中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

富有机质页岩氮同位素分析方法研究

胡志中, 晏雄, 金鹭, 赵安坤, 徐国栋, 杜谷. 富有机质页岩氮同位素分析方法研究[J]. 岩矿测试, 2023, 42(4): 677-690. doi: 10.15898/j.ykcs.202212090231
引用本文: 胡志中, 晏雄, 金鹭, 赵安坤, 徐国栋, 杜谷. 富有机质页岩氮同位素分析方法研究[J]. 岩矿测试, 2023, 42(4): 677-690. doi: 10.15898/j.ykcs.202212090231
HU Zhizhong, YAN Xiong, JIN Lu, ZHAO Ankun, XU Guodong, DU Gu. Nitrogen Isotope Analysis Method of Organic-enriched Shale[J]. Rock and Mineral Analysis, 2023, 42(4): 677-690. doi: 10.15898/j.ykcs.202212090231
Citation: HU Zhizhong, YAN Xiong, JIN Lu, ZHAO Ankun, XU Guodong, DU Gu. Nitrogen Isotope Analysis Method of Organic-enriched Shale[J]. Rock and Mineral Analysis, 2023, 42(4): 677-690. doi: 10.15898/j.ykcs.202212090231

富有机质页岩氮同位素分析方法研究

  • 基金项目: 中国地质调查局地质调查项目(DD20221661); 中国地质调查局成都地质调查中心“刘宝珺院士基金”项目“碳酸盐矿物TT联合表征对羌塘中生代地层结构的约束” ;油气藏地质及开发工程国家重点实验室基金资助项目(PLC20210104)
详细信息
    作者简介: 胡志中,硕士,高级工程师,主要从事同位素和微区原位分析。E-mail:hzz_pot@aliyun.com
  • 中图分类号: P579;O657

Nitrogen Isotope Analysis Method of Organic-enriched Shale

  • 页岩氮同位素是重建古环境中生物地球化学循环的重要工具,也为判断原油的沉积环境、油源对比等提供地球化学指标,但页岩氮同位素比值分析在研究中面临着含量较低、前处理对分析的影响以及标准物质选用等问题,从而影响了页岩中氮同位素比值的准确分析,制约了该技术在相关研究中的深入和发展。本文以富有机质上扬子龙马溪组页岩样品为对象,采用元素分析仪-同位素质谱(EA-IRMS)进行分析,并结合该类页岩的性状特点以及当前页岩氮同位素分析中测试条件、前处理方法、标准物质的选用等方面的影响进行研究。结果表明:EA-IRMS分析时,适当地增加注氧量提高燃烧效能,采用碳、氮分别测定的方式,以及添加碳吸附剂有助于提高页岩中的氮同位素比值分析的精度和准确性。盐酸-酸洗法处理样品过程中,采用超声方式促进了酸/水和样品的反应,有助于提高水洗效果并减少水洗次数从而降低对δ15N的影响。页岩分析时采用国际标准USGS40、USGS41a以及IAEA-600为分析标准,适用并满足氮以及全碳和有机碳同位素比值分析的需要,国家一级海洋沉积物碳氮稳定同位素标准物质GBW04701、GBW04702、GBW04703适用于页岩中碳氮同位素比值分析以及酸处理过程的监控。尽管本次实验采用的盐酸-酸洗法对氮同位素比值的影响较小,但是在对样品分析中仍观察到明显含氮成分的损失和δ15N的变化,因而为了氮含量和δ15N分析的准确,分析该类样品全岩氮同位素比值建议采用直接分析的方法。本研究有助于提高富有机质页岩中氮同位素比值分析的精度和准确性,从而促进氮同位素在页岩分析和研究中获得更广泛的应用。

  • 加载中
  • 表 1  本次实验用于碳、氮质量和同位素比值分析的标准和参考物质

    Table 1.  Standard and reference materials for carbon and nitrogen content and isotope ratio analysis in this experiment.

