中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

中国地质标准物质研制进展

刘妹. 中国地质标准物质研制进展[J]. 岩矿测试, 2023, 42(3): 445-463. doi: 10.15898/j.ykcs.202111010158
引用本文: 刘妹. 中国地质标准物质研制进展[J]. 岩矿测试, 2023, 42(3): 445-463. doi: 10.15898/j.ykcs.202111010158
LIU Mei. Research Progress of Geological Reference Materials in China[J]. Rock and Mineral Analysis, 2023, 42(3): 445-463. doi: 10.15898/j.ykcs.202111010158
Citation: LIU Mei. Research Progress of Geological Reference Materials in China[J]. Rock and Mineral Analysis, 2023, 42(3): 445-463. doi: 10.15898/j.ykcs.202111010158

中国地质标准物质研制进展

  • 基金项目: 国家重点研发计划项目“战略性矿产岩矿分析测试技术和标准体系”课题“战略性矿产岩矿分析标准物质研制”(2021YFC2903004);中国地质调查局地质调查项目“全国土地质量调查与成果集成”(DD20221770)
详细信息
    作者简介: 刘妹,硕士,正高级工程师,主要从事标准物质研制与分析质量监控。E-mail:liumei1009@163.com
  • 中图分类号: F407.1;TQ421.3

Research Progress of Geological Reference Materials in China

  • 地质标准物质是保障地质样品分析结果准确性的重要基准。目前,一级地质标准物质数量居十三大类首位,形成了具有国际影响力的地质标准物质体系。本文依据基体类型和定值特性,将一级地质标准物质划分为基础、矿石、海洋、环境、能源和特殊用途等六类,总结了各类标准物质的研制数量、特点、定值指标、应用范围及意义。针对现阶段数量众多的地质标准物质在应用中还存在研制数量少、系列化不足、基体类型单一、定值指标少等问题,本文分析了不同类型存在的具体问题及产生的原因,探究研制技术成熟的地质标准物质中仍有多种成分难定值以及定值方法单一的可能原因,重点讨论了标准物质研制技术中影响定值水平的细节问题:①阐述了均匀性检验测量方法的优缺点,XRF法以其高精密度的优势应用于均匀性检验值得关注和研究;②提出了考虑元素性质、含量级次兼顾测试技术评定均匀性未检元素的不确定度评定方法;③分析了稳定性不确定度在总不确定度构成中成为主要贡献量的原因是当前的计算方法造成的,有待于进一步研究合理的评定方法;④建议针对不同类型标准物质,制定相对扩展不确定度控制限以获得准确可靠的标准值。结合当前地质标准物质存在的不足和工作需求,本文提出了研制关键金属矿石标准物质、符合“一带一路”沿线国家地质背景的土壤和水系沉积物标准物质、海洋沉积物和海洋矿产与海产品标准物质、生物元素标准物质与有机污染物标准物质的建议。

  • 加载中
  • 图 1  中国十三大类一级标准物质数量

    Figure 1. 

    图 2  中国各时期国家一级地质标准物质研制数量

    Figure 2. 

    表 1  一级地质标准物质种类、数量和基体特性

    Table 1.  The type, number and matrix of geological certified reference materials in China.

