-
摘要:
贵州下寒武统牛蹄塘组黑色页岩富集了以Ni、V为主的伴生元素,并且富有机质,目前金属元素Ni、V与有机质的共富集机制尚不清楚,但有机质在金属离子的富集、迁移和转化的过程中具有重要作用。探究金属元素作用对有机质结构的影响有助于准确地认识有机质和金属元素的共富集机制。本文以胡敏素为研究对象,分别与Ni、V两种金属标准溶液混合后恒温振荡,通过元素组成、X射线光电子能谱(XPS)和固体核磁共振碳谱(13C-NMR)由表到里揭示金属溶液作用前后胡敏素结构的变化特征。结果表明:胡敏素的元素组成以C、O为主,Ni、V两种金属溶液作用后,均造成胡敏素中O和S元素的相对含量减少,C和N元素的相对含量增加。XPS测试显示,胡敏素表面的C元素主要以芳香碳形态赋存,O元素则主要以羟基氧形态赋存;对于不同赋存形态的C元素,Ni、V金属溶液作用后对其影响趋势一致,均使芳香碳、羟基碳和羰基碳减少,主要破坏芳香碳(C—C/C—H)单键;而对于不同赋存形态的O元素,Ni金属溶液作用后则使羟基氧和羧基氧减少,使其中的富氢富氧官能团脱出,V金属溶液作用后则使羰基氧和羧基氧减少,破坏其中的羰基双键(C=O)。13C-NMR测试显示,作用前后的胡敏素有机质芳香结构主要以单环或者双环结构存在,两种金属溶液均能使氧接芳碳(
)和桥接芳碳($f_{\rm{ar}}^{\rm{P}} $ )中的富氧富氢官能团从芳环中脱出、胡敏素中脂链长度变短、有机碳的稳定性降低、活性有机碳含量减少以及疏水程度变小。通过对比分析表明,胡敏素对Ni、V金属元素具有一定的氧化能力,两种金属溶液作用后均能使胡敏素中C、O元素的赋存形态发生改变,Ni金属溶液主要影响脂肪碳结构,V金属溶液则主要影响芳碳结构。$f_{\rm{ar}}^{\rm{B}} $ Abstract:BACKGROUND Black shales are mostly developed in special periods in geological history. They not only record the evolution characteristics of paleoenvironment, paleoclimate and paleontology, but also are carriers of organic matter, oil and gas and various metal deposits. Taking the black shale of the Lower Cambrian Niutitang Formation in Guizhou as an example, it not only shows the extraordinary enrichment of V, Ni and other metal elements, forming vanadium ore and nickel-molybdenum ore, but is also rich in organic matter, with TOC content of 0.7%-14.6% (average 5.2%). At present, the co-enrichment mechanism of metal elements Ni, V and organic matter is still unclear, but organic matter plays an important role in the enrichment, migration and transformation of metal ions.
OBJECTIVES To understand the co-enrichment mechanism of organic matter and metal elements by exploring the effect of metal elements on the structure of organic matter.
METHODS Take two groups of 50mL polypropylene centrifuge tubes A and B, and add 5g of humin to each centrifuge tube. Then add 20mL of Ni single element standard solution to the group A centrifuge tube, and 20mL of V single element standard solution to the group B centrifuge tube. Place the centrifuge tube in a constant temperature oscillator for 24h with the temperature of 298K and the speed of 220r/min. After standing for 24h, the filtered solid part is placed in a 50mL beaker and dried. The dried samples (numbered as HM-Ni and HM-V) and the original humin sample (numbered HM) are analyzed by element analyzer, X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance carbon spectroscopy (13C-NMR).
