中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

利用X射线K吸收边成像法测量碘离子在岩石中的孔隙扩散系数

赵九江, 王哲, 张志都, 赵鸿. 利用X射线K吸收边成像法测量碘离子在岩石中的孔隙扩散系数[J]. 岩矿测试, 2023, 42(4): 667-676. doi: 10.15898/j.ykcs.202209050165
引用本文: 赵九江, 王哲, 张志都, 赵鸿. 利用X射线K吸收边成像法测量碘离子在岩石中的孔隙扩散系数[J]. 岩矿测试, 2023, 42(4): 667-676. doi: 10.15898/j.ykcs.202209050165
ZHAO Jiujiang, WANG Zhe, ZHANG Zhidu, ZHAO Hong. The Pore Diffusion Coefficient of Iodide Ion in Rock Samples Using X-ray K-edge Imaging[J]. Rock and Mineral Analysis, 2023, 42(4): 667-676. doi: 10.15898/j.ykcs.202209050165
Citation: ZHAO Jiujiang, WANG Zhe, ZHANG Zhidu, ZHAO Hong. The Pore Diffusion Coefficient of Iodide Ion in Rock Samples Using X-ray K-edge Imaging[J]. Rock and Mineral Analysis, 2023, 42(4): 667-676. doi: 10.15898/j.ykcs.202209050165

利用X射线K吸收边成像法测量碘离子在岩石中的孔隙扩散系数

  • 基金项目: 国家自然科学基金项目(U1932113)
详细信息
    作者简介: 赵九江,博士,副研究员,从事环境分析化学研究。E-mail:zhaojiujiang@cags.ac.cn
  • 中图分类号: O657.31

The Pore Diffusion Coefficient of Iodide Ion in Rock Samples Using X-ray K-edge Imaging

  • 污染物质在岩层孔隙水中的扩散过程决定了污染物质在地下水与岩层之间迁移的速率,并进而影响其在环境中的迁移-转化过程。利用碘离子作为示踪剂,通过X射线成像法可以获得碘离子在岩石中随扩散距离和时间变化的扩散曲线,进而通过人工拟合获得孔隙扩散系数(Dp)以及孔隙度(φ)等重要参数,这是研究污染元素扩散行为的基础。但是在X射线成像过程中,岩石本底对X射线的吸收也会对示踪剂碘离子的成像造成干扰。本文使用X射线能谱CT利用X射线K吸收边成像法,在碘的K吸收边(33keV)两侧的能量区域(27~32keV和34~39keV)对样品进行成像,有效地减少了岩石背景干扰,获得碘离子的扩散曲线,并通过软件利用近似公式对扩散曲线进行拟合获得了灰岩中碘离子的孔隙扩散系数。在实验过程中,本文还通过改进扩散装置,对低浓度端溶液采用连续接收的方法,避免了管路中溶液死体积的影响。通过实验获得碘离子的岩石孔隙扩散系数Dp=(1.12±0.22)×10−11m2/s,并计算得到岩石孔隙度φ=0.02。此实验结果与文献中灰岩孔隙度范围(0.005~0.042)相符合。通过本次工作,验证了应用改进的扩散装置和X射线K吸收边成像方法测量碘离子在岩石中的孔隙扩散系数的可行性。

  • 加载中
  • 图 1  岩石扩散实验示意图

    Figure 1. 

    图 2  X射线K吸收边成像原理示意图

    Figure 2. 

    图 3  样品B中碘离子相对浓度与扩散距离的关系图,黑色实线为互补误差函数的拟合曲线,图片编号a至e,分别代表第一次至第五次实验

    Figure 3. 

    图 4  空白参考样品A中X射线K吸收边成像灰度值Z的径向分布

    Figure 4. 

    表 1  能谱显微CT系统成像参数

    Table 1.  Parameters for X-ray spectral microcomputed tomography (CT) system.

    系统参数测量条件
    曝光条件90kVp,17.28mAs
    能量阈值设计27~32keV和34~39keV
    光机到探测器距离360mm
    光机到物体距离340mm
    图像像素尺寸94.2μm/pixel
    下载: 导出CSV

    表 2  X射线K吸收边成像样品孔隙扩散系数的拟合结果

    Table 2.  The results for the X-ray K-edge imaging data fitting.

    采样顺序编号扩散实验时间
    (h)
    孔隙扩散系数
    Dp(×10−11m2/s)
    1423.08
    2661.19
    3901.31
    41190.80
    51381.20
    下载: 导出CSV
  • [1]

    曾远,罗立强. 土壤中特异性微生物与重金属相互作用机制与应用研究进展[J]. 岩矿测试, 2017, 36(3): 209−221. doi: 10.15898/j.cnki.11-2131/td.201701170009

    Zeng Y,Luo L Q. Research progress on the application and interaction mechanism between specific microorganisms and heavy metals in soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209−221. doi: 10.15898/j.cnki.11-2131/td.201701170009

    [2]

    董志高,付婷婷,李磊,等. 某简易污泥填埋场污染物调查与扩散迁移研究[J]. 科学技术与工程, 2014, 14(32): 1671−1815.

