中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取

陶慧, 黄理金, 欧阳磊, 帅琴. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取[J]. 岩矿测试, 2022, 41(6): 1040-1049. doi: 10.15898/j.cnki.11-2131/td.202204190084
引用本文: 陶慧, 黄理金, 欧阳磊, 帅琴. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取[J]. 岩矿测试, 2022, 41(6): 1040-1049. doi: 10.15898/j.cnki.11-2131/td.202204190084
TAO Hui, HUANG Lijin, OUYANG Lei, SHUAI Qin. An Amino-functionalized Covalent Organic Framework Coating for Highly Efficient Solid Phase Microextraction of Trace Phenols in Water[J]. Rock and Mineral Analysis, 2022, 41(6): 1040-1049. doi: 10.15898/j.cnki.11-2131/td.202204190084
Citation: TAO Hui, HUANG Lijin, OUYANG Lei, SHUAI Qin. An Amino-functionalized Covalent Organic Framework Coating for Highly Efficient Solid Phase Microextraction of Trace Phenols in Water[J]. Rock and Mineral Analysis, 2022, 41(6): 1040-1049. doi: 10.15898/j.cnki.11-2131/td.202204190084

氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取

  • 基金项目:
    湖北省重点研发计划项目(YFXM2021000240)
详细信息
    作者简介: 陶慧,硕士研究生,化学专业。E-mail:taohui@cug.edu.cn
    通讯作者: 帅琴,博士,教授,主要从事原子光谱分析、色谱分析固相微萃取及其联用技术研究。E-mail:shuaiqin@cug.edu.cn
  • 中图分类号: O657.63

An Amino-functionalized Covalent Organic Framework Coating for Highly Efficient Solid Phase Microextraction of Trace Phenols in Water

More Information
  • 酚类化合物是一类常见的环境污染物,由于浓度低、极性较强且样品基质复杂,对其分析检测前需采用样品前处理技术以进行有效地分离和富集。固相微萃取(SPME)是一种集采样、富集、进样于一体的无溶剂前处理技术,与气相色谱-质谱(GC-MS)等联用可实现复杂基质中痕量有机物的快速富集和检测。本文采用无溶剂合成策略,一步合成了氨基改性的共价有机骨架(COFs)材料(TpPa-NH2),合成方法简单绿色,无需溶剂。将其制备成SPME涂层,以5种酚类化合物作为目标分析物,基于顶空模式进行萃取,结合GC-MS作为检测手段,建立了SPME-GC-MS检测酚类化合物的新方法。与未氨基改性的TpPa-1涂层相比,TpPa-NH2萃取酚类化合物的性能是其3~5倍,表明氨基官能团可有效地提高萃取酚类化合物的性能。在最佳条件下,该方法线性范围为10~5.0×104ng/L,线性相关系数为0.996~0.999,检出限为1.30~5.35ng/L。涂层批内的相对标准偏差(RSD)在4.2%~8.9%之间,批间的RSD在2.6%~8.2%之间,且该涂层可以重复使用90次以上。基于TpPa-NH2涂层材料建立的SPME-GC-MS检测酚类化合物的分析方法,已成功应用于环境水样标准物质中酚类化合物的检测。

  • 加载中
  • 图 1  TpPa-NH2合成示意图

    Figure 1. 

    图 2  TpPa-NH2涂层的扫描电子显微镜图像

    Figure 2. 

    图 3  (a) TpPa-NH2的热重分析曲线;(b)三种材料的红外光谱图对比

    Figure 3. 

    图 4  TpPa-NH2涂层萃取和解吸条件的优化

    Figure 4. 

    图 5  (a) TpPa-1、TpPa-NH2、TpPa-NO2、TpPa-N涂层性能的对比;(b) TpPa-NH2涂层的可重复使用性

    Figure 5. 

