中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

多步浸提法在碳酸盐岩Sr同位素分析中的对比及优化

潘旭, 孙子威, 高继苇, 龚红梅, 王晓红, 段梦, 肖媛媛. 多步浸提法在碳酸盐岩Sr同位素分析中的对比及优化[J]. 岩矿测试, 2023, 42(4): 691-706. doi: 10.15898/j.ykcs.202302200023
引用本文: 潘旭, 孙子威, 高继苇, 龚红梅, 王晓红, 段梦, 肖媛媛. 多步浸提法在碳酸盐岩Sr同位素分析中的对比及优化[J]. 岩矿测试, 2023, 42(4): 691-706. doi: 10.15898/j.ykcs.202302200023
PAN Xu, SUN Ziwei, GAO Jiwei, GONG Hongmei, WANG Xiaohong, DUAN Meng, XIAO Yuanyuan. Comparison and Optimization of Sr Isotope Analysis in Carbonate Rocks by Multiple-step Leaching Method[J]. Rock and Mineral Analysis, 2023, 42(4): 691-706. doi: 10.15898/j.ykcs.202302200023
Citation: PAN Xu, SUN Ziwei, GAO Jiwei, GONG Hongmei, WANG Xiaohong, DUAN Meng, XIAO Yuanyuan. Comparison and Optimization of Sr Isotope Analysis in Carbonate Rocks by Multiple-step Leaching Method[J]. Rock and Mineral Analysis, 2023, 42(4): 691-706. doi: 10.15898/j.ykcs.202302200023

多步浸提法在碳酸盐岩Sr同位素分析中的对比及优化

  • 基金项目: 崂山实验室科技创新项目(LSKJ202204104; LSKJ202202905);泰山学者工程
详细信息
    作者简介: 潘旭,硕士研究生,地质学专业。E-mail:1323769741@qq.com
    通讯作者: 肖媛媛,博士,研究员,主要从事多圈层物质循环、俯冲带地球化学过程和地球动力学结果的研究。E-mail:yuanyuan.xiao@qdio.ac.cn
  • 中图分类号: O562.6;O614.23.2

Comparison and Optimization of Sr Isotope Analysis in Carbonate Rocks by Multiple-step Leaching Method

More Information
  • 海相沉积碳酸盐岩是记录海水信息的重要载体,其中碳酸盐岩的Sr同位素比值(87Sr/86Sr)可以反映大陆地壳和地幔对海水组成的相对贡献,其长期变化趋势可用于反演地球历史上的全球构造事件、风化速率变化和生物地球化学循环以及确定海相沉积地层年龄等。然而,现存古老地层中的碳酸盐岩常不同程度地保留有非碳酸盐组分,并受到后期蚀变影响,从而使碳酸盐岩全岩的Sr同位素组成不等同于原生碳酸盐组分的Sr同位素组成。为了获取可以反映当时的海水组成的原生碳酸盐组分,需要建立一种有效的浸提方法。本文基于已有的两种碳酸盐岩多步浸提方法,探讨了其适用性,并简化了预浸步骤、缩短了流程时间,明确了不同种类的碳酸盐岩的浸提方法。结果表明:碳酸盐纯度≥85%的灰岩适用于采用浸提液为1%乙酸的9步浸提法,目标步骤为L7~L9;纯度≥65%的白云岩样品适用于采用浸提液为0.25%~10%乙酸的14步浸提法,目标步骤为D13~D14,采用多接收电感耦合等离子体质谱仪(MC-ICP-MS)对纯化后的目标浸提液进行Sr同位素测试。通过此方法获得中国灰岩标准物质GBW03105a原生碳酸盐组分的87Sr/86Sr比值为0.708930±0.000015(n=12,2SD),与前人研究结果(0.708879±0.000013)相吻合;并报道了欧洲钢铁标准化委员会(ECISS)白云岩标准物质ECRM-782-1原生碳酸盐组分的87Sr/86Sr比值为0.707868±0.000034(n=12,2SD),为后续地球化学分析提供了方法和数据支持。

  • 加载中
  • 图 1  灰岩样品元素比值随浸提步骤的变化

    Figure 1. 