    Dong Z G,Fu T T,Li L,et al. Study on investigation,diffusion and migration of pollutants in a simple sewage sludge landfill[J]. Science Technology and Engineering, 2014, 14(32): 1671−1815.

    [3]

    Luraschi P,Gimmi T,van Loon L R,et al. Evolution of HTO and 36Cl diffusion through a reacting cement-clay interface (OPC paste-Na montmorillonite) over a time of six years[J]. Applied Geochemistry, 2020, 119: 104581. doi: 10.1016/j.apgeochem.2020.104581

    [4]

    Courtin-Nomade A,Waltzing T,Evrard C,et al. Arsenic and lead mobility:From tailing materials to the aqueous compartment[J]. Applied Geochemistry, 2015, 64: 10−21.

    [5]

    Cutruneo C M N L,Oliveira M L S,Ward C R,et al. A mineralogical and geochemical study of three Brazilian coal cleaning rejects:Demonstration of electron beam applications[J]. International Journal of Coal Geology, 2014, 130: 33−52. doi: 10.1016/j.coal.2014.05.009

    [6]

    Liao X,Li Y,Yan X. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process[J]. Journal of Environmental Sciences, 2016, 41: 202−210. doi: 10.1016/j.jes.2015.06.017

    [7]

    Halloran L J S,Vakili F,Wanner P,et al. Sorption- and diffusion-induced isotopic fractionation in chloroethenes[J]. Science of the Total Environment, 2021, 788: 147826. doi: 10.1016/j.scitotenv.2021.147826

    [8]

    Parker B L,Cherry J A,Chapman S W. Discrete fracture network approach for studying contamination in fractured rock[J]. AQUA mundi, 2012, 3: 101−116.

    [9]

    Zhao J,Al T,Chapman S W,et al. Determination of hexavalent chromium concentrations in matrix porewater from a contaminated aquifer in fractured sedimentary bedrock[J]. Chemical Geology, 2015, 419: 142−148. doi: 10.1016/j.chemgeo.2015.10.034

    [10]

    Muniruzzaman M,Rolle M. Impact of diffuse layer processes on contaminant forward and back diffusion in heterogeneous sandy-clayey domains[J]. Journal of Contaminant Hydrology, 2021, 237: 103754. doi: 10.1016/j.jconhyd.2020.103754

    [11]

    Chapman S,Parker B,Al T,et al. Field,laboratory and modeling evidence for strong attenuation of a Cr(Ⅵ) plume in a mudstone aquifer due to matrix diffusion and reaction processes[J]. Soil System, 2021(Ⅵ): 408−413.

    [12]

    Cavé L,Al T,Xiang Y,et al. A technique for estimating one-dimensional diffusion coefficients in low-permeability sedimentary rock using X-ray radiography:Comparison with through-diffusion measurements[J]. Journal of Contaminant Hydrology, 2009, 103(1-2): 1−12. doi: 10.1016/j.jconhyd.2008.08.001

    [13]

    Xiang Y,Al T. Effect of confining pressure on diffusion coefficients in low-permeability Ordovician sedimentary rocks from the Michigan Basin,Southwestern Ontario[J]. Journal of Contaminant Hydrology, 2016, 195: 2003.

    [14]

    Nunn J A,Xiang Y,Al T A. Investigation of partial water saturation effects on diffusion in shale[J]. Applied Geochemistry, 2018, 97: 93−101. doi: 10.1016/j.apgeochem.2018.08.004

    [15]

    Loomer D B,Scott L,Al T A,et al. Diffusion-reaction studies in low permeability shale using X-ray radiography with cesium[J]. Applied Geochemistry, 2013, 39: 49−58. doi: 10.1016/j.apgeochem.2013.09.019

    [16]

    van Loon L R,Soler J M,Jakob A,et al. Effect of confining pressure on the diffusion of HTO,36Cl and 125I in a layered argillaceous rock (Opalinus Clay):Diffusion perpendicular to the fabric[J]. Applied Geochemistry, 2003, 18(10): 1653−1662. doi: 10.1016/S0883-2927(03)00047-7

    [17]

    van Loon L R,Soler J M,Bradbury M H. Diffusion of HTO,36Cl- and 125I- in Opalinus Clay samples from Mont Terri:Effect of confining pressure[J]. Journal of Contaminant Hydrology, 2003, 61(1-4): 73−83. doi: 10.1016/S0169-7722(02)00114-6

    [18]

    Jaquenoud M, Elam W T, Grundl T, et al. In-situ X-ray fluorescence to investigate iodide diffusion in Opalinus clay: Demonstration of a novel experimental approach[J]. Chemosphere, 2021, 269.

    [19]

    陈维堃,腾格尔,张春贺,等. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906−919.

    Chen W K,Teng G E,Zhang C H,et al. A review of research progress on characterization technology of nano organic pore structure in shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906−919.