RESULTS The results show that the elemental composition of humin is mainly C and O. After the action of Ni and V metal solutions, the relative contents of O and S elements in humin decrease, and the relative contents of C and N elements increase. The ratio of H/C and O/C atoms is HM>HM-V>HM-Ni. XPS test shows that the C element on the surface of humin is mainly in the form of aromatic carbon, while the O element is mainly in the form of hydroxyl oxygen. For C with different occurrence forms, the influence trend of Ni and V metal solutions on them is the same, which reduces aromatic carbon, hydroxyl carbon and carbon-based carbon, and mainly destroys aromatic carbon (C—C/C—H) single bonds. For O with different occurrence forms, the Ni metal solution reduces hydroxyl oxygen and carboxyl oxygen, which makes the hydrogen-enriched and oxygen-enriched functional groups prolapse; the V metal solution reduces carbonyl oxygen and carboxyl oxygen, which destroys the carbonyl double bond (C=O). Solid-state nuclear magnetic resonance carbon spectroscopy (13C-NMR) tests show that the action of Ni metal solution can reduce the relative contents of bridged aromatic carbon (far B), oxygen-connected aromatic carbon (far P), carbonyl carbon (fa O), methyl and quaternary carbon (fal *), as well as methylene and methine carbon (fal H); V metal solution can reduce the relative contents of protonated aromatic carbon (far H), bridged aromatic carbon (far B), oxygen-connected aromatic carbon (far P), carbonyl carbon (fa O), methyl and quaternary carbon (fal *), as well as methylene and methine carbon (fal H). Both metal solutions can make the O-enriched and H-enriched functional groups in oxygen-linked aromatic carbon (far P) and bridged aromatic carbon (far B) prolapse from the aromatic ring, shorten the lipid chain length in humin, reduce the stability of organic carbon, reduce the content of active organic carbon and reduce the degree of hydrophobicity.
CONCLUSIONS Through comparative analysis, it is shown that humin has a certain oxidation ability to Ni and V metal elements. After the action of the two metal solutions, the occurrence morphology of C and O elements in humin can be changed. Ni metal solution mainly affects the aliphatic carbon structure, while V metal solution mainly affects the aromatic carbon structure.
-
Key words:
- organic matter /
- humin /
- metal elements /
- XPS /
- 13C-NMR /
- structural characteristics
-
表 1 样品元素分析结果
Table 1. Elemental analysis results of samples.
样品编号 元素组成(%) 原子比 C H N S O H/C O/C HM 40.71 2.79 0.65 0.24 55.62 0.82 1.03 HM-Ni 42.82 2.83 1.66 0.14 52.55 0.79 0.92 HM-V 41.46 2.77 1.73 0.14 53.90 0.80 0.98 表 2 样品的XPS宽扫分析结果
Table 2. Results of XPS wide scan analysis of samples.
样品编号 样品表面C、O元素含量(%) O/C C O HM 45.98 52.24 0.85 HM-Ni 43.80 53.43 0.92 HM-V 43.83 53.52 0.92 表 3 胡敏素13C-NMR谱化学位移归属
Table 3. Attribution of chemical shifts in 13C-NMR spectra of huminin.
基团 结构 化学位移(×10−6) 甲基碳 12~16 芳香甲基碳 16~22 与脂肪族甲基相连的亚甲基碳 23~32 亚甲基碳 32~36 次甲基碳和季碳 36~50 氧与甲基或亚甲基碳连接 50~60 氧与亚甲基碳连接 60~70 氧与季碳相连 75~90 质子化芳碳 100~129 桥接芳碳 129~137 侧枝芳碳 137~148 氧接芳碳 148~165 羧基碳 165~190 羰基碳 190~220 表 4 C1s和O1s的XPS分峰拟合结果
Table 4. XPS split peak fitting results of C1s and O1s.
元素峰 元素形态 结合能
(eV)不同元素形态的含量(%) HM HM-Ni HM-V C 1s 芳香碳 284.4 42.01 32.25 31.12 脂肪碳 285.1 30.61 35.11 38.96 羟基碳 286.0 4.34 3.51 3.90 酮基碳 286.7 8.09 9.37 10.04 羰基碳 287.8 4.50 2.41 2.47 羧基碳 288.7 10.46 17.34 13.51 O 1s 羰基氧 531.5±0.05 26.50 33.03 24.95 羟基氧 532.9 69.09 64.30 71.70 羧基氧 536.15±0.1 4.41 2.67 3.35 表 5 样品的13C-NMR分峰拟合结构参数
Table 5. 13C-NMR split peak fitting structural parameters of samples.