    图 2  白云岩样品元素比值随浸提步骤的变化

    Figure 2. 

    图 3  样品Al/Ca比值在浸提中的变化

    Figure 3. 

    表 1  多步浸提实验步骤

    Table 1.  Procedures of the multiple-step leaching experiment.

    步骤名称步骤序号各步所需时间Liu等13提出方法 步骤序号各步所需时间Li等29提出方法
    Ⅰ—乙酸铵预浸A1、A230min5mL 1mol/L乙酸铵+
    0.02mL 8%过氧化氢
    B124h10mL 1mol/L乙酸铵
    Ⅱ—乙酸浸提A3~A930min5mL 0.25%乙酸B2~B1020min3mL 1% 乙酸(灰岩)
    4mL 2.5% 乙酸(白云岩)
    A10~A126mL 1%乙酸
    A13~A143mL 5%乙酸
    Ⅲ—过量乙酸浸提A1530min6mL 10%乙酸B1120min9mL 1% 乙酸(灰岩)
    9mL 2.5% 乙酸(白云岩)
    Ⅳ—强酸溶解A1615h1mL反王水+0.5mL氢氟酸B1215h1mL反王水+0.5mL氢氟酸
    下载: 导出CSV

    表 2  采用Liu等[13]的方法各步浸提液元素比值及87Sr/86Sr比值

    Table 2.  Element and 87Sr/86Sr values in each step of the leaching procedure in Liu et al[13].