    标准物质
    种类
    Types of CRMs
    标准物质
    名称
    Name of CRMs
    标准物质国家编号(GBW)
    Country number (GBW) of CRMs
    数量
    Quantity
    样品基体特性
    Sample matrix characteristics
    十三五期间研制数量Quantity developed during the 13th Five-Year Plan period
    基础
    地质类
    Basic geology
    岩石
    Rock
    GBW07101~GBW07114,
    GBW07120~GBW07136,
    GBW07725~GBW07732,
    GBW07835~GBW07837,
    GBW07870~GBW07874,
    GBW07397~GBW07400
    51 超基性岩、花岗岩、安山岩、玄武岩、石英砂岩、页岩、石灰岩、花岗质片麻岩、斜长角闪岩、霓霞正长岩、粗面岩、花岗闪长岩、辉长岩、流纹岩、白云岩、辉绿岩、金伯利岩、伟晶岩、蛇纹岩、石英岩、含铀砂岩、二辉斜长麻粒岩、峨眉山玄武岩、辉石橄榄岩、炭硅质页岩、炭质硅质岩、富硒岩石、南极玄武岩、南极凝灰岩、碳酸盐岩
    Ultrabasic rocks, granite, andesite, basalt, quartz sandstone, shale, limestone, granitic gneiss, plagioamphibolite, aegirine syenite, trachyte, granodiorite, gabbro, rhyolite, dolomite, diabase, kimberlite, pegmatite, serpentine, quartzite, uraniferous sandstone, diplagioclase granulite, Emei Mountain basalt, pyroxene peridotite, carbonaceous siliceous shale, carbonaceous siliceous rocks, selenium-rich rocks, Antarctic basalts, Antarctic tuff, carbonate rocks
    17
    水系
    沉积物
    Stream sediment
    GBW07301~GBW07312,
    GBW07317~GBW07332,
    GBW07343~GBW07351,
    GBW07358~GBW07366
    GBW07482~GBW07492,
    GBW07375~GBW07384
    67 包括不同地质背景和景观区、成矿区带的水系沉积物及黄河三角洲沉积物
    Including different geological background and landscape areas, metallogenic belt drainage sediment and Yellow River delta sediment
    10
    土壤
    Soil
    GBW07401~GBW07411,
    GBW07418~GBW07435,
    GBW07439, GBW07440,
    GBW07446~GBW07457,
    GBW07475~GBW07480,
    GBW07385~GBW07391,
    GBW07913~GBW07942,
    GBW07536~GBW07573,
    GBW07900~GBW07904,
    GBW07978~GBW07986,
    GBW07965~GBW07968
    142 取自不同地质背景的不同土壤类型,包括丘陵山区、平原区、干旱荒漠区、半干旱草原区、黄土地区、三江源地区,及沿海地区滩涂沉积物与河流沉积物、大流域河口泛滥平原沉积物、底泥,农用地土壤等
    Different soil types were obtained from different geological backgrounds, including hills and mountains, plain area, arid desert area, semi-arid grassland area, loess area, three-river headwaters area, coastal tidal flat sediment and river sediment, large basin estuary flood plain sediment, bottom mud, and agricultural land soil
    93
    矿石
    地质类
    Ore geology
    金属矿石
    Metallic
    ore
    GBW07201, GBW07202,
    GBW07213,
    GBW07218~GBW07227,
    GBW07261~GBW07266,
    GBW07818~GBW07830,
    GBW07838~GBW07842,
    GBW07846~GBW07853,
    GBW07875~GBW07878,
    GBW07139~GBW07140,
    GBW07896~GBW07899
    55 铁、铬、锰、钒、钛等各种黑色金属矿石
    Iron, chromium, manganese, vanadium, titanium and other black metal ores
    10
    GBW07231~GBW07241,
    GBW07279~GBW07287,
    GBW07162~GBW07176,
    GBW07141~GBW07149
    GBW07367~GBW07374,
    GBW07894~GBW07895,
    GBW07199
    55 铜、铅、锌、镍(钴)、钨、锡、钼(铋)、锑等有色金属矿石
    Copper, lead, zinc, nickel (cobalt), tungsten, tin, molybdenum (bismuth), antimony and other non-ferrous metal ores
    2
    GBW07177~GBW07182 6 铝土矿
    Bauxite
    -
    GBW07150~GBW07161,
    GBW07183~GBW07188,
    GBW07392~GBW07396,
    GBW07733~GBW07735,
    GBW07890~GBW07893
    30 铍、锂、钽、锆、锶等稀有稀土矿石
    Beryllium, lithium, tantalum, zirconium, strontium and other rare earth ores
    12
    GBW07831~GBW07834 4 锗、镓、铟、铊稀散元素矿石
    germanium, gallium, indium, thallium ores
    -
    贵金属
    矿石
    Precious metal ore
    GBW07203~GBW07209,
    GBW07228~GBW07230,
    GBW07242~GBW07248,
    GBW07297~GBW07300,
    GBW07801~GBW07810,
    GBW07854~GBW07864,
    GBW07255~GBW07260,