    表 1  TpPa-NH2涂层萃取5种酚类化合物的分析性能

    Table 1.  Analysis performance of 5 kinds of phenolic compounds by TpPa-NH2 coating

    酚类化合物 线性范围
    (ng/L)
    R2 检出限
    (ng/L)
    RSD(%)
    批内重复性(n=3) 批间重复性(n=3)
    2-NP 20~5.0×104 0.998 4.64 7.1 2.6
    2,4-DMP 10~5.0×104 0.996 1.81 4.2 8.2
    2,6-DMP 10~5.0×104 0.997 1.30 7.1 8.1
    2,4-DCP 20~5.0×104 0.996 5.35 5.7 5.4
    2,4,6-TCP 20~5.0×104 0.999 4.59 8.9 3.4
    下载: 导出CSV

    表 2  与已报道的基于SPME-GC-MS检测酚类的材料对比

    Table 2.  Comparison with the reported materials for the detection of phenols based on SPME-GC-MS

    吸附剂 检出限
    (ng/L)
    线性范围
    (ng/L)
    涂层材料合成方法 使用溶剂 参考文献
    SNW-1-COF 0.06~0.20 0.10~100 180℃,10h 丙酮、二氯甲烷、乙醇、二甲基亚砜 [37]
    CNT/磁铁矿/PA 8.0~70 10~5.0×105 0~5℃,15h 水,乙醇 [38]
    GO/POE 0.12~1.36 5~1×103 多次回流萃取,旋蒸,精馏 [39]
    TpPa-NH2 1.30~5.35 10~5.0×104 360℃,1.5h 本文研究
    下载: 导出CSV

    表 3  本文方法与国家标准方法检测酚类化合物结果对比

    Table 3.  Comparison of results with the study method and national standard methods for detection of the phenols

    酚类化合物检测方法 进样量 检出限
    《水质酚类化合物的测定液液萃取法/气相色谱法》 (HJ 676—2013) 500mL 0.5~3.4μg/L
    《固体废物酚类化合物的测定气相色谱法》(HJ 711—2014) 100mL 2~6μg/L
    本文方法 10.0μL 1.30~5.35ng/L
    下载: 导出CSV

    表 4  标准物质分析结果

    Table 4.  Analytical results of the reference materials

    标准品 酚类化合物 参考值
    (μg/L)
    测定值
    (μg/L)
    RSD(%)
    (n=5)
    BWQ8341—2016 2-NP 5±0.15 5.10±0.00 0.04
    2,4-DMP 5±0.15 4.95±0.05 0.92
    2,4-DCP 5±0.15 5.37±0.04 0.83
    2,4,6-TCP 5±0.15 5.04±0.15 2.90
    BWQ8236—2016 2-NP 5±0.15 5.09±0.19 3.90
    2,4-DMP 5±0.15 4.93±0.02 0.44
    2,4-DCP 5±0.15 5.36±0.04 0.87
    2,4,6-TCP 5±0.15 4.98±0.08 1.60
    下载: 导出CSV
  • [1]

    Sas O G, Sanchez P B, Gonzalez B, et al. Removal of phenolic pollutants from wastewater streams using ionic liquids[J]. Separation and Purification Technology, 2019, 236: 116310.

    [2]

    李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239-249. doi: 10.15898/j.cnki.11-2131/td.202007080101 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202007080101

    Li Z Y, Li Y G, Li W L, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239-249. doi: 10.15898/j.cnki.11-2131/td.202007080101 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202007080101

    [3]

    Khan A S, Ibrahim T H, Jabbar N A, et al. Ionic liquids and deep eutectic solvents for the recovery of phenolic compounds: Effect of ionic liquids structure and process parameters[J]. RSC Advances, 2021, 11(20): 12398-12422. doi: 10.1039/D0RA10560K

    [4]

    Ramos R L, Martins M F, Lebron Y A R, et al. Membrane distillation process for phenolic compounds removal from surface water[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105588. doi: 10.1016/j.jece.2021.105588

    [5]

    Castro M D, Priego-Capote F. Soxhlet extraction: Past and present panacea[J]. Journal of Chromatography A, 2010, 1217(16): 2383-2389. doi: 10.1016/j.chroma.2009.11.027

    [6]

    Belo R, Figueiredob J P, Nunes C M, et al. Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2017, 1053: 87-100. doi: 10.1016/j.jchromb.2017.03.017

