中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

磷酸盐对纳米二氧化钛吸附水体中重金属离子行为的影响和机理分析

李艳香, 陈玖妍, 韩荣, 栾日坚, 张玉强, 吴来东, 祁志冲. 磷酸盐对纳米二氧化钛吸附水体中重金属离子行为的影响和机理分析[J]. 岩矿测试, 2023, 42(2): 317-325. doi: 10.15898/j.cnki.11-2131/td.202206170114
引用本文: 李艳香, 陈玖妍, 韩荣, 栾日坚, 张玉强, 吴来东, 祁志冲. 磷酸盐对纳米二氧化钛吸附水体中重金属离子行为的影响和机理分析[J]. 岩矿测试, 2023, 42(2): 317-325. doi: 10.15898/j.cnki.11-2131/td.202206170114
LI Yanxiang, CHEN Jiuyan, HAN Rong, LUAN Rijian, ZHANG Yuqiang, WU Laidong, QI Zhichong. Effects of Phosphate on the Adsorption of Heavy Metal Ions onto TiO2 Nanoparticles in Water and Mechanism Analysis[J]. Rock and Mineral Analysis, 2023, 42(2): 317-325. doi: 10.15898/j.cnki.11-2131/td.202206170114
Citation: LI Yanxiang, CHEN Jiuyan, HAN Rong, LUAN Rijian, ZHANG Yuqiang, WU Laidong, QI Zhichong. Effects of Phosphate on the Adsorption of Heavy Metal Ions onto TiO2 Nanoparticles in Water and Mechanism Analysis[J]. Rock and Mineral Analysis, 2023, 42(2): 317-325. doi: 10.15898/j.cnki.11-2131/td.202206170114

磷酸盐对纳米二氧化钛吸附水体中重金属离子行为的影响和机理分析

  • 基金项目:
    国家自然科学基金项目(21707081);中国冶金地质总局科研项目(CMGBKY202205)
详细信息
    作者简介: 李艳香,硕士,高级工程师,从事化学分析和环境分析。E-mail: 403xianger.11@163.com
    通讯作者: 祁志冲,博士,副教授,从事人工纳米颗粒的环境行为研究。E-mail: qizhichong1984@163.com
  • 中图分类号: TB383; O657.31

Effects of Phosphate on the Adsorption of Heavy Metal Ions onto TiO2 Nanoparticles in Water and Mechanism Analysis

More Information
  • 纳米二氧化钛(nTiO2)被广泛应用于去除水体中的重金属。磷酸盐作为水体中普遍存在的无机阴离子,能够对重金属离子在nTiO2上的吸附特征产生影响。本文聚焦磷酸盐存在条件下nTiO2胶体颗粒对典型重金属离子(Zn2+和Cd2+)的吸附行为,以电感耦合等离子体发射光谱法(ICP-OES)测定吸附平衡后水相中重金属离子的浓度。通过批量吸附实验考察不同水化学条件下(离子强度和共存阴离子),磷酸盐对nTiO2胶体颗粒吸附水体中Zn2+和Cd2+特征的影响规律。采用经典吸附等温线模型对实验数据进行拟合,并结合纳米颗粒的Zeta电位和粒径变化等表征手段揭示了相关吸附机制。研究发现:①磷酸盐的存在能有效地增强重金属在nTiO2上的吸附,Zn2+和Cd2+的最大吸附量分别由121.1mg/g和84.7mg/g增加至588.3mg/g和434.8mg/g,增加了3.8~4.1倍。这主要由于磷酸盐能够通过桥连作用形成金属-磷酸盐-nTiO2三元络合物以及增加重金属离子和胶体颗粒之间的静电引力,从而增强nTiO2对重金属离子的吸附。②背景溶液中离子强度的增加会降低nTiO2对重金属离子的吸附效果。当背景溶液中离子强度(NaCl浓度)从0增加至10mmol/L时,nTiO2与金属离子之间的静电吸引会减弱,同时Na+与重金属离子竞争nTiO2表面吸附位点亦降低了nTiO2对重金属离子的吸附。③共存竞争性阴离子(如Cl-、NO3-和SO42-)会削弱磷酸盐对nTiO2吸附金属离子的增强作用,抑制顺序为:SO42->NO3->Cl-,即与其离子半径的数量级成反比。这是由于共存阴离子与磷酸盐竞争nTiO2表面的吸附位点所致。研究结果表明,磷酸盐可以显著地增强nTiO2对重金属离子的去除效能,但是去除效能的大小会受到背景溶液中水化学条件的影响。

  • 加载中
  • 图 1  磷酸盐对nTiO2 (20mg/L,pH 7.0)的Zeta电位和水动力学直径的影响

    Figure 1. 

    图 2  在0.1mmg/L磷酸盐存在下,离子强度对(a) Zn2+和(b) Cd2+吸附分配系数(Kd)的影响情况

    Figure 2. 

    图 3  在磷酸盐存在条件下,离子强度对nTiO2(pH 7.0)的Zeta电位和水动力直径的影响情况

    Figure 3. 