    GBW07288~GBW07294
    GBW07340~GBW07342,
    GBW07194~GBW07198,
    GBW07736~GBW07737
    65 金、银、铂族金属矿石
    Gold, silver, platinum group metal ores
    13
    硫化物单矿物
    Sulfide monomi-
    neral
    GBW07267~GBW07270 4 黄铁矿、黄铜矿、方铅矿和闪锌矿
    Pyrite, chalcopyrite, galena and sphalerite
    -
    非金属
    矿石
    Non-metallic ore
    GBW07137, GBW07318,
    GBW07210~GBW07212,
    GBW07214~GBW07217,
    GBW07250~GBW07254,
    GBW07277, GBW07278,
    GBW07811~GBW07817,
    GBW07843~GBW07845,
    GBW07865~GBW07869,
    GBW07879~GBW07889,
    GBW07742~GBW07744,
    GBW07905~GBW07912
    53 珍珠岩、海泡石、磷矿石、石灰石、白云石、萤石、砷矿石、重晶石、矽线石、菱镁矿、电气石、透辉石、硅藻土、高岭土、膨润土、凹凸棒
    Perlite, sepiolite, phosphate ore, limestone, dolomite, fluorite, arsenic ore, barite, sillimanite, magnesite, tourmaline, diopside, diatomite, kaolin, bentonite, attapulgite
    29
    海洋
    地质类
    Marine geology
    海洋
    沉积物
    Marine sediment
    GBW07313~GBW07316,
    GBW07357,
    GBW07333~GBW07336,
    GBW07481
    10 黄海、南海、东海、近海、太平洋深海、南极、北极海洋沉积物
    Sediment of Yellow Sea, South China Sea, East China Sea, near sea, Pacific, Antarctic Ocean and Arctic Ocean
    -
    海洋矿产
    Marine minerals
    GBW07249, GBW07295,
    GBW07296,
    GBW07337~GBW07339
    6 多金属结核、富钴结壳
    Polymetallic nodules and cobalt-enriched crusts
    -
    环境
    地质类
    Environ-
    mental geology
    生物无机元素
    Bioinor-
    ganic element
    GBW07601~GBW07605,
    GBW10010~GBW10028,
    GBW10043~GBW10052
    34 大米、小麦、玉米、黄豆、圆白菜、菠菜、芹菜、胡萝卜、豆角、大葱、蒜粉、紫菜、大虾、扇贝、鸡肉、猪肝、奶粉、花粉、螺旋藻、人参、黄芪、苹果、灌木枝叶、杨树叶、柑橘叶、茶叶、人发
    Rice, wheat, corn, soybeans, cabbage, spinach, celery, carrots, beans, green onions, garlic powder, seaweed, prawns, scallops, chicken, pig liver, milk powder, pollen, spirulina, ginseng, Astragalus, apple, shrub branches and leaves, poplar leaves, citrus leaves, tea leaves, and human hair
    -
    土壤元素有效态
    Effective state of soil elements
    GBW07412~GBW07417,
    GBW07458~GBW07461,
    GBW07493~GBW07498
    16 黑龙江黑土、辽宁棕壤、河南黄潮土、新疆灰钙土、陕西黄绵土、四川紫色土、安徽黄棕壤、湖北水稻土、江西红壤、广东赤红壤、陕西塿土、陕西黑垆土、青海栗钙土、宁夏灌淤土、甘肃灌漠土、新疆棕漠土
    Heilongjiang black soil, Liaoning brown soil, Henan yellow tide soil, Xinjiang gray calcareous soil, Shaanxi leossial soil, Sichuan purple soil, Anhui yellow brown soil, Hubei paddy soil, Jiangxi red soil, Guangdong laterite soil, Shaanxi Lou soil, Shaanxi dark loessial soil, Qinghai chestnut soil, Ningxia irrigated silt soil, Gansu irrigated desert soil, and Xinjiang brown desert soil
    6
    元素形态
    Element form
    GBW07436~GBW07438,
    GBW07441~GBW07445,
    GBW07462, GBW07463,
    GBW07974~GBW07977,
    GBW07464~GBW07468
    19 土壤和沉积物元素形态、湖泊沉积物中磷形态、土壤碳形态、地下水砷价态
    Elemental morphology in soil and sediment, phosphorus morphology in lake sediment, soil carbon morphology, arsenic valence state in groundwater
    4
    元素可提
    取态
    Element
    extractable
    state
    GBW07943~GBW07964 22 土壤重金属元素可提取态
    Extractable state of heavy metal elements in soil
    22
    有机成分
    Organic ingredients
    GBW07469~GBW07474,
    GBW07352~GBW07355
    10 土壤中有机氯农药和多氯联苯与沉积物中多环芳烃
    Organochlorine pesticides and polychlorinated biphenyls in soil and polycyclic aromatic hydrocarbons in sediment
    4
    能源
    地质类
    Energy geology
    生油岩
    Oil source rock
    GBW07115~GBW07119 5 灰色泥岩、黑灰色泥岩、深灰色页岩、深灰绿色泥岩、紫红色致密页岩
    Gray mudstone, black gray mudstone, dark gray shale, dark gray green mudstone, purple tight shale
    -