    [7]

    孙书堂, 严倩, 黎宁, 等. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究[J]. 岩矿测试, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202002030014

    Sun S T, Yan Q, Li N, et al. In situ self-transforming membrane as solid phase microextraction coating extraction of PAHs in environmental water samples[J]. Rock and Mineral Analysis, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202002030014

    [8]

    熊茂富, 任敏, 杜伊, 等. 顶空固相微萃取-气相色谱-质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化[J]. 岩矿测试, 2019, 38(6): 724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901210016

    Xiong M F, Ren M, Du Y, et al. Simultaneous determination of 12 chloroanisoles in lake reservoir waters by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901210016

    [9]

    Allafchian A R, Majidian Z, Ielbeigi V, et al. A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction-ion mobility spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 408(3): 839-847. doi: 10.1007/s00216-015-9170-8

    [10]

    Jiang H, Li J S, Jiang M Y, et al. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media[J]. Analytica Chimica Acta, 2015, 888: 85-93. doi: 10.1016/j.aca.2015.06.055

    [11]

    Zhou X Q, Xie Y L, Zhao Z D, et al. A simple strategy based on fibers coated with surfactant-functionalized multiwalled carbon nanotubes to improve the properties of solid-phase microextraction of phenols in aqueous solution[J]. BMC Chemistry, 2020, 14(1): 15. doi: 10.1186/s13065-020-00665-7

    [12]

    Feng J J, Feng J Q, Ji X P, et al. Recent advances of covalent organic frameworks for solid-phase microextraction[J]. Trends in Analytical Chemistry, 2021, 137: 116208. doi: 10.1016/j.trac.2021.116208

    [13]

    Hou X D, Wang L C, Guo Y. Recent developments in solid-phase microextraction coatings for environmental and biological analysis[J]. Chemistry Letters, 2017, 46(10): 1444-1455. doi: 10.1246/cl.170366

    [14]

    Khataei M M, Yamini Y, Shamsayei M. Applications of porous frameworks in solid phase microextraction[J]. Journal of Separation Science, 2021, 44(6): 1231-1263. doi: 10.1002/jssc.202001172

    [15]

    Aziz-Zanjani M O, Mehdinia A. A review on procedures for the preparation of coatings for solid phase microextraction[J]. Microchimica Acta, 2014, 181(11-12): 1169-1190. doi: 10.1007/s00604-014-1265-y

    [16]

    Geng K Y, He T, Liu R Y, et al. Covalent organic frame-works: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. doi: 10.1021/acs.chemrev.9b00550

    [17]

    Lohse M S, Bein T. Covalent organic frameworks: Stru-ctures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553. doi: 10.1002/adfm.201705553

    [18]

    Huang X, Sun C, Feng X. Crystallinity and stability of covalent organic frameworks[J]. Science China(Chemistry), 2020, 63(10): 1367-1390.

    [19]

    Li Y J, Wang H J, Zhao W F, et al. Facile synthesis of a triptycene-based porous organic polymer with a high efficiency and recyclable adsorption for organic dyes[J]. Journal of Applied Polymer Science, 2019, 136(39): 47987. doi: 10.1002/app.47987

    [20]

    Yang Q, Luo M L, Liu K W, et al. Covalent organic frameworks for photocatalytic applications[J]. Applied Catalysis B: Environmental, 2020, 276: 119174. doi: 10.1016/j.apcatb.2020.119174

    [21]

    Cheng H Y, Wang T. Covalent organic frameworks in catalytic organic synthesis[J]. Advanced Synthesis & Catalysis, 2020, 363(1): 144-193.