    图 4  竞争性阴离子存在情况下,磷酸盐(0.1mmol/L)对nTiO2吸附(a)Zn2+和(b)Cd2+金属离子的影响(虚线是Langmuir模型拟合结果)

    Figure 4. 

    图 5  磷酸盐(0.1mmol/L)对Zn2+和Cd2+nTiO2上最大吸附量(qmax)受竞争性阴离子的影响情况

    Figure 5. 

    表 1  nTiO2吸附Zn2+和Cd2+的Langmuir和Freundlich模型动力学参数

    Table 1.  Kinetic parameters for the Langmuir and Freundlich models of Zn2+ and Cd2+ adsorption onto nTiO2

    实验序号 金属离子 背景电解质 磷酸盐浓度(mmol/L) Langmuir模型 Freundlich模型
    KL(L/mg) qmax(mg/g) R2 KF(mg1-nLn/g) n R2
    1 Zn2+ 1mmol/L NaCl 0 1.07 121.1 0.993 53.3 0.447 0.975
    2 Zn2+ 1mmol/L NaCl 0.1 0.375 476.2 0.998 110.3 0.742 0.980
    3 Zn2+ 1mmol/L NaCl 0.5 0.894 588.3 0.981 211.8 0.636 0.972
    4 Cd2+ 1mmol/L NaCl 0 2.745 84.7 0.971 37.3 0.596 0.981
    5 Cd2+ 1mmol/L NaCl 0.1 0.884 263.2 0.980 61.6 0.673 0.984
    6 Cd2+ 1mmol/L NaCl 0.5 0.535 434.8 0.993 85.1 0.777 0.983
    下载: 导出CSV
  • [1]

    Li Y J, Yang Z M, Chen Y C, et al. Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17321-17332. doi: 10.1007/s11356-019-05081-6

    [2]

    Singh P K, Wang W J, Shrivastava A K. Cadmium-mediated morphological, biochemical and physiological tuning in three different Anabaena species[J]. Aquatic Toxicology, 2018, 202: 36-45. doi: 10.1016/j.aquatox.2018.06.011

    [3]

    Ding Q F, Huang X L, Hu H J, et al. Impact of pyrene and cadmium co-contamination on prokaryotic community in coastal sediment microcosms[J]. Chemosphere, 2017, 188: 320-328. doi: 10.1016/j.chemosphere.2017.08.124

    [4]

    Jacquet A, Barbeau D, Arnaud J, et al. Impact of maternal low-level cadmium exposure on glucose and lipid metabolism of the litter at different ages after weaning[J]. Chemosphere, 2019, 219: 109-121. doi: 10.1016/j.chemosphere.2018.11.137

    [5]

    Jain C K, Singhal D C, Sharma M K. Adsorption of zinc on bed sediment of River Hindon: Adsorption models and kinetics[J]. Journal of Hazardous Materials, 2004, 114: 231-239. doi: 10.1016/j.jhazmat.2004.09.001

    [6]

    Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011

    [7]

    李璇, 张敏, 李秋叶, 等. 二氧化钛表面处理研究进展[J]. 化学研究, 2017, 28(5): 537-547. doi: 10.14002/j.hxya.2017.05.001

    Li X, Zhang M, Li Q Y, et al. Research progress of surface treatment of titanium dioxide[J]. Chemical Research, 2017, 28(5): 537-547. doi: 10.14002/j.hxya.2017.05.001

    [8]

    申书昌, 冷茉含, 彭程, 等. 二氧化钛表面键合配位体固相萃取填料的制备及其吸附性能研究[J]. 岩矿测试, 2018, 37(1): 21-29. doi: 10.15898/j.cnki.11-2131/td.201706080096 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201706080096

    Shen S H, Leng M H, Peng C, et al. The preparation and performance of SPE packing of bonded ligand on the surface of nanometer titanium dioxide[J]. Rock and Mineral Analysis, 2018, 37(1): 21-29. doi: 10.15898/j.cnki.11-2131/td.201706080096 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201706080096

    [9]

    Kumar R, Chawla J. Removal of cadmium ion from water/wastewater by nano-metal oxides: A review[J]. Water Quality Exposure and Health, 2014, 5: 215-226. doi: 10.1007/s12403-013-0100-8

    [10]

    Yang Y, Zhang C Q, Hu Z. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion[J]. Environmental Science Processes Impacts, 2013, 15: 39-48. doi: 10.1039/C2EM30655G

    [11]

    吴莉莉, 曹洪印. 二氧化钛对Cu2+的吸附研究[J]. 化工时刊, 2022, 36(5): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS202205006.htm

    Wu L L, Cao H Y. Research of adsorption of Cu2+ by titanium dioxide[J]. Chemical Industry Times, 2022, 36 (5): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS202205006.htm

    [12]

    Guan X H, Du J S, Meng X G, et al. Application of titanium dioxide in arsenic removal from water: A review[J]. Journal of Hazardous Materials, 2012, 215-216: 1-16. doi: 10.1016/j.jhazmat.2012.02.069

    [13]

    王文凯, 阎莉, 段晋明, 等. 二氧化钛滤柱对高砷污酸废水的吸附去除[J]. 环境工程学报, 2017, 11(3): 1322-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201703003.htm