    Coal
    GBW11139~GBW11154 16 肥煤、气煤、1/3焦煤、弱黏煤、焦煤、贫瘦煤、无烟煤、长焰煤、气煤、气肥煤
    Fat coal, gas coal, 1/3 coking coal, weak viscous coal, coking coal, lean coal, anthracite, long flame coal, gas coal, gas fertilizer coal
    -
    页岩气
    Shale gas
    GBW07499~GBW07500 2 碳质泥岩、煤
    Carbonaceous mudstone, coal
    2
    特殊
    地质类
    Special geology
    人工合成
    Artificial synthesis
    GBW07701~GBW07724 24 合成硅酸盐、灰岩、X射线荧光光谱
    Synthetic silicates, limestone, X-ray fluorescence spectra
    -
    同位素
    Isotope
    GBW04409~GBW04419,
    GBW04421, GBW04422,
    GBW04435, GBW04436,
    GBW04439,
    GBW04458~GBW04461,
    GBW04476, GBW04477,
    GBW04494~GBW04497,
    GBW04507~GBW04510,
    GBW04701~GBW04703,
    GBW04137~GBW04141
    38 地质年龄标准物质包括铷-锶、钐-钕、铀-铅、铀系、钾-氩、氩-氩法、铼-锇等;稳定同位素标准物质包括硫化银硫同位素、硅酸盐氧同位素、碳酸盐碳氧稳定同位素、海洋沉积物碳氮稳定同位素、有机化学物质碳氮稳定同位素、石英砂岩和纯试剂硅同位素、富钴结壳锇同位素、水中氢氧同位素、单体碳同位素
    The reference materials for geological age include rubidium-strontium, samarium-neodymium, uranium-lead, uranium series, potassium-argon, argon-argon process, and rhenium-osmium; stable isotope reference materials include silver sulfide sulfur isotope, silicate oxygen isotope, carbonates carbon oxygen isotope, marine sediments carbon nitrogen stable isotope, organic chemicals carbon nitrogen stable isotope, quartz sandstone and pure reagent silicon isotope, cobalt-rich crust osmium isotope, hydrogen and oxygen isotope in water, and monomer carbon isotope
    16
    电子探针
    Electronic probe
    GBW07501~GBW07535 35 方铅矿、闪铅矿、辰矿、重晶石、白铅矿、白钨矿、铌锰矿、碲化镉、硒化锌、砷化镓、硒化锌、锑化铟、磷化铟、砷化铟、氧化锌、铌酸钾、铅玻璃、硼玻璃、蓝晶石、黄铁矿、橄榄石、歪长石、铬铁矿、石英、锰铁榴石、五磷酸钪、五磷酸镧、五磷酸铈、五磷酸镨、五磷酸钕、五磷酸钐、五磷酸钆、五磷酸钬、五磷酸镱、五磷酸镥
    Galena, amphibolite, chenite, barite, cerussite, scheelite, mangancolumbite, cadmium telluride, zinc selenide, gallium arsenide, zinc selenide, indium antimonide, indium phosphates, indium arsenide, zinc oxide, potassium niobate, lead glass, boron glass, cyanite, pyrite, olivine, anorthoclase, chromite, quartz, ployadelphite, scandium pentaphosphate, lanthanum pentaphosphate, cerium pentaphosphate, praseodymium pentaphosphate, neodymium pentaphosphate, samarium pentaphosphate, gadolinium pentaphosphate, holmium pentaphosphate, ytterbium pentaphosphate, lutecium pentaphosphate
    -
    物相分析
    Phase analysis
    GBW07189~GBW07193,
    GBW07271~GBW07276,
    GBW07738~GBW07741
    15 金矿石、铁矿石、铋矿石
    Gold ore, iron ore, and bismuth ore
    4
    土壤特定用途
    Soil specific use
    GBW07969~GBW07973 5 土壤界限含水率
    Soil limit water cnotent
    5
    GBW07987~GBW07998 12 土壤酸碱度
    Soil pH
    12
    下载: 导出CSV