    标准物质
    编号
    来源性质δ13CVPDB(‰)δ15NAIR-N2(‰)碳氮含量和同位素
    比值说明
    UreaElement Microanalysis Ltd尿素−37.02±0.06−2.91±0.2
    USGS41aUSGS谷氨酸36.55±0.0847.55±0.15
    USGS40USGS谷氨酸−26.39±0.04−4.52±0.06C: 40.8%; N: 9.52%
    IAEA-600IAEA咖啡因−27.77±0.041.0±0.2
    GBW04701国家标准物质海洋沉积物−8.22±0.173.99±0.22总碳和总氮的同位素比值
    −20.79±0.143.8±0.24有机碳和有机氮的同位素比值
    GBW04702国家标准物质海洋沉积物−18.68±0.156.25±0.23总碳和总氮的同位素比值
    −23.63±0.116.48±0.28有机碳和有机氮的同位素比值
    GBW04703国家标准物质海洋沉积物−10.64±0.154.68±0.23总碳和总氮的同位素比值
    −22.57±0.144.78±0.29有机碳和有机氮的同位素比值
    GBW07424国家标准物质土壤土壤成分标准,N: 0.126%±0.011%
    GBW07107国家标准物质页岩岩石成分标准,N: 540±60µg/g
    下载: 导出CSV

    表 2  不同注氧时间和单/双锡杯方式下氮含量和同位素分析结果

    Table 2.  The results of nitrogen content and isotope ratio under different oxygen injection time and single/double tin cup condition.

    标准物质
    编号
    测定条件称样量
    (mg)
    N含量(%)δ15NAIR-N2(‰)
    推荐值测定值(n≥5)推荐值测定值(n≥5)
    Urea O: 3s+单锡杯 −2.91±0.2 −2.93 ±0.13
    O: 5s+单锡杯 −3.03 ±0.13
    O: 5s+双锡杯 −3.16 ±0.29
    GBW07424
     
    O: 5s+单锡杯 <7 0.126±0.011 0.106±0.009 5.47±0.16
    O: 5s+双锡杯 <7 0.100±0.010 6.09±0.27
    O: 5s+单锡杯 15~20 0.119±0.004 6.80±0.16
    O: 5s+单锡杯 ≥20 6.85±0.12
    注:“-”表示该项无参考值或未作分析。
    下载: 导出CSV

    表 3  不同标准和样品的氮同位素分析结果

    Table 3.  The results of nitrogen isotopes for reference materials and samples.

    标准物质和
    样品编号
    样品前处理δ15NAIR-N2 (‰)样品前处理δ15NAIR-N2 (‰)
    推荐值测定值(n≥5)推荐值测定值(n≥5)
    GBW04701 未前处理 3.99±0.22 3.82±0.08 6mol/L HCl 3.8±0.24 3.73±0.07
    GBW04702 未前处理 6.25±0.23 6.30±0.07 6mol/L HCl 6.48±0.28 6.29±0.09
    GBW04703 未前处理 4.68±0.23 4.65±0.1 4.78±0.29
    SAMPLE-1 未前处理 −1.40±0.17 6mol/L HCl −1.34±0.17
    SAMPLE-2 未前处理 −1.69±0.13 6mol/L HCl 0.62±0.12
    注:“-”表示该项无参考值或未作分析。
    下载: 导出CSV

    表 4  不同标准和样品的碳同位素分析结果

    Table 4.  The results of carbon isotopes of reference materials and samples.

    标准物质和
    样品编号
    样品前处理δ13CVPDB (‰)样品前处理δ13CVPDB (‰)
    推荐值测定值(n≥5)推荐值测定值(n≥5)
    GBW04701 未前处理 −8.22±0.17 −8.39±0.02 6mol/L HCl −20.79±0.14 −21.03±0.05
    GBW04702 未前处理 −18.68±0.15 −18.71±0.1 6mol/L HCl −23.63±0.11 −23.65±0.12
    GBW07107 未前处理 −30.47±0.12 6mol/L HCl −30.34±0.07
    SAMPLE-1 未前处理 −28.68±0.15 6mol/L HCl −29.53±0.11
    SAMPLE-2 未前处理 −30.69±0.02 6mol/L HCl −30.75±0.11
    下载: 导出CSV
  • [1]

    Stüeken E E, Buick R, Guy B M, et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2Gyr[J]. Nature, 2015, 520: 666−669. doi: 10.1038/nature14180

    [2]

    Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220−239. doi: 10.1016/j.earscirev.2016.07.007

    [3]

    Kipp M A, Stüeken E E, Yun M, et al. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era[J]. Earth and Planetary Science Letters, 2018, 500: 117−126. doi: 10.1016/j.jpgl.2018.08.007

    [4]

    曹亚澄, 张金波, 温腾, 等. 稳定同位素示踪技术与质谱分析——在土壤、生态、环境研究中的应用[M]. 北京: 科学出版社, 2018: 113-174.