    Wang W K, Yan L, Duan J M, et al. Arsenite adsorption removal from acid wastewater using titanium dioxide adsorption filter column[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1322-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201703003.htm

    [14]

    聂晓, 阎莉, 张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学, 2018, 37(2): 318-326. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201802016.htm

    Nie X, Yan L, Zhang J F. Simultaneous removal of arsenic and antimony on high-index TiO2(HTiO2)[J]. Environmental Chemistry, 2018, 37(2): 318-326. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201802016.htm

    [15]

    Hu J X, Shipley H J. Regeneration of spent TiO2 nanoparticles for Pb(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) removal[J]. Environmental Science and Pollution Research International, 2013, 20(8): 5125-5137. doi: 10.1007/s11356-013-1502-7

    [16]

    Bozena G, Zakrzewska D, Szymczycha B. Sorption of Cr, Pb, Cu, Zn, Cd, Ni, and Co to nano-TiO2 in seawater[J]. Water Science & Technology, 2018, 77(1): 145-158.

    [17]

    Wagle D, Shipley H J. Adsorption of arsenic(Ⅴ) to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and other metals[J]. Environmental Engineering Science, 2016, 33: 299-305. doi: 10.1089/ees.2016.0014

    [18]

    Wang D X, Wang P F, Wang C, et al. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO2 nanoparticles in water environment[J]. Environmental Pollution, 2019, 248: 834-844. doi: 10.1016/j.envpol.2019.02.084

    [19]

    Vale G, Franco C, Brunnert A M, et al. Adsorption of cadmium on titanium dioxide nanoparticles in freshwater conditions-A chemodynamic study[J]. Electroanalysis, 2015, 27(10): 2439-2447. doi: 10.1002/elan.201500153

    [20]

    Engates K E, Shipley H J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion[J]. Environmental Science and Pollution Research International, 2011, 18: 386-395. doi: 10.1007/s11356-010-0382-3

    [21]

    Xie X F, Gao L. Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations[J]. Current Applied Physics, 2009, 9: S185-S188. doi: 10.1016/j.cap.2009.01.035

    [22]

    Xu H C, Li L, Lyu H, et al. pH-dependent phosphatization of ZnO nanoparticles and its influence on subsequent lead sorption[J]. Environmental Pollution, 2016, 208: 723-731. doi: 10.1016/j.envpol.2015.10.052

    [23]

    Zhao D, Chen C C, Wang Y F, et al. Surface modification of TiO2 by phosphate: Effect on photocatalytic activity and mechanism implication[J]. Journal of Physical Chemistry C, 2008, 112(15): 5993-6001. doi: 10.1021/jp712049c

    [24]

    Moharami S, Jalali M. Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution[J]. Environmental Progress & Sustainable Energy, 2014, 33: 1209-1219.

    [25]

    Chen M, Xu N, Cao X D, et al. Facilitated transport of anatase titanium dioxides nanoparticles in the presence of phosphate in saturated sands[J]. Journal of Colloid and Interface Science, 2015, 451: 134-143. doi: 10.1016/j.jcis.2015.04.010

    [26]

    Li M X, Liu J Y, Xu Y F, et al. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review[J]. Environmental Reviews, 2016, 24(3): 319-332. doi: 10.1139/er-2015-0080

    [27]

    Fang J, Shan X Q, Wen B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution, 2009, 157(4): 1101-1109.

    [28]

    Zhang X Z, Sun H W, Zhang Z Y, et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles[J]. Chemosphere, 2007, 67: 160-166.

    [29]

    Fang J, Zhang K K, Sun P D, et al. Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid[J]. Science of the Total Environment, 2016, 571(15): 471-478.

    [30]

    Wang K J, Xing B S. Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite[J]. Environmental Pollution, 2004, 127: 13-20.

    [31]

    Mahdavi S, Jalali M, Afkhami A. Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles[J]. Journal of Nanoparticle Research, 2012, 14(8): 846.

    [32]

    Stietiya M H, Wang J J. Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands[J]. Journal of Environmental Quality, 2014, 43(2): 498-506.

    [33]

    Bosso S T, Enzweiler J. Evaluation of heavy metal removal from aqueous solution onto scolecite[J]. Water Research, 2002, 36(19): 4795-4800.

    [34]

    Bitonto L D, Volpe A, Pagano M, et al. Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb2+ from water[J]. Journal of Hazardous Materials, 2017, 324: 168-177.

    [35]

    Moharami S, Jalali M. Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution[J]. Environmental Progress & Sustainable Energy, 2014, 33: 1209-1219.

    [36]

    Kiriukhin M Y, Collins K D. Dynamic hydration numbers for biologically important ions[J]. Biophysical Chemistry, 2002, 99(2): 155-168.

    [37]

    Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86: 119-126.

    [38]

    Goh K H, Lim T T. Influences of co-existing species on the sorption of toxic oxyanions from aqueous solution by nanocrystalline Mg/Al layered double hydroxide[J]. Journal of Hazardous Materials, 2010, 180: 401-408.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1060
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2022-06-17
修回日期:  2022-08-18
录用日期:  2022-09-30
刊出日期:  2023-03-28

目录