    表 2  未检元素均匀性实验不确定度的计算依据参照已检元素

    Table 2.  Calculation basis for the uncertainty of elements without homogeneity test.

    序号
    No.
    要素
    Factor
    分类选择的依据
    Basis for classification
    1 按元素的地球化学性质分类
    Classification by geochemical properties of elements
    造岩元素
    Rock forming elements (SiO2, Al2O3, MgO, CaO, Na2O, K2O)
    铁族元素 Iron group elements (Ti, V, Cr, Mn, Fe, Co, Ni)
    稀有稀土元素
    Rare earth elements (Li, Be, Rb, Cs, Nb, Ta, Zr, Hf, Sc, Ym, REE)
    放射性元素
    Radioactive elements (U, Th)
    钨钼族元素
    Tungsten-molybdenum group elements (W, Sn, Mo, Bi)
    亲铜成矿元素
    Chalcophile metallogenic elements (Cu, Pb, Zn, Au, Ag, As, Sb, Hg)
    分散元素
    Disperse elements (Sr, Ba, Cd, Ga, In, Tl, Ge, Se, Te, Re)
    矿化剂及卤族元素
    Mineralizer and halogen elements (B, C, N, P, S, F, Cl, Br, I)
    铂族元素
    Platinum group elements (Pt, Pd, Os, Ir, Ru, Rh)
    2 按元素含量进行量级分类
    Classification of magnitude by element content
    %,μg/g,ng/g
    3 按元素测量方法分类
    Classification by element measurement method
    筛选定值元素的全部测试方法中占比最大的方法作为该元素的主体测试方法,将均匀性已检元素和未检元素按主体测试方法分类。
    The method with the largest proportion among all the test methods for screening the element with a fixed value is used as the subject test method of the element. The elements tested and untested for uniformity are classified according to the subject test method.
    下载: 导出CSV

    表 3  相对扩展不确定度($ {U}_{\mathrm{r}\mathrm{e}\mathrm{l}} $)的控制条件

    Table 3.  Control conditions of relative extended uncertainty.

    含量范围
    Content range
    控制限Control limits
    JJF1646—2017岩石、土壤、各类沉积物
    Rock, soil, sediment
    矿石
    Ore
    生物[23]
    Biota[23]
    有效态、形态、价态
    Effective state, form, valence state
    >30% / ≤1% ≤2% / /
    >10% ≤2% ≤2% ≤5% / /
    >1% ≤5% ≤5% ≤8% ≤10%
    0.1%~1% ≤10% ≤10% ≤10% ≤10% ≤15%
    100~1000μg/g ≤15% ≤15% ≤15% ≤20%
    10~100μg/g ≤15% ≤20% ≤25%
    1~10μg/g ≤20% ≤20% ≤20%
    0.1~1μg/g ≤25% ≤25% ≤30% ≤25% ≤30%
    <0.1μg/g ≤30% ≤30% ≤35% ≤30% ≤35%
    <0.01µg/g ≤35% / / ≤35% /
    注:为表格统一,没有对应含量级次控制限的以“/”表示。
    下载: 导出CSV
  • [1]

    尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试,2009,28(1):37−52. doi: 10.3969/j.issn.0254-5357.2009.01.009

    Yin M. Progress and prospect on geoanalytical techniques in China[J]. Rock and Mineral Analysis, 2009, 28(1):37−52. doi: 10.3969/j.issn.0254-5357.2009.01.009

    [2]

    刘勇胜,屈文俊,漆亮,等. 中国岩矿分析测试研究进展与展望(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(3):515−539.

    Liu Y S,Qu W J,Qi L,et al. Advances and perspectives of researches on rock and mineral analyses in China (2011—2020)[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(3):515−539.

    [3]

    Yan M C,Cheng Z Z. Study and application of geochemical reference materials in the institute of geophysical and geochemical exploration[J]. Geostandards and Geoanalytical Research, 2007, 31(4):301−309. doi: 10.1111/j.1751-908X.2007.00133.x

    [4]

    卢晓华,薄梦,吴雪,等. 标准物质领域发展现状及趋势[J]. 化学试剂,2022,44(10):1403−1410.

    Lu X H,Bo M,Wu X,et al. Current situation and trends on the development of reference materials[J]. Chemical Reagents, 2022, 44(10):1403−1410.