    Cao Y C, Zhang J B, Wen T, et al. Stable isotope tracing and mass spectrometry—Applications in soil, ecology, and environmental studies[M]. Beijing: Science Press, 2018: 113-174.

    [5]

    Zerkle A L, Poulton S W, Newton R J, et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event[J]. Nature, 2017, 542: 465−467. doi: 10.1038/nature20826

    [6]

    Bingham N L, Slessarev E W, Homyak P M, et al. Rock-sourced nitrogen in semi-arid, shale-derived California soils[J]. Frontiers in Forests and Global Change, 2021, 4: 672522.

    [7]

    Stüeken E E, Buick R, Schauer A J. Nitrogen isotope evidence for alkaline lakes on late Archean continents[J]. Earth and Planetary Science Letters, 2015, 411: 1−10. doi: 10.1016/j.jpgl.2014.11.037

    [8]

    Chen J, Chen J F, Shi S B, et al. The linkage of nitrogen isotopic composition and depositional environment of black mudstones in the Upper Triassic Yanchang Formation, Ordos Basin, Northern China[J]. Journal of Asian Earth Sciences, 2020, 193: 104308. doi: 10.1016/j.jseaes.2020.104308

    [9]

    Hodgskiss M S W, Sansjofre P, Kunzmann M, et al. A high-TOC shale in a low productivity world: The late Mesoproterozoic Arctic Bay Formation, Nunavut[J]. Earth and Planetary Science Letters, 2020, 544: 116384. doi: 10.1016/j.jpgl.2020.116384

    [10]

    Wang X Q, Jiang G Q, Shi X Y, et al. Nitrogen isotope constraints on the early Ediacaran ocean redox structure[J]. Geochimica et Cosmochimica Acta, 2018, 240: 220−235. doi: 10.1016/j.gca.2018.08.034

    [11]

    Yang X R, Yan D T, Chen D Z, et al. Spatiotemporal variations of sedimentary carbon and nitrogen isotopic compositions in the Yangtze Shelf Sea across the Ordovician—Silurian boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110257. doi: 10.1016/j.palaeo.2021.110257

    [12]

    Wei W, Lu Y C, Ma Y Q, et al. Nitrogen isotopes as paleoenvironmental proxies in marginal-marine shales, Bohai Bay Basin, NE China[J]. Sedimentary Geology, 2021, 421: 105963. doi: 10.1016/j.sedgeo.2021.105963

    [13]

    Zhu G Y, Wang P J, Li T T, et al. Nitrogen geochemistry and abnormal mercury enrichment of shales from the lowermost Cambrian Niutitang Formation in South China: Implications for the marine redox conditions and hydrothermal activity[J]. Global and Planetary Change, 2021, 199: 103449. doi: 10.1016/j.gloplacha.2021.103449

    [14]

    Hossain H M Z, Sampei Y, Hossain Q H, et al. Origin of organic matter and hydrocarbon potential of Permian Gondwana coaly shales intercalated in coals/sands of the Barapukuria Basin, Bangladesh[J]. International Journal of Coal Geology, 2019, 212: 103201. doi: 10.1016/j.coal.2019.05.008

    [15]

    李婷婷, 朱光有, 赵坤, 等. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721−734.

    Li T T, Zhu G Y, Zhao K, et al. Nitrogen cycle and nitrogen isotope application in paleoenvironment reconstruction of ancient hydrocarbon source rocks and oil-source correlations[J]. Natural Gas Geoscience, 2020, 31(5): 721−734.

    [16]

    栗敏. 典型沉积环境中沉积有机质氮同位素组成特征及地质意义[D]. 北京: 中国石油大学(北京), 2018: 1-6.

    Li M. Nitrogen isotope composition characteristics and geological significance of organic matter in typical sedimentary environment[D]. Beijing: China University of Petroleum (Beijing), 2018: 1-6.

    [17]

    周晶晶. 中上扬子地区五峰—龙马溪组页岩氮同位素分布特征及古环境研究[D]. 北京: 中国矿业大学(北京), 2021: 1-8.