    浸提
    步骤
    样品GBW3105a
    87Sr/ 86Sr总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    A1 0.709120 3 4 0.02 0.36 1.07 0.02
    A2 0.709044 6 3 0.01 0.23 0.80 0.26
    A3 0.709009 13 6 0.01 0.22 0.01 0.14
    A4 0.709002 20 6 0.01 0.19 0.11 0.46
    A5 0.708993 26 6 0.01 0.21 0.07 0.13
    A6 0.708985 33 6 0.01 0.23 0.03 0.27
    A7 0.708974 39 6 0.01 0.23 0.09 0.21
    A8 0.708941 46 6 0.01 0.21 0.07 0.43
    A9 0.708949 52 6 0.01 0.22 0.07 0.24
    A10 0.708889 77 25 0.01 0.23 0.04 0.37
    A11 0.708920 99 22 0.03 0.25 0.17 0.44
    A12 - 99 0 0.73 0.09 23.46 8.24
    A13 - 100 0 0.91 0.05 29.57 15.72
    A14 - 100 0 0.88 0.28 68.51 3.86
    A15 - 100 0 0.39 1.04 0.00 3.06
    A16 - 100 2 0.62 6.22 7.65 0.73
    浸提
    步骤
    样品C-3
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    A1 0.709862 3 4 0.02 0.93 0.29 0.34
    A2 0.709773 7 3 0.02 0.81 0.43 0.40
    A3 0.709721 14 7 0.02 0.90 0.01 0.17
    A4 0.709712 21 7 0.02 0.84 0.01 0.48
    A5 0.709702 29 7 0.02 0.83 0.01 0.48
    A6 0.709707 37 8 0.02 0.86 0.01 0.47
    A7 0.709696 45 8 0.02 0.88 0.02 0.46
    A8 0.709709 52 7 0.02 0.88 0.02 0.25
    A9 0.709680 59 7 0.02 0.90 0.03 0.25
    A10 0.709655 75 16 0.04 0.86 0.00 0.55
    A11 0.709655 98 23 0.02 0.86 0.05 0.50
    A12 0.709807 99 1 0.12 0.94 24.14 0.67
    A13 0.710330 100 1 0.39 0.83 49.37 1.40
    A14 - 100 0 0.79 0.87 191.98 2.71
    A15 - 100 0 0.67 2.58 1952.20 1.05
    A16 - 100 0 8.06 1.93 32.74 3.08
    浸提
    步骤
    样品ECRM-782-1
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    A1 0.709127 3 8 1.06 1.77 3.74 23.15
    A2 0.708408 4 2 1.01 0.54 4.04 46.89
    A3 0.708270 6 2 1.02 0.54 5.73 42.24
    A4 0.708276 11 6 1.00 0.65 1.84 56.58
    A5 0.708185 17 5 1.00 0.50 0.70 58.77
    A6 0.708010 22 4 1.01 0.46 0.72 46.22
    A7 0.707987 27 4 1.00 0.47 1.51 47.75
    A8 0.707913 32 4 1.01 0.47 1.70 44.70
    A9 0.708009 36 3 1.02 0.47 7.40 48.15
    A10 0.708018 42 5 1.00 0.50 16.67 45.40
    A11 0.708000 51 7 1.00 0.45 8.34 43.13
    A12 0.707935 60 7 0.99 0.45 7.70 40.91
    A13 0.707875 65 5 1.01 0.50 13.95 38.91
    A14 0.707880 73 7 1.00 0.50 8.80 38.36
    A15 0.707873 96 19 1.00 0.48 6.45 38.10
    A16 0.710082 100 11 1.00 1.37 469.94 34.58
    下载: 导出CSV
    (续表 2)
    浸提
    步骤
    样品ECRM-782-1R
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    A1 0.709080 2 8 1.04 1.74 3.30 22.91
    A2 0.708318 4 2 0.99 0.56 4.47 49.75
    A3 0.708155 5 1 1.00 0.49 5.16 44.60
    A4 0.708311 10 5 0.98 0.53 0.85 65.37
    A5 0.708051 15 5 0.98 0.46 1.16 55.30
    A6 0.707996 20 5 0.98 0.45 0.73 48.69
    A7 0.707956 25 4 0.99 0.45 1.02 46.70
    A8 0.707944 30 4 0.99 0.45 1.23 44.30
    A9 0.708024 33 2 0.99 0.47 18.25 48.09
    A10 0.708005 38 5 0.98 0.43 11.40 45.70
    A11 0.708036 44 5 0.99 0.44 7.58 44.59
    A12 0.707903 56 11 0.98 0.45 5.39 40.16
    A13 0.707875 66 9 0.98 0.44 8.74 38.81
    A14 0.707873 75 8 0.98 0.46 7.34 39.00
    A15 0.707853 98 20 0.98 0.44 5.50 37.25
    A16 0.712228 100 7 1.00 1.55 1717.39 33.68
    浸提
    步骤
    样品E-3
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    A1 0.713153 2 1 0.91 0.20 0.00 8.55
    A2 0.712982 3 1 1.00 0.18 0.00 11.37
    A3 0.713075 8 3 1.00 0.17 0.42 12.00
    A4 0.712645 14 4 0.96 0.16 0.17 12.64
    A5 0.712345 22 5 0.91 0.15 0.06 11.55
    A6 0.711715 29 4 0.94 0.14 0.13 12.48
    A7 0.711543 36 5 0.88 0.15 0.05 12.23
    A8 0.711056 41 3 0.97 0.15 0.49 12.17
    A9 0.711750 48 4 0.91 0.15 0.10 11.98
    A10 0.711815 51 3 0.94 0.17 1.21 10.53
    A11 0.710880 61 6 0.91 0.15 0.20 11.68
    A12 0.710850 64 2 0.95 0.16 0.47 10.75
    A13 0.711104 74 6 0.91 0.15 0.25 11.27
    A14 0.710849 81 4 0.91 0.15 0.32 10.50
    A15 0.710849 90 7 0.90 0.16 0.33 9.22
    A16 0.736939 100 40 0.88 0.93 411.08 1.45
    下载: 导出CSV

    表 3  采用Li等[29]方法各步浸提液元素比值及87Sr/86Sr比值

    Table 3.  Element and 87Sr/86Sr values in each step of the leaching procedure in Li et al[29].