    [20]

    Wu Y,Wang D,Wang L,et al. An analysis of the meso-structural damage evolution of coal using X-ray CT and a gray-scale level co-occurrence matrix method[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105062. doi: 10.1016/j.ijrmms.2022.105062

    [21]

    Xiang Y,Al T,Scott L,et al. Diffusive anisotropy in low-permeability Ordovician sedimentary rocks from the Michigan Basin in Southwest Ontario[J]. Journal of Contaminant Hydrology, 2013, 155: 31−45. doi: 10.1016/j.jconhyd.2013.09.002

    [22]

    Zhang Z,Zhang X,Hu J,et al. An optimized K-edge signal extraction method for K-edge decomposition imaging using a photon counting detector[J]. Frontiers in Physics, 2021, 8: 1−12.

    [23]

    李非,蔡婧婧. 双能量CT成像技术及其标准研究[J]. 中国医疗器械信息, 2022, 22(9): 10−15. doi: 10.3969/j.issn.1006-6586.2022.09.004

    Li F,Cai Q Q. Study on dual-energy CT imaging technology and its standard[J]. China Medical Device Information, 2022, 22(9): 10−15. doi: 10.3969/j.issn.1006-6586.2022.09.004

    [24]

    Iovea M,Oaie G,Ricman C,et al. Dual-energy X-ray computer axial tomography and digital radiography investigation of cores and other objects of geological interest[J]. Engineering Geology, 2009, 103(3-4): 119−126. doi: 10.1016/j.enggeo.2008.06.018

    [25]

    Gupta A,Kikano E G,Bera K,et al. Dual energy imaging in cardiothoracic pathologies:A primer for radiologists and clinicians[J]. European Journal of Radiology Open, 2021, 8: 100324. doi: 10.1016/j.ejro.2021.100324

    [26]

    Zhao T,Li L,Chen Z. Dynamic material decomposition method for MeV dual-energy X-ray CT[J]. Applied Radiation and Isotopes, 2018, 140: 55−62. doi: 10.1016/j.apradiso.2018.06.009

    [27]

    Zhou S,Zhu L,You T,et al. In vivo quantification of bone mineral density of lumbar vertebrae using fast kVp switching dual-energy CT:Correlation with quantitative computed tomography[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(1): 341−350. doi: 10.21037/qims-20-367

    [28]

    Flohr T,Petersilka M,Henning A,et al. Photon-counting CT review[J]. Physica Medica, 2020, 79: 126−136. doi: 10.1016/j.ejmp.2020.10.030

    [29]

    Wigger C,van Loon L R. Effect of the pore water composition on the diffusive anion transport in argillaceous,low permeability sedimentary rocks[J]. Journal of Contaminant Hydrology, 2018, 213: 40−48. doi: 10.1016/j.jconhyd.2018.05.001

    [30]

    赵鸿,杜安道,李超,等. 浙江长兴“金钉子”灰岩Re-Os富集机制研究[J]. 地质学报, 2015, 89(10): 1783−1791.

    Zhao H,Du A D,Li C,et al. Enrichment mechanism of Re-Os in limestone from Changxing Permian—Triassic boundary in Zhejiang[J]. Acta Geologica Sinica, 2015, 89(10): 1783−1791.

    [31]

    Bercu G. New refinements for the error function with applications in diffusion theory[J]. Symmetry, 2020, 12(12): 1−13.

    [32]

    Wang B T,Lee C P,Wu M C,et al. Novel method for analyzing transport parameters in through-diffusion tests[J]. Journal of Environmental Radioactivity, 2019, 196: 125−132.

    [33]

    Vedder J D. Simple approximations for the error function and its inverse[J]. American Journal of Physics, 1987, 55(8): 762−763. doi: 10.1119/1.15018

    [34]

    郭俊克,郭苏凯. 误差函数的有限形式式近似式及其应用[J]. 太原工业大学学报, 1988, 19(3): 17−24.

    Guo J K,Guo S K. Finite approximate formula of error function and its applications[J]. Journal of Taiyuan University of Technology, 1988, 19(3): 17−24.

    [35]

    田锦州,徐乃忠,李凤明. 误差函数erf(x)近似计算及其在开采沉陷预计中的应用[J]. 煤矿开采, 2009, 14(2): 33−35.

    Tian J Z,Xu N Z,Li F M. Proximate calculation of error function erf (x) and its application in mining subsidence prediction[J]. Coal Mining Technology, 2009, 14(2): 33−35.

    [36]

    MacKeown H,von Gunten U,Criquet J. Iodide sources in the aquatic environment and its fate during oxidative water treatment—A critical review[J]. Water Research, 2022, 217: 118417. doi: 10.1016/j.watres.2022.118417

    [37]

    Ye T,Zhang T Y,Tian F X,et al. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes[J]. Water Research, 2021, 206: 117755. doi: 10.1016/j.watres.2021.117755

    [38]

    Neil C W,Telfeyan K,Sauer K B,et al. Iodine effective diffusion coefficients through volcanic rock:Influence of iodine speciation and rock geochemistry[J]. Journal of Contaminant Hydrology, 2020, 235: 103714. doi: 10.1016/j.jconhyd.2020.103714

  • 加载中

(4)

(2)

计量
  • 文章访问数:  982
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2022-09-05
修回日期:  2023-03-06
录用日期:  2023-04-03
刊出日期:  2023-08-31

目录