    Zhou J J. Distribution characteristics of nitrogen isotope and paleoenvironment of shale from Wufeng—Longmaxi Formation in middle and upper Yangtze Region, China[D]. Beijing: China University of Geosciences (Beijing), 2021: 1-8.

    [18]

    尹希杰, 刘维维, 王永涛, 等. 元素分析-同位素质谱联用测定微量氮元素同位素方法研究[J]. 质谱学报, 2021, 42(3): 346−352.

    Yin X J, Liu W W, Wang Y T, et al. Determination of δ15N on microgram amounts by modified element analysis-isotope ratio mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 346−352.

    [19]

    Langel R, Dyckmans J. A closer look into the nitrogen blank in elemental analyser/isotope ratio mass spectrometry measurements[J]. Rapid Communications in Mass Spectrometry, 2017, 31(23): 2051−2055. doi: 10.1002/rcm.7999

    [20]

    Wang N, Liu J Y, Zhang Y, et al. Influences of oxidation ability on precision in nitrogen isotope measurements of organic reference materials using elemental analysis-isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e9122.

    [21]

    Stüeken E E, Castro M, Krotz L, et al. Optimized switch‐over between CHNS abundance and CNS isotope ratio analyses by elemental analyzer‐isotope ratio mass spectrometry: Application to six geological reference materials[J]. Rapid Communications in Mass Spectrometry, 2020, 34(18): e8821.

    [22]

    Kubota R. Simultaneous determination of total carbon, nitrogen, hydrogen and sulfur in twenty-seven geological reference materials by elemental analyser[J]. Geostandards and Geoanalytical Research, 2009, 33: 271−283. doi: 10.1111/j.1751-908X.2009.00905.x

    [23]

    徐丽, 邢蓝田, 王鑫, 等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15−20.

    Xu L, Xing L T, Wang X, et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analysis-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15−20.

    [24]

    Han W N, Feng L J, Li H W, et al. Bulk δ15N measurements of organic-rich rock samples by elemental analyzer/isotope ratio mass spectrometry with enhanced oxidation ability[J]. Rapid Communications in Mass Spectrometry, 2017, 31(1): 16−20. doi: 10.1002/rcm.7754

    [25]

    Stüeken E E, Zaloumis J, Meixnerová J, et al. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks[J]. Geochimica et Cosmochimica Acta, 2017, 217: 80−94. doi: 10.1016/j.gca.2017.08.019

    [26]

    Fujisaki W, Matsui Y, Ueda H, et al. Pre-treatment methods for accurate determination of total nitrogen and organic carbon contents and their stable isotopic compositions: Re-evaluation from geological reference materials[J]. Geostandards and Geoanalytical Research, 2021, 46(1): 5−19.

    [27]

    彭亚君, 王玉珏, 刘东艳, 等. 酸化过程对海洋沉积物中有机碳同位素分析的影响[J]. 海洋学报, 2015, 37(12): 85−92.

    Peng Y J, Wang Y J, Liu D Y, et al. Acid treatment effects on the carbon stable isotope values of marine sediments[J]. Haiyang Xuebao, 2015, 37(12): 85−92.

    [28]

    Kim M S, Lee W S, Kumar K S, et al. Effects of HCl pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples[J]. Rapid Communications in Mass Spectrometry, 2016, 30: 1567−1575. doi: 10.1002/rcm.7600

    [29]

    Pasquier V, Sansjofre P, Lebeau O, et al. Acid digestion on river influenced shelf sediment organic matter: Carbon and nitrogen contents and isotopic ratios[J]. Rapid Communications in Mass Spectrometry, 2018, 32: 86−92.

    [30]

    Dennen K O, Johnson C A, Otter M L, et al. δ15N and non-carbonate δ13C values for two petroleum source rock reference materials and a marine sediment reference material[R]. U. S. Geological Survey Open-File Report, 2006.