    [22]

    Yu G, Wang C. Research progress of covalent organic frameworks in sensing[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1437-1447. doi: 10.6023/cjoc202003018

    [23]

    Skorjanc T, Shetty D, Valant M. Covalent organic polymers and frameworks for fluorescence-based sensors[J]. ACS Sensors, 2021, 6(4): 1461-1481. doi: 10.1021/acssensors.1c00183

    [24]

    Qian H L, Yang C X, Wang W L, et al. Advances in covalent organic frameworks in separation science[J]. Journal of Chromatography A, 2018, 1542: 1-18. doi: 10.1016/j.chroma.2018.02.023

    [25]

    Das S, Feng J, Wang W. Covalent organic frameworks in separation[J]. Annual Review of Chemical and Biomolecular Engineering, 2020, 11: 131-153. doi: 10.1146/annurev-chembioeng-112019-084830

    [26]

    Zhu D Y, Xu G Y, Barnes M, et al. Covalent organic frameworks for batteries[J]. Advanced Functional Materials, 2021, 31(32): 2100505. doi: 10.1002/adfm.202100505

    [27]

    Huo J Q, Luo B C, Chen Y. Crystalline covalent organic frameworks from triazine nodes as porous adsorbents for dye pollutants[J]. ACS Omega, 2019, 4(27): 22504-22513. doi: 10.1021/acsomega.9b03176

    [28]

    Liu L, Meng W K, Li L, et al. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry[J]. Chemical Engineering Journal, 2019, 369: 920-927. doi: 10.1016/j.cej.2019.03.148

    [29]

    Lv G, Liu J, Xiong Z, et al. Selectivity adsorptive mechanism of different nitrophenols on UiO-66 and UiO-66-NH2 in aqueous solution[J]. Journal of Chemical & Engineering Data, 2016, 61(11): 3868-3876.

    [30]

    Ma T T, Shen X F, Yang C, et al. Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples[J]. Talanta, 2019, 201: 413-418. doi: 10.1016/j.talanta.2019.04.031

    [31]

    Wu T, Zang X H, Wang M T, et al. Covalent organic framework as fiber coating for solid-phase microextraction of chlorophenols followed by quantification with gas chromatography-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2018, 66(42): 11158-11165. doi: 10.1021/acs.jafc.8b01643

    [32]

    Jin D, Wang B W, Wu X C, et al. Construction and catalytic applications of an amino-functionalized covalent organic framework[J]. Transition Metal Chemistry, 2019, 44(8): 689-697. doi: 10.1007/s11243-019-00335-1

    [33]

    Jiang Y Z, Liu C Y, Huang A S, et al. EDTA-functiona-lized covalent organic framework for the removal of heavy-metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32186-32191.

    [34]

    Wang K X, Yang L P, Li H X, et al. Surfactant pyrolysis-guided in situ fabrication of primary amine-rich ordered mesoporous phenolic resin displaying efficient heavy metal removal[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21815-21821.

    [35]

    Zanganeh F, Yamini Y, Khataei M M, et al. Ethane-bridge periodic mesoporous organosilica materials as a novel fiber coating in headspace solid-phase microextraction of phthalate esters from saliva and PET container samples[J]. Analytical and Bioanalytical Chemistry, 2022, 414(6): 2285-2296. doi: 10.1007/s00216-021-03868-6

    [36]

    Chandra S, Kandambeth S, Biswal B, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination[J]. Journal of the American Chemical Society, 2013, 135(47): 17853-17861. doi: 10.1021/ja408121p

    [37]

    Wang W C, Wang J T, Zhang S H, et al. A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples[J]. Talanta, 2016, 161: 22-30. doi: 10.1016/j.talanta.2016.08.009

    [38]

    Tafazoli Z, Liu L, Azar P A, Tehrani M S, et al. Facile preparation of multifunctional carbon nanotube/magnetite/polyaniline nanocomposite offering a strong option for efficient solid-phase microextraction coupled with GC-MS for the analysis of phenolic compounds[J]. Journal of Separation Science, 2018, 41(13): 2736-2642. doi: 10.1002/jssc.201800062

    [39]

    Liu Y, Huang Y F, Chen G S, et al. A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols[J]. Analytica Chimica Acta, 2018, 1015: 20-26. doi: 10.1016/j.aca.2018.02.034

  • 加载中

(5)

(4)

计量
  • 文章访问数:  2119
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2022-04-19
修回日期:  2022-06-09
录用日期:  2022-06-25
刊出日期:  2022-11-28

目录