样品
编号含量(%) far farH farB farS farP fa faC faO fal fal* falH falO HM 66.43 39.86 14.44 0.7 12.13 15.25 4.49 10.76 18.32 4.89 10.41 3.02 HM-Ni 67.55 42.16 12.32 8.05 5.02 17.11 7.47 9.64 15.33 3.38 8.65 3.3 趋势 +1.12 +2.3 −2.12 +7.35 −7.11 +1.86 +2.98 −1.12 −2.99 −1.51 −1.76 +0.28 HM-V 61.59 38.71 13.98 4.81 4.09 16.68 7.23 9.45 21.73 6.17 10.19 5.37 趋势 −4.84 −1.15 −0.55 +4.11 −8.04 +1.43 +2.74 −1.31 3.41 −1.28 −0.22 +2.35 注:far—芳碳; fa—羧基和羰基碳; fal—脂肪碳; farH—质子化芳碳; farB—桥接芳碳; farS—侧枝芳碳; farP—氧接芳碳; faC—羧基碳; faO—羰基碳; fal*—甲基碳和季碳; falH—亚甲基碳和次甲基碳; falO—氧接脂肪碳。
表 6 样品部分结构参数
Table 6. Some structural parameters of samples.
样品编号 XBP Cn 脂肪碳/芳香碳 疏水碳/亲水碳 烷基碳/烷氧碳 HM 0.22 14.87 0.28 4.47 5.07 HM-Ni 0.18 1.07 0.23 3.90 3.65 HM-V 0.23 2.12 0.35 3.54 3.05 注:XBP= farB/ far; Cn= farH/ farS; 脂肪碳/芳香碳= fal/ far; 疏水碳/亲水碳=( fal*+ falH+ far)/( falO+ fa); 烷基碳/烷氧碳=( fal*+ falH)/ falO。 -
[1] 叶杰,范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报,2000,19(2):95−102. doi: 10.3969/j.issn.1007-2802.2000.02.004
Ye J,Fan D L. Characteristics and mineralization of ore deposits elated to black shale series[J]. Bulletin of Mineralogy,Bulletin of Mineralogy,Petrology and Geochemistry, 2000, 19(2):95−102. doi: 10.3969/j.issn.1007-2802.2000.02.004
[2] Hui T,Lei P,Xiao X M,et al. A preliminary study on the pore characterization of lower Silurian black shales in the Chuandong thrust fold belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48:8−19. doi: 10.1016/j.marpetgeo.2013.07.008
[3] 周姣花,周晶,牛睿,等. 重砂分级-扫描电镜-能谱等技术研究湖南张家界黑色页岩贵金属元素赋存状态[J]. 岩矿测试,2019,38(6):649−659. doi: 10.15898/j.cnki.11-2131/td.201905090057
Zhou J H,Zhou J,Niu R,et al. Study on occurrence of noble mental elements in black shale series in Zhangjiajie,Hunan Province by heavy placer classification-SEM-EDS and other techniques[J]. Rock and Mineral Analysis, 2019, 38(6):649−659. doi: 10.15898/j.cnki.11-2131/td.201905090057
[4] 张爱云, 伍大茂, 郭丽娜, 等. 海相黑色页岩建造地球化学与成矿意义[M]. 北京: 科学出版社, 1987.
Zhang A Y, Wu D M, Guo L N, et al. Geochemistry and mineralization significance of marine black shale formation[M]. Beijing: Science Press, 1987.
[5] Fu Y,Dong L,Li C,et al. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the lower Cambrian Niutitang Formation[J]. Journal of Earth Science, 2016, 27(2):271−281. doi: 10.1007/s12583-016-0606-7
[6] 朱立军, 张大伟, 张金川, 等. 上扬子东部古生代被动陆缘页岩气地质理论技术与实践[M]. 北京: 科学出版社, 2019.