    [31]

    Wu Y W, Tian H, Li T F, et al. Enhanced terrestrial organic matter burial in the marine shales of Yangtze Platform during the early Carboniferous interglacial interval[J]. Marine and Petroleum Geology, 2021, 129: 105064. doi: 10.1016/j.marpetgeo.2021.105064

    [32]

    丁悌平. 稳定同位素测试技术与参考物质研究现状及发展趋势[J]. 岩矿测试, 2002, 21(4): 291−300. doi: 10.3969/j.issn.0254-5357.2002.04.011

    Ding T P. Present status and prospect of analytical techniques and reference materials for stable isotopes[J]. Rock and Mineral Analysis, 2002, 21(4): 291−300. doi: 10.3969/j.issn.0254-5357.2002.04.011

    [33]

    Gentile N, Rossi M J, Delémont O, et al. δ15N measurement of organic and inorganic substances by EA-IRMS: A speciation-dependent procedure[J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 159−176. doi: 10.1007/s00216-012-6471-z

    [34]

    Lott M J, Howa J D, Chesson L A, et al. Improved accuracy and precision in δ15NAIR measurements of explosives, urea, and inorganic nitrates by elemental analyzer/isotope ratio mass spectrometry using thermal decomposition[J]. Rapid Communications in Mass Spectrometry, 2015, 29: 1381−1388. doi: 10.1002/rcm.7229

    [35]

    Feng L J, Li H W, Liu W. Nitrogen mass fraction and isotope determinations in geological reference materials using sealed-tube combustion coupled with continuous flow isotope-ratio mass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 539−548. doi: 10.1111/ggr.12234

    [36]

    Feng L J, Li H W, Yan D T. A refinement of nitrogen isotope analysis of coal using elemental analyzer/isotope ratio mass spectrometry and the carbon and nitrogen isotope compositions of coals imported in China[J]. ACS Omega, 2020, 5: 7636−7640. doi: 10.1021/acsomega.0c00488

    [37]

    Zhao A K, Yu Q, Lei Z H, et al. Geological and microstructural characterization of the Wufeng—Longmaxi shale in the Basin—Orogen Transitional Belt of North Guizhou Province, China[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6026−6038. doi: 10.1166/jnn.2017.14522

    [38]

    赵安坤, 时志强, 王学峰, 等. 康滇古陆东侧上奥陶统五峰组—下志留统龙马溪组富有机质白云石特征及其地质意义[J]. 矿物岩石地球化学通报, 2022, 41(2): 307−316.

    Zhao A K, Shi Z Q, Wang X F, et al. Characteristics of organic-rich dolomites from upper Ordovician Wufeng Formation—lower Silurian Longmaxi Formation in the eastern part of Kangdian ancient land and their geological significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 307−316.

    [39]

    杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺—永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321−1333.

    Yang X Y, Liu C L, Liu W P, et al. Characteristics of and factors influencing organic pores in the lower Silurian Longmaxi Formation, Fushun—Yongchuan area, Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(6): 1321−1333.

    [40]

    何龙, 王云鹏, 陈多福. 四川盆地晚奥陶世有机碳、氮同位素异常及其古环境意义[J]. 地球化学, 2021, 50(6): 623−634.

    He L, Wang Y P, Chen D F, et al. Organic carbon and nitrogen isotope anomalies during the late Ordovician in Sichuan Basin, and their implications for the palaeoenvironment[J]. Geochimica, 2021, 50(6): 623−634.

    [41]

    黄玮. 早志留世海洋化学条件的变化及其对晚埃隆阶笔石多样性锐减的影响: 来自华南的证据[D]. 合肥: 中国科学技术大学, 2020: 1-2.

    Huang W. Redox condition changes in early Silurian ocean and their influence on the late Aeronian sedgwickii event: Evidence from South China[D]. Hefei: University of Science and Technology of China, 2020: 1-2.

    [42]

    胡志中, 晏雄, 王坤阳, 等. 碳酸盐碳氧同位素标准物质性状对分析和保存的影响[J]. 岩矿测试, 2021, 40(4): 476−490.

    Hu Z Z, Yan X, Wang K Y, et al. Characteristics of carbon and oxygen isotope standard materials of carbonates and their effect on isotope analysis and standard preservation[J]. Rock and Mineral Analysis, 2021, 40(4): 476−490.

    [43]

    曹亚澄. 气体同位素质谱分析300问[M]. 北京: 科学出版社, 2020: 79-80.

    Cao Y C. Gas isotope mass spectrometry 300 question[M]. Beijing: Science Press, 2020: 79-80.