    浸提
    步骤
    样品GBW3105a
    87Sr/ 86Sr总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    B1 0.709095 4 7 0.02 0.43 0.17 0.01
    B2 0.709012 12 8 0.01 0.21 0.01 0.26
    B3 0.709025 22 8 0.01 0.20 0.02 0.40
    B4 0.708964 31 8 0.01 0.20 0.01 0.61
    B5 0.708934 40 9 0.01 0.21 0.01 0.38
    B6 0.708926 49 9 0.01 0.21 0.01 0.38
    B7 0.708877 58 8 0.01 0.22 0.05 0.34
    B8 0.708878 67 9 0.01 0.22 0.06 0.34
    B9 0.708877 76 9 0.01 0.22 0.04 0.30
    B10 0.708881 85 9 0.01 0.23 0.05 0.34
    B11 0.708912 99 15 0.04 0.24 0.72 0.45
    B12 0.730411 100 2 0.92 0.41 364.51 3.20
    下载: 导出CSV
    (续表 3)
    浸提
    步骤
    样品C-3
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    B1 0.709875 5 5 0.02 0.96 0.13 0.12
    B2 0.709711 15 10 0.02 0.87 0.00 0.53
    B3 0.709731 25 10 0.02 0.82 0.00 0.49
    B4 0.709734 36 11 0.02 0.87 0.00 0.48
    B5 0.709686 47 11 0.02 0.87 0.00 0.48
    B6 0.709682 58 11 0.02 0.86 0.00 0.49
    B7 0.709666 69 10 0.02 0.83 0.00 0.48
    B8 0.709675 79 11 0.02 0.87 0.00 0.49
    B9 0.709670 88 9 0.02 0.86 0.07 0.44
    B10 0.709677 95 7 0.04 0.83 0.53 0.53
    B11 0.709831 99 4 0.08 0.84 6.55 0.61
    B12 0.709652 100 0 2.30 0.35 12017.92 6.68
    浸提
    步骤
    样品ECRM-782-1
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    B1 0.709137 2 7 1.09 0.23 0.19 5.00
    B2 0.708186 12 10 0.97 0.05 0.65 61.79
    B3 0.707971 22 9 0.98 0.04 0.57 50.06
    B4 0.707958 33 11 0.99 0.04 0.47 45.70
    B5 0.707977 41 7 0.98 0.04 0.61 46.46
    B6 0.707963 51 9 0.98 0.04 0.44 43.91
    B7 0.707957 59 5 0.99 0.03 0.48 42.60
    B8 0.707988 62 4 1.02 0.04 0.80 41.94
    B9 0.707929 69 6 0.99 0.04 0.63 38.88
    B10 0.707988 71 2 1.01 0.05 0.95 38.87
    B11 0.707994 74 3 1.00 0.05 0.89 38.81
    B12 0.708390 100 27 0.95 0.05 3.21 34.72
    浸提
    步骤
    样品ECRM-782-1R
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    B1 0.709120 2 8 1.12 0.29 0.01 0.00
    B2 0.708159 11 9 0.98 0.05 0.61 60.99
    B3 0.708030 22 9 0.98 0.04 0.54 51.85
    B4 0.707947 34 9 1.00 0.04 0.43 44.25
    B5 0.708126 42 8 0.98 0.05 0.82 35.92
    B6 0.707974 52 14 0.99 0.07 0.69 42.64
    B7 0.707930 60 6 0.99 0.04 0.53 40.70
    B8 0.707934 64 3 0.99 0.04 0.70 41.49
    B9 0.707945 67 2 1.01 0.05 0.80 40.09
    B10 0.707945 70 2 1.00 0.04 0.65 39.85
    B11 0.708029 74 4 0.99 0.05 0.90 32.85
    B12 0.70888 100 26 0.82 0.05 5.28 34.60
    浸提
    步骤
    样品E-3
    87Sr/ 86Sr 总Ca
    (%)
    Sr
    (%)
    Mg/Ca
    (mmol/mol)
    Sr/Ca
    (mmol/mol)
    Al/Ca
    (mmol/mol)
    Mn/Sr
    (mol/mol)
    B1 0.713510 4 2 0.47 0.14 0.06 7.26
    B2 0.712825 13 7 0.83 0.20 0.94 13.58
    B3 0.712315 23 7 0.85 0.20 0.47 12.81
    B4 0.711839 33 8 0.81 0.20 0.32 12.76
    B5 0.711553 41 5 0.85 0.16 0.37 12.31
    B6 0.711417 50 5 0.84 0.15 0.35 12.18
    B7 0.711054 53 2 0.95 0.15 0.60 11.27
    B8 0.711674 55 1 0.93 0.15 0.67 10.99
    B9 0.711559 59 2 0.91 0.14 0.41 11.75
    B10 0.711196 65 3 0.89 0.15 0.42 11.79
    B11 0.711166 69 2 0.92 0.15 0.70 11.00
    B12 - 100 56 0.82 0.49 128.22 3.30
    注:“-”表示低于检测限。
    下载: 导出CSV