    [5]

    Wilson S A,Potts P J, Webb P C. Three new geochemical reference materials for mineral exploration and environmental contamination studies:SdAR-L2,SdAR-M2 and SdAR-H1[J]. Geostandards and Geoanalytical Research, 2021, 45(2):359−367. doi: 10.1111/ggr.12300

    [6]

    陈钰,程义斌,孟凡敏,等. 国内外标准物质发展现况[J]. 环境卫生学杂志,2017,7(2):156−163.

    Chen Y,Cheng Y B,Meng F M,et al. Review on statues of reference materials in different countries[J]. Journal of Environmental Hygiene, 2017, 7(2):156−163.

    [7]

    李恩重,徐大军,酆晨,等. 我国标准样品分类原则和命名方法研究[J]. 中国标准化,2021(22):6−14,20.

    Li E Z,Xu D J,Feng C,et al. Research on classification principles and nomenclature of reference material in China[J]. China Standardization, 2021(22):6−14,20.

    [8]

    李延河. “同位素分析新技术与地质应用研究新进展”专辑特邀主编寄语[J]. 地球学报,2020,41(5):583−589.

    Li Y H. Guest editor’s preface to the “New technologies of isotope analysis and its applications in geology”[J]. Acta Geoscientica Sinica, 2020, 41(5):583−589.

    [9]

    王松,高钰涯,王军,等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报,2021,42(5):641−655.

    Wang S,Gao Y Y,Wang J,et al. Recent progress of reference materials for in-situ elemental and isotopic microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5):641−655.

    [10]

    陈意,胡兆初,贾丽辉,等. 微束分析测试技术十年(2011~2020)进展与展望[J]. 矿物岩石地球化学通报,2021,40(1):1−35,253.

    Chen Y,Hu Z C,Jia L H,et al. Progress of microbeam analytical technologies in the past decade (2011—2020) and prospect[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(1):1−35,253.

    [11]

    Rinaldi R,Llovet X. Electron probe microanalysis:A review of the past,present,and future[J]. Microsc Microanal, 2015, 21:1053−1069.

    [12]

    Llovet X,Moya,Pinard P T,et al. Electron probe microanalysis:A review of recent developments and applications in materials science and engineering[J]. Progress in Materials Science, 2021(116):100673.

    [13]

    Huang C,Wang H,Yang J H,et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1):103−123. doi: 10.1111/ggr.12307

    [14]

    赵秀峰,高孝礼,曹磊,等. 土壤界限含水率标准物质研制[J]. 岩矿测试,2021,40(4):593−602.

    Zhao X F,Gao X L,Cao L,et al. Preparation of certified reference materials for soil limit water content[J]. Rock and Mineral Analysis, 2021, 40(4):593−602.

    [15]

    陶琛,李春生,初威澄,等. 非色散原子荧光光谱法同时检测硒和铅的光源干扰校正方法研究[J]. 分析化学,2019,47(1):163−168.

    Tao C,Li C S,Chu W C,et al. Correction method of light source interference for simultaneous determination of selenium and lead by non-dispersive hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1):163−168.

    [16]

    贾亚青,吴红,沈正生. 非色散原子荧光激发光源杂质检测方法与装置研究[J]. 计量学报,2017,38(4):504−506.

    Jia Y Q,Wu H,Shen Z S. Research on method and device of non-disperse atomic fluorescence exciting source impurity detection[J]. Acta Metrologica Sinica, 2017, 38(4):504−506.

    [17]

    赵宗生,赵小学,姜晓旭等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试,2019,38(3):333−340.

    Zhao Z S,Zhao X X,Jiang X X,et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3):333−340.

    [18]

    苏文峰,李刚. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒[J]. 岩矿测试,2008,27(2):120−122.

    Su W F,Li G. Determination of trace selenium in soil samples by hydride generation atomic fluorescence spectrometry with baking separation[J]. Rock and Mineral Analysis, 2008, 27(2):120−122.

    [19]

    洪光辉,王晴晴,崔喜平,等. ICP-MS分析中的干扰及其消除研究进展[J]. 实验科学与技术,2021,19(3):14−21.

    Hong G H,Wang Q Q,Cui X P,et al. The development progress of interference and elimination with ICP-MS[J]. Experiment Science and Technology, 2021, 19(3):14−21.