Zhu L J, Zhang D W, Zhang J C, et al. Geological theory and practice of shale gas in Paleozoic passive continental margin, eastern of upper Yangtze[M]. Beijing: Science Press, 2019.
[7] 王坤阳,杜谷,杨玉杰,等. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J]. 岩矿测试,2014,33(5):634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004
Wang K Y,Du G,Yang Y J,et al. Characteristics study of reservoirs pores and mineral compositions for black shale,northern Guizhou,by using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5):634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004
[8] 范德廉, 张焘, 叶杰, 等. 中国的黑色岩系及其有关矿床[M]. 北京: 科学出版社, 2004.
Fan D L, Zhang T, Ye J, et al. Black shale and its related ore deposit of China[M]. Beijing: Science Press, 2004.
[9] 戴传固,郑启钤,陈建书,等. 贵州雪峰—加里东构造旋回期成矿地质背景研究[J]. 地学前缘,2013,20(6):219−225.
Dai C G,Zheng Q Q,Chen J S,et al. The metallogenic geological background of the Xuefeng—Caledonian tectonic cycle in Guizhou,China[J]. Earth Science Frontiers, 2013, 20(6):219−225.
[10] Shi C H,Cao J,Hu K,et al. New understandings of Ni–Mo mineralization in early Cambrian black shales of South China:Constraints from variations in organic matter in metallic and non-metallic intervals[J]. Ore Geology Reviews, 2014, 59:73−82. doi: 10.1016/j.oregeorev.2013.12.007
[11] 夏鹏,付勇,杨镇,等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报,2020,94(3):947−956. doi: 10.3969/j.issn.0001-5717.2020.03.019
Xia P,Fu Y,Yang Z,et al. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan,northern Guizhou[J]. Acta Geologica Sinica, 2020, 94(3):947−956. doi: 10.3969/j.issn.0001-5717.2020.03.019
[12] Mao J W,Lehmann B,Du A D,et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97:1051−1061. doi: 10.2113/gsecongeo.97.5.1051
[13] XU L G,Lehmann B,Mao J W,et al. Mo isotope and trace element patterns of lower Cambrian black shales in South China:Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319:45−59. doi: 10.1016/j.chemgeo.2012.05.016
[14] Lehmann B,Frei R,Xu L G,et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform,China:Reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology, 2016, 111:89−103. doi: 10.2113/econgeo.111.1.89
[15] 李胜荣,高振敏. 湘黔地区牛蹄塘组黑色岩系稀土特征——兼论海相热水沉积岩稀土模式[J]. 矿物学报,1995,15(2):225−229. doi: 10.3321/j.issn:1000-4734.1995.02.017
Li S R,Gao Z M. REE characteristics of black rock series of the lower Cambrian Niutitang Formation in Hunan—Guizhou Province,China,with a discussion on the REE patterns in marine hydrothermal sediments[J]. Acta Mineralogica Sinica, 1995, 15(2):225−229. doi: 10.3321/j.issn:1000-4734.1995.02.017
[16] 蒋少涌,凌洪飞,赵葵东,等. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论[J]. 岩石矿物学杂志,2008,27(4):341−345. doi: 10.3969/j.issn.1000-6524.2008.04.011
Jiang S Y,Ling H F,Zhao K D,et al. A discussion on Mo isotopic composition of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in South China[J]. Acta Petrologica et Mineralogica, 2008, 27(4):341−345. doi: 10.3969/j.issn.1000-6524.2008.04.011
[17] Han T,Fan H F,Zhu X Q,et al. Submarine hydrothermal contribution for the extreme element accumulation during the early Cambrian,South China[J]. Ore Geology Reviews, 2017, 86:297−308. doi: 10.1016/j.oregeorev.2017.02.030
[18] 上海化工学院煤化工专业腐植酸小组. 腐植酸制品在环境保护中的应用[J]. 环境科学,1976(1):57−63. doi: 10.13227/j.hjkx.1976.01.011
Humic Acid Group of Coal Chemical Industry,Shanghai Institute of Chemical Technology. Application of humic acid products in environmental protection[J]. Environmental Science, 1976(1):57−63. doi: 10.13227/j.hjkx.1976.01.011
[19] 蒋展鹏,廖孟钧. 腐殖质及其在环境污染控制中的作用[J]. 环境污染与防治,1990,23(3):24−28. doi: 10.15985/j.cnki.1001-3865.1990.03.008
Jiang Z P,Liao M J. Humus and its role in environmental pollution control[J]. Environmental Pollution & Control, 1990, 23(3):24−28. doi: 10.15985/j.cnki.1001-3865.1990.03.008
[20] 孙海洋. 乌梁素海沉积物中不同组分胡敏素对铜作用机制研究[D]. 呼和浩特: 内蒙古大学, 2018.