    表 4  样品基本信息

    Table 4.  Basic information of samples.

    样品编号岩石种类全岩Sr含量
    (μg/g)
    全岩87Sr/86Sr比值碳酸盐纯度
    (%)
    GBW03105a灰岩216.640.709161±0.00001796
    C-3灰岩675.640.71018085
    ECRM-782-1白云岩24.680.708452±0.00000999
    E-3白云岩65.540.71827065
    下载: 导出CSV

    表 5  优化后的多步浸提法实验步骤

    Table 5.  Optimized experimental procedures for multiple-step leaching method.

    步骤序号各步所需时间
    (min)
    白云岩浸提流程
    D1305mL 1mol/L乙酸铵+0.02mL 8%过氧化氢
    D2~D8305mL 0.25%乙酸
    D9~D11306mL 1%乙酸
    D12~D13303mL 5%乙酸
    D14306mL 10%乙酸
    步骤序号各步所需时间
    (min)
    灰岩浸提流程
    L1305mL 1mol/L乙酸铵+0.02mL 8%过氧化氢
    L2~L9203mL 1%乙酸
    下载: 导出CSV

    表 6  采用优化后浸提法标准物质的Sr同位素结果

    Table 6.  The Sr isotope results of standard material using optimized leaching method.

    标准物质编号87Sr/86Sr比值Sr同位素偏差
    GBW03105a0.708930±0.000015(n=12,2SD)0.000053
    ECRM-782-10.707868±0.000034(n=12,2SD)0.000015
    下载: 导出CSV
  • [1]

    Mcarthur J M, Howarth R J, Shields G A. Strontium isotope stratigraphy[J]. The Geologic Time Scale, 2012: 127-144.

    [2]

    Kuznetsov A B, Semikhatov M A, Gorokhov I M. The Sr isotope composition of the world ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy[J]. Stratigraphy and Geological Correlation, 2012, 20(6): 501−515. doi: 10.1134/S0869593812060044

    [3]

    Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 2001, 301(2): 112−149. doi: 10.2475/ajs.301.2.112

    [4]

    Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11−26. doi: 10.1016/0012-821X(89)90017-4

    [5]

    Allègre C J, Louvat P, Gaillardet J, et al. The fundamental role of island arc weathering in the oceanic Sr isotope budget[J]. Earth and Planetary Science Letters, 2010, 292(1-2): 51−56. doi: 10.1016/j.jpgl.2010.01.019

    [6]

    Schildgen T F, Cosentino D, Frijia G, et al. Sea level and climate forcing of the Sr isotope composition of late Miocene Mediterranean marine basins[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 2964−2983.

    [7]

    Peucker-Ehrenbrink B, Fiske G J. A continental perspective of the seawater 87Sr/86Sr record: A review[J]. Chemical Geology, 2019, 510: 140−165. doi: 10.1016/j.chemgeo.2019.01.017

    [8]

    Zaky A H, Brand U, Buhl D, et al. Strontium isotope geochemistry of modern and ancient archives: Tracer of secular change in ocean chemistry[J]. Canadian Journal of Earth Sciences, 2019, 56(3): 245−264. doi: 10.1139/cjes-2018-0085

    [9]

    Mcarthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy[M]. Geologic Time Scale, 2020: 211-238.

    [10]

    Derry L A, Kaufman A J, Jacobsen S B. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317−1329. doi: 10.1016/0016-7037(92)90064-P

    [11]

    Shields G, Veizer J. Precambrian marine carbonate isotope database: Version 1.1[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6): 1−12.