    [20]

    白金峰,薄玮,张勤,等. 高分辨电感耦合等离子体质谱法测定地球化学样品中的36种元素[J]. 岩矿测试,2012,31(5):814−819. doi: 10.3969/j.issn.0254-5357.2012.05.010

    Bai J F,Bo W,Zhang Q,et al. Determination of 36 elements in geochemical samples by high resolution inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(5):814−819. doi: 10.3969/j.issn.0254-5357.2012.05.010

    [21]

    姚永刚,肖才锦,王平生,等. 嫦娥五号月壤中子活化分析研究[J]. 同位素,2022,35(1):70−74. doi: 10.7538/tws.2021.youxian.102

    Yao Y G,Xiao C J,Wang P S,et al. Instrumental neutron activation analysis for Luanr samples returned by Chang’E-5[J]. Journal of Isotopes, 2022, 35(1):70−74. doi: 10.7538/tws.2021.youxian.102

    [22]

    姜怀坤,成学海,张文娟,等. 中子活化法测定地球化学样品中32种元素[J]. 理化检验(化学分册),2015,51(4):429−432.

    Jiang H K,Cheng X H,Zhang W J,et al. Determination of 32 elements in geochemistry samples by neutron activation analysis[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(4):429−432.

    [23]

    鄢明才,史长义,顾铁新,等. 生物成分系列标准物质的研制[J]. 岩矿测试,2006,25(2):159−172.

    Yan M C,Shi C Y,Gu T X,et al. Preparation and certification of biological reference materials[J]. Rock and Mineral Analysis, 2006, 25(2):159−172.

    [24]

    刘瑱,马玲,时晓露,等. 石英岩化学成分分析标准物质研制[J]. 岩矿测试,2014,33(6):849−856.

    Liu Z,Ma L,Shi X L,et al. Preparation of quartzite reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2014, 33(6):849−856.

    [25]

    洪飞,刘耀华,吕振生,等. 钛铁矿化学成分标准物质研制[J]. 岩矿测试,2014,33(1):67−73. doi: 10.3969/j.issn.0254-5357.2014.01.012

    Hong F,Liu Y H,Lyu Z S,et al. Certified reference materials preparation of ilmenite chemical composition[J]. Rock and Mineral Analysis, 2014, 33(1):67−73. doi: 10.3969/j.issn.0254-5357.2014.01.012

    [26]

    许春雪,王亚平,张旭,等. 矽线石成分分析标准物质研制[J]. 岩矿测试,2017,36(4):396−404.

    Xu C X,Wang Y P,Zhang X,et al. Preparation of certified reference materials of sillimanite for chemical composition analysis[J]. Rock and Mineral Analysis, 2017, 36(4):396−404.

    [27]

    魏双,王家松,徐铁民,等. 海泡石化学成分分析标准物质研制[J]. 岩矿测试,2021,40(5):763−773.

    Wei S,Wang J S,Xu T M,et al. Preparation of sepiolite reference material for chemical composition analysis[J]. Rock and Mineral Analysis, 2021, 40(5):763−773.

    [28]

    洪飞,赵伟,刘耀华,等. 菱镁矿、蛇纹岩、碲金矿化学成分标准物质研制[J]. 山东国土资源,2018,34(5):95−101.

    Hong F,Zhao W,Liu Y H,et al. Preparation of chemical composition standard material of magnesite serpentine and tellurium gold deposit[J]. Shandong Land and Resources, 2018, 34(5):95−101.

    [29]

    董学林,熊玉祥,肖宇鹰,等. 高品位多金属矿石成分分析标准物质研制[J]. 资源环境与工程,2021,35(6):905−913.

    Dong X L,Xiong Y X,Xiao Y Y,et al. Development of standard material for composition analysis of high grade polymetallic ore[J]. Resources Environment & Engineering, 2021, 35(6):905−913.

    [30]

    Tang M L,Fan B L,Yao L Y,et al. Preparation and certification of reference materials (GBW07397,GBW07398,GBW07399 and GBW07400) for selenium and other trace element mass fractions[J]. Geostandards and Geoanalytical Research, 2020, 44(2):375−384. doi: 10.1111/ggr.12311

    [31]

    颜茂弘,鲍琪儿,王祖荫,等. 岩石标准物质均匀性的XRF检查法[J]. 岩矿测试,1988,7(1):61−65.

    Yan M H,Bao Q E,Wang Z Y,et al. A study on homogeneity test of powdered rock reference materials by XRF method[J]. Rock and Mineral Analysis, 1988, 7(1):61−65.