Sun H Y. Binding characteristics of copper to natural humin fractions sequentially extracted from the Lake Wuliangsuhai sediments[D]. Hohhot: Inner Mongolia University, 2018.
[21] 刘晓婷. 湖泊沉积物中不同组分胡敏素与重金属作用机制研究[D]. 呼和浩特: 内蒙古大学, 2017.
Liu X T. Binding characteristics of heavy metals to natural humin fractions sequentially extracted from the lake sediments[D]. Hohhot: Inner Mongolia University, 2017.
[22] 朱燕,李爱民,李超,等. 土壤有机质级份的红外和热重特性[J]. 环境化学,2005,24(3):288−292. doi: 10.3321/j.issn:0254-6108.2005.03.014
Zhu Y,Li A M,Li C,et al. Characteristics of soil humin substances by infrared spectra and thermal gravity[J]. Environmental Chemistry, 2005, 24(3):288−292. doi: 10.3321/j.issn:0254-6108.2005.03.014
[23] 窦森, 肖彦春, 张晋京. 土壤胡敏素各组分数量及结构特征初步研究[J]. 土壤学报, 2006, 43(6): 934-940.
Dou S, Xiao Y C, Zhang J J. Quantities and structural characteristics of various fractions of soil humin[J]. Acta Pedologica Sinica, 2006, 43(6): 934-940.
[24] 吉凡. 土壤/有机物料中腐殖物质组分结构特征及对铜离子吸附作用的研究[D]. 长春: 吉林农业大学, 2014.
Ji F. Structural characteristics of humic substances derived from soil/organic material and its adsorption of Cu2+[D]. Changchun: Jilin Agricultural University, 2014.
[25] Malekani K,Rice J A,Lin J S. The effect of sequential removal of organic matter on the surface morphology of humin[J]. Soil Science, 1997, 162(5):333−342. doi: 10.1097/00010694-199705000-00003
[26] Rosa G,Gardea-Torresdey J L,Peralta-Videa J R,et al. Use of silica-immobilized humin for heavy metal removal from aqueous solution under flow conditions[J]. Bioresource Technology, 2003, 90(1):11−17. doi: 10.1016/S0960-8524(03)00099-3
[27] Havelcová M,Mizera J,Sykorová I,et al. Sorption of metal ions on lignite and the derived humic substances[J]. Journal of Hazardous Materials, 2009, 161(1):559−564. doi: 10.1016/j.jhazmat.2008.03.136
[28] 范春莹,谢修鸿,燕爱春,等. 土壤胡敏素结构特征及对铜离子的吸附特性[J]. 土壤学报,2018,55(6):1460−1471.
Fan C Y,Xie X H,Yan A C,et al. Structure and Cu(Ⅱ) adsorption of soil humin[J]. Acta Pedologica Sinica, 2018, 55(6):1460−1471.
[29] Aranda V,Oyonarte C. Characteristics of organic matter in soil surface horizons derived from calcareous and metamorphic rocks and different vegetation types from the mediterranean high-mountains in SE Spain[J]. European Journal of Soil Biology, 2006, 42(4):247−258. doi: 10.1016/j.ejsobi.2006.03.001
[30] Rice J A,Maccarthy P. Statistical evaluation of the elemental composition of humic substances[J]. Organic Geochemistry, 1991, 17(5):635−648. doi: 10.1016/0146-6380(91)90006-6
[31] Perminova I V,Frimmel F H,Kudryavtsev A V,et al. Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation[J]. Environmental Science & Technology, 2003, 37(11):2477−2485.