    [12]

    张志军, 尹观, 张其春, 等. 碳酸盐岩锶同位素比值测定中的残渣分析[J]. 岩矿测试, 2003, 22(2): 151−153. doi: 10.3969/j.issn.0254-5357.2003.02.015

    Zhang Z J, Yin G, Zhang Q C, et al. The residue analysis in determination of Sr isotopes ratio of carbonate[J]. Rock and Mineral Analysis, 2003, 22(2): 151−153. doi: 10.3969/j.issn.0254-5357.2003.02.015

    [13]

    Liu C, Wang Z R, Raub T D. Geochemical constraints on the origin of Marinoan cap dolostones from Nuccaleena Formation, South Australia[J]. Chemical Geology, 2013, 351: 95−104. doi: 10.1016/j.chemgeo.2013.05.012

    [14]

    Edwards C T, Saltzman M R, Leslie S A, et al. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values[J]. Geological Society of America Bulletin, 2015, 127(9): 1275−1289.

    [15]

    Fairchild I J, Spencer A M, Ali D O, et al. Tonian—Cryogenian boundary sections of Argyll, Scotland[J]. Precambrian Research, 2018, 319: 37−64. doi: 10.1016/j.precamres.2017.09.020

    [16]

    Hood A, Wallace M W. Neoproterozoic marine carbonates and their paleoceanographic significance[J]. Global and Planetary Change, 2017, 160: 28−45.

    [17]

    Li D, Shields-Zhou G A, Ling H F, et al. Dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks[J]. Chemical Geology, 2011, 290(3-4): 133−144. doi: 10.1016/j.chemgeo.2011.09.004

    [18]

    Zhang K, Zhu X K, Yan B. A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82−91. doi: 10.1016/j.chemgeo.2015.07.027

    [19]

    Azmy K, Kaufman A J, Misi A, et al. Isotope stratigraphy of the Lapa Formation, São Francisco Basin, Brazil: Implications for late Neoproterozoic glacial events in South America[J]. Precambrian Research, 2006, 149(3-4): 231−248. doi: 10.1016/j.precamres.2006.07.001

    [20]

    Nogueira A, Riccomini C, Sial A N, et al. Carbon and strontium isotope fluctuations and paleoceanographic changes in the late Neoproterozoic Araras carbonate platform, Southern Amazon Craton, Brazil[J]. Chemical Geology, 2007, 237(1-2): 168−190. doi: 10.1016/j.chemgeo.2006.06.016

    [21]

    Galindo C, Casquet C, Rapela C, et al. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: Tectonic implications[J]. Precambrian Research, 2004, 131(1): 55−71.

    [22]

    Miller N, Johnson P R, Stern R J. Marine versus non-marine environments for the Jibalah Group, NW Arabian shield: A sediment logic and geochemical survey and report of possible metazoa in the Dhaiqa Formation[J]. Arabin Journal for Science and Engineering, 2008, 33(1): 55−77.

    [23]

    Sawaki Y, Kawai T, Shibuya T, et al. 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig Glaciogenic Formation, Scotland[J]. Precambrian Research, 2010, 179(1-4): 150−164. doi: 10.1016/j.precamres.2010.02.021

    [24]

    Zhang Y G, Yang T, Hohl S V, et al. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin[J]. Precambrian Research, 2020, 345: 105769. doi: 10.1016/j.precamres.2020.105769

    [25]

    Bailey T R, Mcarthur J M, Prince H, et al. Dissolution methods for strontium isotope stratigraphy: Whole rock analysis[J]. Chemical Geology, 2000, 167(3): 313−319.