    [44]

    吴夏, 黄俊华, 白晓, 等. 沉积岩总有机质碳同位素分析的前处理影响[J]. 地球学报, 2008, 29(6): 677−683.

    Wu X, Huang J H, Bai X, et al. Sample-pretreatment effects on analytical results of total organic carbon isotopes in sedimentary rocks[J]. Acta Geoscientica Sinica, 2008, 29(6): 677−683.

    [45]

    Brodie C R, Heaton T H E, Leng M J, et al. Evidence for bias in measured δ15N values of terrestrial and aquatic organic materials due to pre-analysis acid treatment methods[J]. Rapid Communications in Mass Spectrometry, 2011, 25: 1089−1099. doi: 10.1002/rcm.4970

    [46]

    Brodie C R, Leng M J, Casford J S L, et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods[J]. Chemical Geology, 2011, 282: 67−83. doi: 10.1016/j.chemgeo.2011.01.007

    [47]

    陈立雷, 张媛媛, 贺行良, 等. 海洋沉积物有机碳和稳定氮同位素分析的前处理影响[J]. 沉积学报, 2014, 32(6): 1046−1051. doi: 10.14027/j.cnki.cjxb.2014.06.006

    Chen L L, Zhang Y Y, He X L, et al. The research on sample-pretreatment of organic carbon and stable nitrogen isotopes in marine sediments[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1046−1051. doi: 10.14027/j.cnki.cjxb.2014.06.006

    [48]

    谭扬, 吴学丽, 侯立杰. 样品处理方法对海洋沉积物有机碳稳定同位素测定的影响[J]. 海洋环境科学, 2018, 37(5): 780−784.

    Tan Y, Wu X L, Hou L J, et al. The effects of sample treatment methods on marine sediment organic carbon stable isotope[J]. Maine Environmental Science, 2018, 37(5): 780−784.

    [49]

    周平, 徐国盛, 崔恒远, 等. 沉积岩中总有机碳测定前的预处理方法[J]. 实验室研究与探索, 2019, 38(1): 45−48.

    Zhou P, Xu G S, Cui H Y, et al. Study on pretreatment method of total organic carbon before determination in sedimentary rock[J]. Research and Exploration in Laboratory, 2019, 38(1): 45−48.

    [50]

    常文博, 李凤, 张媛媛, 等. 元素分析-同位素比值质谱法测量海洋沉积物中有机碳和氮稳定同位素组成的实验室间比对研究[J]. 岩矿测试, 2020, 39(4): 535−545.

    Chang W B, Li F, Zhang Y Y, et al. Inter-laboratory comparison of measuring organic carbon and stable nitrogen isotopes in marine sediments by elemental analysis-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(4): 535−545.

    [51]

    Stüeken E E, Prave A R. Diagenetic nutrient supplies to the Proterozoic biosphere archived in divergent nitrogen isotopic ratios between kerogen and silicate minerals[J]. Geobiology, 2022, 20(5): 623−633. doi: 10.1111/gbi.12507

    [52]

    Boocock T J, Mikhail S, Prytilak J, et al. Nitrogen mass fraction and stable isotope ratios for fourteen geological reference materials: Evaluating the applicability of elemental analyser versus sealed tube combustion methods[J]. Geostandards and Geoanalytical Research, 2020, 44: 537−551. doi: 10.1111/ggr.12345

    [53]

    帅琴, 黄瑞成, 高强, 等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931−938.

    Shuai Q, Huang R C, Gao Q, et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931−938.

    [54]

    Kang D L, Wang X H, Zheng X J, et al. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra[J]. Fuel, 2021, 290: 120006. doi: 10.1016/j.fuel.2020.120006

    [55]

    Wang Q, Liu Q, Wang Z C, et al. Characterization of organic nitrogen and sulfur in the oil shale kerogens[J]. Fuel Processing Technology, 2017, 160: 170−177. doi: 10.1016/j.fuproc.2017.02.031

    [56]

    Li L, Li K, Li Y Z, et al. Recommendations on offline combustion-based nitrogen isotopic analysis of silicate minerals and rocks[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e9075.

  • 加载中

(4)

计量
  • 文章访问数:  1200
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2022-12-09
修回日期:  2023-02-21
录用日期:  2023-03-29
刊出日期:  2023-08-31

目录