[32] 罗琼. 污泥堆肥富里酸与腐殖酸的纯化与应用研究[D]. 天津: 天津大学, 2019.
Luo Q. Purification and application of fulvic acid and humic acid from sludge compost[D]. Tianjin: Tianjin University, 2019.
[33] 燕爱春,谢修鸿,范春莹,等. 土壤胡敏素对铜离子的吸附作用及其机理研究[J]. 环境科学学报,2018,38(12):4779−4788. doi: 10.13671/j.hjkxxb.2018.0275
Yan A C,Xie X H,Fan C Y,et al. Adsorption behavior and mechanism of Cu(II) on soil humin[J]. Acta Scientiae Circumstantiae, 2018, 38(12):4779−4788. doi: 10.13671/j.hjkxxb.2018.0275
[34] Chen W X,Wang H,Gao Q,et al. Association of 16 priority polycyclicaromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention[J]. Environmental Pollution, 2017, 230:882−890. doi: 10.1016/j.envpol.2017.07.038
[35] Leoš D,Jana B S,Vojtěch E,et al. Spectral characterization and comparison of humic acids isolated from some European lignites[J]. Fuel, 2018, 213:123−132. doi: 10.1016/j.fuel.2017.10.114
[36] Guo Z Z,Zhang J,Kang Y,et al. Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification[J]. Ecotoxicology and Environmental Safety, 2017, 145:442−448. doi: 10.1016/j.ecoenv.2017.07.061
[37] 徐芳,刘辉,王擎,等. 霍林河褐煤化学结构特性的13C-NMR与FTIR对比分析[J]. 化工学报,2017,68(11):4272−4278.
Xu F,Liu H,Wang Q,et al. Comparison of huolinhe lignite structural features by using 13C-NMR & FTIR techniques[J]. CIESC Journal, 2017, 68(11):4272−4278.
[38] 张晋京,窦森,朱平,等. 长期施用有机肥对黑土胡敏素结构特征的影响——固态13C核磁共振研究[J]. 中国农业科学,2009,42(6):2223−2228. doi: 10.3864/j.issn.0578-1752.2009.06.045
Zhang J J,Dou S,Zhu P,et al. Effect of long-term application of organic fertilizer on structural characteristics of humin in black soil:A solid-state 13C-NMR study[J]. Scientia Agricultura Sinica, 2009, 42(6):2223−2228. doi: 10.3864/j.issn.0578-1752.2009.06.045
[39] Okolo G N,Neomagus H W,Everson R C,et al. Chemical-structural properties of south African bituminous coals:Insights from wide angle XRD-carbon fraction analysis,ATR–FTIR,solid state 13C-NMR,and HRTEM techniques[J]. Fuel, 2015, 158:779−792. doi: 10.1016/j.fuel.2015.06.027
[40] Niekerk D V,Mathews J P. Molecular representations of permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89(1):73−82. doi: 10.1016/j.fuel.2009.07.020
[41] 孙昱东,宋立飞,韩忠祥,等. 固态13C-NMR法表征渣油沥青质的结构组成[J]. 石油学报(石油加工),2018,34(6):1149−1154. doi: 10.3969/j.issn.1001-8719.2018.06.013
Sun Y D,Song L F,Han Z X,et al. Structure and composition characterization of asphaltenes by solid-state 13C-NMR[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6):1149−1154. doi: 10.3969/j.issn.1001-8719.2018.06.013
[42] 李梓瑄,迟凤琴,张久明,等. 长期定位施肥对黑土养分平衡和胡敏素分子结构动态变化的影响[J]. 光谱学与光谱分析,2018,38(12):3875−3882.
Li Z X,Chi F Q,Zhang J M,et al. Effects of long-term localized fertilization on nutrient balance and dynamic change of humin molecular structure in black soil[J]. Spectroscopy and Spectral Analysis, 2018, 38(12):3875−3882.