    [26]

    Bellefroid E J, Planavsky N J, Miller N R, et al. Case studies on the utility of sequential carbonate leaching for radiogenic strontium isotope analysis[J]. Chemical Geology, 2018, 497: 88−99. doi: 10.1016/j.chemgeo.2018.08.025

    [27]

    Cui H, Kaufman A J, Xiao S, et al. Redox architecture of an Ediacaran ocean margin: Integrated chemostratigraphic (δ13C-δ34S-87Sr/86Sr-Ce/Ce*) correlation of the Doushantuo Formation, South China[J]. Chemical Geology, 2015, 405: 48−62. doi: 10.1016/j.chemgeo.2015.04.009

    [28]

    Kochnev B B, Pokrovsky B G, Kuznetsov A B, et al. C and Sr isotope chemostratigraphy of Vendian—lower Cambrian carbonate sequences in the Central Siberian Platform[J]. Russian Geology and Geophysics, 2018, 59(6): 585−605. doi: 10.1016/j.rgg.2018.05.001

    [29]

    Li Y L, Li C F, Guo J H. Re-evaluation and optimisation of dissolution methods for strontium isotope stratigraphy based on chemical leaching of carbonate certificated reference materials[J]. Microchemical Journal, 2020, 154: 104607. doi: 10.1016/j.microc.2020.104607

    [30]

    Brand U, Jiang G, Azmy K, et al. Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U. S. A. )—1: Brachiopod and whole rock comparison[J]. Chemical Geology, 2012, 308-309: 26−39. doi: 10.1016/j.chemgeo.2012.03.017

    [31]

    王意茹, 武晓郯, 何静, 等. 碳酸盐矿物中稀土元素分馏特征及其获取方法研究进展[J]. 岩矿测试, 2022, 41(6): 935−946. doi: 10.15898/j.cnki.11-2131/td.202204180081

    Wang Y R, Wu X T, He J, et al. A review of research progress on fractionation characteristics and acquisition methods of rare earth elements in carbonate minerals[J]. Rock and Mineral Analysis, 2022, 41(6): 935−946. doi: 10.15898/j.cnki.11-2131/td.202204180081

    [32]

    Liu C, Wang Z, Raub T D, et al. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume[J]. Earth and Planetary Science Letters, 2014, 404: 22−32. doi: 10.1016/j.jpgl.2014.06.039

    [33]

    Wen B, Evans D A D, Li Y X, et al. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: Stratigraphy, geochemistry, and paleoenvironment[J]. Precambrian Research, 2015, 271: 178−294.

    [34]

    Romero J A S, Lafon J M, Nogueira A C R, et al. Sr isotope geochemistry and Pb-Pb geochronology of the Neoproterozoic cap carbonates, Tangará da Serra, Brazil[J]. International Geology Review, 2013, 55(2): 1−19.

    [35]

    Kong J J, Niu Y L, Sun P, et al. The origin and geodynamic significance of the Mesozoic dykes in eastern continental China[J]. Lithos, 2019, 332-333: 328−339. doi: 10.1016/j.lithos.2019.02.024

    [36]

    Chen S, Wang X H, Niu Y L, et al. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS[J]. Science Bulletin, 2017, 62(4): 277−289. doi: 10.1016/j.scib.2017.01.004

    [37]

    Sun P, Niu Y L, Guo P Y, et al. Multiple mantle metasomatism beneath the Leizhou Peninsula, South China: Evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late Cenozoic volcanic rocks[J]. International Geology Review, 2019, 61(14): 1768−1785. doi: 10.1080/00206814.2018.1548307

    [38]

    Lv Y W, Liu S A, Wu H C, et al. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: Diagenesis assessment and implications[J]. Geochimica et Cosmochimica Acta, 2018, 239: 330−345. doi: 10.1016/j.gca.2018.08.003

    [39]

    Frimmel H E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation[J]. Precambrian Research, 2010, 182(4): 239−253. doi: 10.1016/j.precamres.2010.01.003

    [40]

    赵彦彦, 郑永飞. 碳酸盐沉积物的成岩作用[J]. 岩石学报, 2011, 27(2): 501−519.

    Zhao Y Y, Zheng Y F. Diagenesis of carbonate sediments[J]. Acta Petrologica Sinica, 2011, 27(2): 501−519.

  • 加载中

(3)

(8)

计量
  • 文章访问数:  1028
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2023-02-20
修回日期:  2023-04-04
录用日期:  2023-06-16
刊出日期:  2023-08-31

目录