    [32]

    茅祖兴,鲁豪东. X射线荧光光谱法检验标准物质的均匀性[J]. 光谱学与光谱分析,1991,11(3):62−65,39.

    Mao Z X,Lu H D. Testing homogeneity of certified reference materials by XRF[J]. Spectroscopy and Spectral Analysis, 1991, 11(3):62−65,39.

    [33]

    李国会,樊守忠. X射线荧光光谱法在标准物质均匀性检验中的应用[J]. 地质实验室,1995,11(1):40−43.

    Li G H,Fan S Z. Application of X-ray fluorescence method in test for homogeneity of reference materials[J]. Geological Laboratory, 1995, 11(1):40−43.

    [34]

    赵红坤,于阗,肖志博,等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析,2021,41(3):755−762.

    Zhao H K,Yu T,Xiao Z B,et al. Homogeneity test of geochemical certified reference materials by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Spectroscopy and Spectral Analysis, 2021, 41(3):755−762.

    [35]

    赵红坤,郝亚波,田有国,等. 熔融制样-X射线荧光光谱法测定小取样量地球化学样品中的主量元素[J]. 物探与化探,2020,44(4):778−783.

    Zhao H K,Hao Y B,Tian Y G,et al. The application of melting sample preparation-X ray fluorescence spectrometry to measuring a small amount of soil certified reference material[J]. Geophysical and Geochemical Exploration, 2020, 44(4):778−783.

    [36]

    杨卓孚. 岩矿石地质标准物质研制中的几个问题[J]. 化工矿产地质,1996(3):90−94, 101.

    Yang Z F. Some problems facing the preparation of standard samples for identification of rocks and ores[J]. Geology of Chemical Minerals, 1996(3):90−94, 101.

    [37]

    鄢明才. 地球化学标准物质标准值不确定度估算探讨[J]. 岩矿测试,2001,20(4):287−293. doi: 10.3969/j.issn.0254-5357.2001.04.011

    Yan M C. Discussion on estimation of uncertainty of certified values from geochemical standard reference materials[J]. Rock and Mineral Analysis, 2001, 20(4):287−293. doi: 10.3969/j.issn.0254-5357.2001.04.011

    [38]

    杨佳佳,孙玮琳,徐学敏,等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报,2020,94(11):3515−3522. doi: 10.3969/j.issn.0001-5717.2020.11.023

    Yang J J,Sun W L,Xu X M,et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11):3515−3522. doi: 10.3969/j.issn.0001-5717.2020.11.023

    [39]

    刘妹,顾铁新,潘含江,等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试,2018,37(5):558−571.

    Liu M,Gu T X,Pan H J,et al. Preparation of seven certified reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5):558−571.

    [40]

    陈宗定,许春雪,刘贵磊,等. 6种南方酸性土壤重金属元素氯化钙可提取态标准物质研制[J]. 冶金分析,2021,41(10):12−22.

    Chen Z D,Xu C X,Liu G L,et al. Development of six extractable certified reference materials of calcium chloride for analysis of heavy metals in southern acid soil[J]. Metallurgical Analysis, 2021, 41(10):12−22.

    [41]

    王干珍,彭君,李力,等. 锰矿石成分分析标准物质研制[J]. 岩矿测试,2021,40(6):1−10.

    Wang G Z,Peng J,Li L,et al. Preparation of standard material for composition analysis of manganese ore[J]. Rock and Mineral Analysis, 2021, 40(6):1−10.

    [42]

    孟凡敏,阚莹. 标准物质稳定性不确定度的评估[J]. 计量学报,2010,31(5A):112−114.

    Meng F M,Kan Y. Evaluatian of the uncertainty contribution of instability for reference material[J]. Acta Metrologica Sinica, 2010, 31(5A):112−114.

    [43]

    汪斌,卢晓华,王茜. 质量控制图在标准物质稳定性评估中的应用[J]. 化学试剂,2019,41(5):475−477.

    Wang B,Lu X H,Wang Q. Application of control chart for assessment of stability of reference materials[J]. Chemical Reagents, 2019, 41(5):475−477.

  • 加载中

(2)

(3)

计量
  • 文章访问数:  1101
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2021-11-01
修回日期:  2022-01-17
录用日期:  2023-04-29
刊出日期:  2023-06-30

目录