉区农田土壤水盐热特性空间变异特征[J]. 环境科学学报, 2018, 34(18): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201818017.htm
Wang Q J, Bi L, Zhang J H. Spatial variability analysis of large-scale soil water, salt and heat characteristics in Baotou Lake irrigation area of Xinjiang[J]. Journal of Environmental Science, 2018, 34(18): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201818017.htm
[29] 孙天河, 刘伟, 靳立杰, 等. 基于多元统计的土壤主要重金属影响因素分析——以济南市平阴县城区及附近区域为例[J]. 安全与环境学报, 2021, 21(2): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202102055.htm
Sun T H, Liu W, Jin L J, et al. Assessment of the heavy metal influential factors based on the multivariate statistical analysis—A case study of the urban and nearby areas of Pinyin County of Jinan, China[J]. Journal of Safety and Environment, 2021, 21(2): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202102055.htm
[30] 宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133-144. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109290135
Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in topsoil on human health in Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 2022, 41(1): 133-144. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202109290135
[31] 刘春跃, 王辉, 白明月, 等. 沈阳市老城区表层土壤重金属分布特征及风险评价[J]. 环境工程, 2020, 38(1): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202001027.htm
Liu C Y, Wang H, Bai M Y, et al. Distribution characteristics and risk assessment of heavy metals in topsoil of old urban area of Shenyang[J]. Environmental Engineering, 2020, 38(1): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202001027.htm
[32] 牛真茹, 祁硕, 吴庭雯, 等. 某有色冶炼场地浅层土壤重金属空间变异规律与分布特征[J]. 土壤通报, 2016, 47(3): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603035.htm
Niu Z R, Qi S, Wu T W, et al. Spatial variability and distribution of heavy metals in the shallow soil around non-ferrous metal smelting site[J]. Chinese Journal of Soil Science, 2016, 47(3): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603035.htm
[33] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 395-407. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101260016
He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soil in the typical geological back ground region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101260016
[34] 余涛, 蒋天宇, 刘旭, 等 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021, 48(2): 460-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm
Yu T, Jiang T Y, Liu X, et a. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 2021, 48(2): 460-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm