中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

超高效液相色谱-高分辨质谱法测定海洋沉积物中的木质素分解产物酚类化合物

杨建勃, 陈军辉, 何秀平, 王九明, 辛明, 孙霞, 王保栋. 超高效液相色谱-高分辨质谱法测定海洋沉积物中的木质素分解产物酚类化合物[J]. 岩矿测试, 2023, 42(3): 548-562. doi: 10.15898/j.ykcs.202209160172
引用本文: 杨建勃, 陈军辉, 何秀平, 王九明, 辛明, 孙霞, 王保栋. 超高效液相色谱-高分辨质谱法测定海洋沉积物中的木质素分解产物酚类化合物[J]. 岩矿测试, 2023, 42(3): 548-562. doi: 10.15898/j.ykcs.202209160172
YANG Jianbo, CHEN Junhui, HE Xiuping, WANG Jiuming, XIN Ming, SUN Xia, WANG Baodong. Determination of Phenolic Compounds from Lignin Decomposition Products in Marine Sediments by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 548-562. doi: 10.15898/j.ykcs.202209160172
Citation: YANG Jianbo, CHEN Junhui, HE Xiuping, WANG Jiuming, XIN Ming, SUN Xia, WANG Baodong. Determination of Phenolic Compounds from Lignin Decomposition Products in Marine Sediments by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 548-562. doi: 10.15898/j.ykcs.202209160172

超高效液相色谱-高分辨质谱法测定海洋沉积物中的木质素分解产物酚类化合物

  • 基金项目: 全球变化与海气相互作用(二期)专项(GASI-01-ATP-STwin);中国大洋矿产资源研究开发协会——大洋“十三五”资源环境类项目(DY135-E2-1-03);国家自然科学基金-山东省联合基金项目(U1706217)
详细信息
    作者简介: 杨建勃,硕士研究生,从事海洋环境化学研究。E-mail:yangjianbo@fio.org.cn
    通讯作者: 陈军辉,博士,研究员,从事海洋分析/环境化学研究。E-mail:jhchen@fio.org.cn
  • 中图分类号: Q503;O657.72

Determination of Phenolic Compounds from Lignin Decomposition Products in Marine Sediments by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry

More Information
  • 木质素分解产物酚类化合物是指示海洋环境中陆源有机碳来源的重要生物标志物,因此,开发检测海洋沉积物中木质素分解产物酚类化合物的简便方法,对研究海洋有机碳的来源及生物地球化学循环过程具有重要意义。本文采用固相萃取(SPE)和超高效液相色谱-飞行时间质谱技术(UHPLC-TOF/MS),建立了一种同步测定海洋沉积物中木质素分解产物酚类化合物(11种)的方法。首先对海洋沉积物样品进行氧化铜氧化碱分解和SPE净化处理,再采用填料粒径为1.8μm的反相C18柱进行分离,电喷雾TOF/MS全扫描模式检测,内标法定量。结果表明:沉积物中木质素的11种主要分解产物酚类化合物在20min内分离良好;方法具有良好的精密度(相对标准偏差RSD均小于9.0%),在线性范围内相关系数(R2)均不小于0.9989,加标回收率在86.8%~93.2%之间。应用该方法对莱州湾表层沉积物中木质素分解产物酚类化合物进行测定,12个表层沉积物样品中11种目标化合物的检出率均为100%;相关诊断比值:肉桂基酚系列单体总量与香草基酚系列单体总量的比值C/V在0.18~0.81之间,均值为0.38;丁香基酚系列单体总量与香草基酚系列单体总量的比值S/V在0.18~0.45之间,均值为0.26;对羟基酚系列单体中酮的量与对羟基酚系列单体总量的比值PON/P在0.01~0.07之间,均值为0.03;P系列单体总量与V和S系列单体总量之和的比值P/(V+S)在0.55~3.77之间,均值为1.44;V系列中酸类单体与醛类单体的比值(Ad/Al)v在0.12~1.07之间,均值为0.49;S系列单体中酸类单体与醛类单体的比值(Ad/Al)s在0.15~1.26之间,均值为1.02。表明莱州湾表层沉积物中的木质素主要来源于被子植物草本组织,并且具有中等或偏高程度的降解,但仍有少量新鲜植物有机质。本研究也表明UHPLC-TOF/MS是测定海洋沉积物中木质素分解产物酚类化合物的高效方法,能对沉积物中木质素含量和有机质来源进行有效指示。

  • 加载中
  • 图 1  中国莱州湾表层沉积物采样站位图

    Figure 1. 

    图 2  UHPLC-TOF/MS 全扫描分析提取离子色谱图

    Figure 2. 

    图 3  固相萃取过程中不同pH(pH=1.0、1.5、2.0、2.5)上样溶液对各种目标化合物回收率的影响

    Figure 3. 

    图 4  方法的专属性考察结果(沉积物加标样品UHPLC-TOF/MS分析EIC图)

    Figure 4. 

    表 1  超高效液相色谱-飞行时间质谱分析木质素主要分解产物酚类化合物和内标物的分子式、保留时间及精确分子质量

    Table 1.  Molecular formulas, retention times and exact molecular mass of the main decomposition products of lignin (phenolic compounds) and the internal standard analyzed by ultra-high performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS).

    序号酚类化合物分子式保留时间(min)精确分子量[M+H]+精确分子量[M-H]-
    1对羟基苯甲酸C7H6O35.14139.0395137.0244
    2香草酸C8H8O47.37169.0495167.0272
    3对羟基苯甲醛C7H6O28.08123.0441121.0295
    4丁香酸C9H10O59.35199.0601197.0455
    5对羟基苯乙酮C8H8O211.46137.0597135.0452
    6香草醛C8H8O311.61153.0546151.0401
    7对羟基肉桂酸C9H8O312.90165.0546163.0401
    8丁香醛C9H10O413.91183.0652181.0506
    9香草乙酮C9H10O414.65167.0703165.0557
    10阿魏酸C10H10O415.89195.0652193.0506
    11乙酰丁香酮C10H12O416.68197.0808195.0663
    12乙基香兰素C9H10O319.08167.0703165.0557
    下载: 导出CSV

    表 2  最佳实验条件下 11种目标化合物的线性方程相关系数及方法的检出限和定量限

    Table 2.  Correlation coefficients for linear analysis, detection limits and quantification limits of the method for UHPLC-TOF/MS determination of 11 target compounds under the optimal experimental conditions.

    序号酚类化合物R2方法检出限
    (ng/g)
    方法定量限
    (ng/g)
    1对羟基苯甲酸0.99895.3417.80
    2香草酸0.99897.2724.23
    3对羟基苯甲醛0.99910.672.13
    4丁香酸0.99961.795.98
    5对羟基苯乙酮0.99910.381.25
    6香草醛0.99970.491.64
    7对羟基肉桂酸0.99894.1613.95
    8丁香醛0.99930.471.58
    9香草乙酮0.99940.230.76
    10阿魏酸0.99945.1317.1
    11乙酰丁香酮0.99970.130.42
    下载: 导出CSV

    表 3  三种不同添加浓度水平下11种目标化合物的回收率和回收率的RSD(n=6)

    Table 3.  The recovery rate and its RSD of 11 target compounds under three different spiked levels (50.0ng/g, 100.0ng/g, 400.0ng/g) in the spiked recovery experiment with blank marine sediment (n=6).

    酚类化合物不同加标浓度水平下目标化合物回收率(%)(n=6)不同加标浓度水平下目标化合物回收率的RSD(%)(n=6)
    加标50.0ng/g加标100.0ng/g加标400.0ng/g加标50.0ng/g加标100.0ng/g加标400.0ng/g
    对羟基苯甲酸87.890.191.98.47.05.8
    香草酸89.387.787.46.46.06.1
    对羟基苯甲醛86.890.088.97.07.26.3
    丁香酸88.788.189.48.36.37.5
    对羟基苯乙酮89.591.192.37.36.55.5
    香草醛87.488.587.85.25.54.6
    对羟基肉桂酸88.989.389.66.26.54.6
    丁香醛89.190.791.58.28.56.5
    香草乙酮87.588.989.57.45.35.5
    阿魏酸86.989.991.06.18.16.2
    乙酰丁香酮90.891.293.28.86.24.1
    下载: 导出CSV

    表 4  莱州湾表层沉积物中11种木质素主要分解产物酚类化合物的含量

    Table 4.  Content of 11 main phenolic compounds from lignin decomposition products of the surface sediment samples collected from the Laizhou Bay, China.

    站位酚类化合物含量(ng/g)(ds)
    对羟基苯甲酸香草酸对羟基苯甲醛丁香酸对羟基苯乙酮香草醛对羟基肉桂酸丁香醛香草乙酮阿魏酸乙酰丁香酮
    L1 62.33 26.08 136.41 5.98 3.48 20.65 17.75 5.60 2.33 22.17 0.50
    L2 324.43 100.31 425.50 108.50 53.58 671.40 243.67 265.19 110.36 113.53 25.96
    L3 350.21 507.56 511.59 119.13 39.5 481.33 297.51 233.46 79.82 122.80 26.18
    L4 101.58 204.40 254.26 7.73 16.47 195.19 86.06 64.19 31.78 20.14 7.76
    L5 176.82 326.83 425.68 46.14 25.88 317.00 74.67 99.34 46.57 50.57 9.33
    L6 223.73 408.17 381.33 86.76 39.31 393.35 249.20 176.55 77.37 112.05 29.02
    L7 114.31 73.84 297.40 9.86 5.17 69.67 39.80 22.06 7.27 34.99 2.23
    L8 214.02 414.12 419.47 62.57 22.06 303.95 135.91 127.37 48.75 34.99 11.52
    L9 180.05 195.33 421.15 29.25 14.86 188.62 110.52 70.42 22.43 32.43 6.37
    L10 193.59 255.99 401.93 26.20 15.22 256.06 79.62 67.27 37.39 32.44 5.40
    L11 156.60 57.41 325.48 5.83 5.39 47.84 33.30 12.90 4.06 28.22 1.42
    L12 147.93 101.40 317.60 13.95 5.56 96.48 26.98 25.10 9.89 31.64 2.66
    下载: 导出CSV

    表 5  莱州湾表层沉积物样品中11种木质素的分解产物酚类化合物的各项特征参数

    Table 5.  Characteristic parameters of 11 phenolic compounds from lignin decomposition products in surface sediment samples of the Laizhou Bay, China.

    站位木质素不同分解产物酚类化合物的各项特征参数
    C(ng/g)S(ng/g)V(ng/g)P(ng/g)C/VS/VP/(V+S)PON/P(Ad/Al)v(Ad/Al)sΣ8(mg/10g ds)
    L1 39.92 12.08 49.06 202.23 0.81 0.25 3.31 0.02 1.07 1.26 0.0010
    L2 357.19 399.65 882.06 803.50 0.40 0.45 0.63 0.07 0.41 0.15 0.016
    L3 420.31 378.76 1068.71 901.30 0.39 0.35 0.62 0.04 0.51 1.05 0.019
    L4 106.20 79.68 431.38 372.31 0.25 0.18 0.73 0.04 0.12 1.05 0.0062
    L5 125.24 154.82 690.40 628.38 0.18 0.22 0.74 0.04 0.46 1.03 0.0097
    L6 361.24 292.34 878.88 644.37 0.41 0.33 0.55 0.06 0.49 1.04 0.015
    L7 74.79 34.14 150.78 416.88 0.50 0.23 2.25 0.01 0.45 1.06 0.0026
    L8 170.90 201.47 766.82 655.54 0.22 0.26 0.68 0.03 0.49 1.36 0.011
    L9 142.95 106.03 406.39 616.06 0.35 0.26 1.20 0.02 0.42 1.04 0.0066
    L10 112.06 98.87 549.43 610.75 0.20 0.18 0.94 0.02 0.39 1.00 0.0076
    L11 61.51 20.16 109.31 487.46 0.56 0.18 3.77 0.01 0.45 1.20 0.0019
    L12 58.61 41.72 207.77 471.09 0.28 0.20 1.89 0.01 0.56 1.05 0.0031
    平均值 169.24 151.64 515.92 567.49 0.38 0.26 1.44 0.03 0.49 1.02 0.0083
    下载: 导出CSV
  • [1]

    Zhang T,Li X G,Sun S W,et al. Determination of lignin in marine sediment using alkaline cupric oxide oxidation-solid phase extraction-on-column derivatization-gas chromatography[J]. Journal of Ocean University of China, 2013, 12(1):63−69. doi: 10.1007/s11802-011-1936-z

    [2]

    Jex C N,Pate G H,Blyth A J,et al. Lignin biogeochemistry:From modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87:46−59. doi: 10.1016/j.quascirev.2013.12.028

    [3]

    Sun S,Schefuß E,Mulitza S,et al. Origin and processing of terrestrial organic carbon in the Amazon system:Lignin phenols in river,shelf,and fan sediments[J]. Biogeosciences, 2017, 14:2495−2512. doi: 10.5194/bg-14-2495-2017

    [4]

    王映辉,许云平. 黄河下游—河口—邻近海域表层沉积物中木质素的特征及其示踪意义[J]. 海洋科学,2016,40(2):55−64.

    Wang Y H,Xu Y P. Characteristics and environmental implications of lignin in surface sediments from the lower Yellow River—estuary—adjacent sea[J]. Marine Sciences, 2016, 40(2):55−64.

    [5]

    巩菲,刘月,张大海,等. 黄河济南段柱状沉积物中木质素的分布特征[J]. 海洋湖沼通报,2017,156(3):53−59.

    Gong F,Liu Y,Zhang D H,et al. Distribution characteristics of lignin from the core in Jinan section of the Yellow River[J]. Transactions of Oceanology and Limnology, 2017, 156(3):53−59.

    [6]

    Yang B,Ljung K,Nielsen A B,et al. Impacts of long-term land use on terrestrial organic matter input to lakes based on lignin phenols in sediment records from a Swedish forest lake[J]. Science of the Total Environment, 2021, 774:145517. doi: 10.1016/j.scitotenv.2021.145517

    [7]

    Gordon E G,Goni M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13):2359−2375. doi: 10.1016/S0016-7037(02)01412-6

    [8]

    王心怡,李中乔,金海燕,等. 应用木质素示踪楚科奇海表层沉积物中有机碳的来源和降解程度[J]. 海洋学报,2017,39(10):19−31.

    Wang X Y,Li Z Q,Jin H Y,et al. Sources and degradation of orgnic carbon in the surface sediments across the Chukchi Sea,insighes from lignin phenols[J]. Haiyang Xuebao, 2017, 39(10):19−31.

    [9]

    Tolu J,Gerber L,Boily J F,et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution:A promising analytical tool in (paleo) limnology[J]. Analytica Chimica Acta, 2015, 880:93−102. doi: 10.1016/j.aca.2015.03.043

    [10]

    刘月,王敏,张婷,等. 杭州湾外泥质区柱状沉积物中木质素的分布特征及其环境指示意义[J]. 海洋环境科学,2017,36(1):8−14.

    Liu Y,Wang M,Zhang T,et al. Distribution characteristics of lignin in sediment cores from the mud area off Hangzhou Bay and the implication for regional sedimentary environment[J]. Chinese Journal of Marine Environmental Science, 2017, 36(1):8−14.

    [11]

    凌媛,王永,王淑贤,等. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘,2022,29(2):327−342.

    Ling Y,Wang Y,Wang S X,et al. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity:A review[J]. Earth Science Frontiers, 2022, 29(2):327−342.

    [12]

    Hedges J I,Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2):174−178. doi: 10.1021/ac00239a007

    [13]

    叶君,胡利民,石学法,等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究,2021,41(3):752−765.

    Ye J,Hu L M,Shi X F,et al. Sources,transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic Shelf,insights from lignin[J]. Quaternary Sciences, 2021, 41(3):752−765.

    [14]

    江智婧,朱均均,李鑫,等. 反相高效液相色谱法定量分析木质素的主要降解产物[J]. 色谱,2011,29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059

    Jiang Z J,Zhu J J,Li X,et al. Determination of main degradation products of lignin using reversed phase high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2011, 29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059

    [15]

    Sun L,Spencer R G M,Hernes P J,et al. A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples[J]. Limnology and Oceanography:Methods, 2015, 13:1−8.

    [16]

    Owen B C,Haupert L,Jarrell T M,et al. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products[J]. Analytical Chemistry, 2012, 84:6000−6007. doi: 10.1021/ac300762y

    [17]

    欧阳新平,陈子龙,邱学青. 超高效液相色谱/高分辨质谱法测定木质素氧化降解产物中单酚类化合物[J]. 分析化学,2014,42(5):723−728.

    Ouyang X P,Chen Z L,Qiu X Q. Determination of monophenolic compounds from lignin oxidative degradation using ultra performance liquid chromatography/high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(5):723−728.

    [18]

    营娇龙,秦晓鹏,郎杭,等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试,2022,41(3):394−403.

    Ying J L,Qin X P,Lang H,et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3):394−403.

    [19]

    莫力佳,石勇,高建华,等. 辽东半岛东岸泥区有机碳来源及其对流域和海岸环境变化的响应[J]. 地球化学,2021,50(2):199−210.

    Mo L J,Shi Y,Gao J H,et al. Source and distribution of lignin in mud deposits along the southeastern coast of Liaodong Peninsula and its response to environmental changes of the catchment[J]. Geochimica, 2021, 50(2):199−210.

    [20]

    朱帅,沈亚婷,贾静,等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试,2018,37(5):586−606.

    Zhu S,Shen Y T,Jia J,et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5):586−606.

    [21]

    Heidke I,Scholz D,Hoffmann T. Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water[J]. Biogeosciences, 2018, 15:5831−5845. doi: 10.5194/bg-15-5831-2018

    [22]

    王全成,胡丹阳,杨柳明,等. 固相萃取-高效液相色谱法测定森林土壤中木质素[J]. 实验室科学,2021,24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010

    Wang Q C,Hu D Y,Yang L M,et al. Determination of lignin in forest soil by solid phase extraction/high performance liquid chromatography[J]. Laboratory Science, 2021, 24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010

    [23]

    于雅晨,李坤兰,马英冲,等. 反气相色谱法测定有机溶剂型木质素的溶解度参数[J]. 色谱,2013,31(2):143−146.

    Yu Y C,Li K L,Ma Y C,et al. Determination of the solubility parameter of organosolv lignin by inverse gas chromatography[J]. Chinese Journal of Chromatography, 2013, 31(2):143−146.

    [24]

    李鹏辉,蒋政伟,李家全,等. 木质素降解产物酚羟基测定方法研究进展[J]. 光谱学与光谱分析,2022,42(9):2666−2671.

    Li P H,Jiang Z W,Li J Q,et al. Research progress in quantitative determination of phenolic hydroxyl groups in lignin[J]. Spectroscopy and Spectral Analysis, 2022, 42(9):2666−2671.

    [25]

    Heinonen J,Tamper J,Laatikainen M,et al. Chromatographic recovery of monosaccharides and lignin from lignocellulosic hydrolysates[J]. Chemical Engineering & Technology, 2018, 41(12):2402−2410.

    [26]

    Wang Y L,Chen J H,Gao L Y,et al. Determination of eight typical lipophilic algae toxins in particles suspended in seawater by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(3):335−341. doi: 10.1016/S1872-2040(16)60911-8

    [27]

    Tsutsuki K,Esaki I,Kuwatsuka S. CuO-oxidation products of peat as a key to the analysis of the paleo-environmental changes in a wetland[J]. Soil Science and Plant Nutrition, 1994, 40(1):107−116. doi: 10.1080/00380768.1994.10414283

    [28]

    戴群英,邹立,彭燕. 黄河口潮间带沉积物中木质素的分布以及降解特征[J]. 海洋环境科学,2017,36(2):210−215.

    Dai Q Y,Zou L,Peng Y. Distribution and degradation of lignin in the sediment of intertidal mudflat of Yellow River Estuary[J]. Marine Environmental Science, 2017, 36(2):210−215.

    [29]

    冯朝军,潘建明,王红群,等. 微波消解-气相色谱法测定沉积物中的木质素[J]. 岩矿测试,2011,30(1):23−26.

    Feng C J,Pan J M,Wang H Q,et al. Gas chromatographic determination of lignin in sediment samples assisted with microwave digestion[J]. Rock and Mineral Analysis, 2011, 30(1):23−26.

    [30]

    Kaiser K,Benner R. Characterization of lignin by gas chromatography and mass spectrometry a simplified CuO oxidation method[J]. Analytical Chemistry, 2011, 84:459−464.

    [31]

    Yan G,Kaiser K. A rapid and sensitive method for the analysis of lignin phenols in environmental samples using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry with multiple reaction monitoring[J]. Analytica Chimica Acta, 2018, 1023:74−80. doi: 10.1016/j.aca.2018.03.054

    [32]

    谢秀风,郗敏,孔范龙,等. 木质素作为湿地陆源性溶解性有机质(DOM)示踪剂的研究进展[J]. 海洋湖沼通报,2015, 37(3):125−129.

    Xie X F,Xi M,Kong F L,et al. Proceedings in the application of wetland lignin to tracing terrestrial organic mattes[J]. Transactions of Oceanology and Limnology, 2015, 37(3):125−129.

    [33]

    李先国,杜培瑞,孙书文,等. 山东半岛东北岸近海表层沉积物中木质素的分布特征及有机物来源[J]. 海洋湖沼通报,2013(2):81−88.

    Li X G,Du P R,Sun S W,et al. Distribution characteristics of lignin and sources of organic matter in surface sediments offshore of north eastern Shandong Peninsula[J]. Transactions of Oceanology and Limnology, 2013(2):81−88.

    [34]

    黄佳埼,林昕,汪福顺,等. 乌江流域下游梯级水库沉积物中木质素的特征及有机碳来源辨析[J]. 上海大学学报(自然科学版),2021,27(2):271−279.

    Huang J Q,Lin X,Wang F S,et al. Characteristics of lignin in sediment cores from cascade reservoirs downstream of the Wujiang River and source analysis of organic carbon[J]. Journal of Shanghai University (Natural Science), 2021, 27(2):271−279.

    [35]

    李先国,王敏,孙书文,等. 渤海表层沉积物中木质素的分布特征及其对陆源有机物来源的示踪意义[J]. 海洋环境科学,2013,32(3):327−332.

    Li X G,Wang M,Sun S W,et al. Distribution of lignin in the surface sediments of Bohai Sea and its implication for tracing terrigenous organic matter[J]. Marine Environmental Science, 2013, 32(3):327−332.

    [36]

    尚文郁, 孙青, 谢曼曼, 等. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义[J]. 岩矿测试, 2023,42(2): 346-360.

    Shang W Y, Sun Q, Xie M M, et al. Characteristics and climatic implications of lignin-derived phenolic compounds in Arid Lake, northeastern China[J]. Rock and Mineral Analysis, 2023,42(2): 346-360.

  • 加载中

(4)

(5)

计量
  • 文章访问数:  633
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2022-09-16
修回日期:  2022-11-30
录用日期:  2023-03-11
刊出日期:  2023-06-30

目录