LA-ICP-MS Mapping and Element Distribution Characteristics of Garnet from the Altered Wall-rock of the Gongchangling Iron Deposit in Liaoning Province
-
摘要:
LA-ICP-MS面扫描分析能直观细致地展示元素在矿物中的分布特征及相互关系,在揭示矿床成因、精细刻画成矿流体演化过程等方面具有显著优势。辽宁弓长岭铁矿床二矿区以产出沉积变质型磁铁矿富矿石而闻名,且富铁矿石的蚀变围岩中大量产出石榴石,其与富矿体成因关系密切。本文以二矿区富铁矿蚀变围岩中的石榴石为研究对象,为明确元素扩散对石榴石元素分布特征的影响,选择两颗大小不同的石榴石(1.5cm×1.5cm和0.6cm×0.7cm),应用LA-ICP-MS在10~20Hz、20~150μm正方形激光束斑、20~150μm/s扫描速度的条件下,在4h内完成其面扫描分析,并利用无内标法对数据进行半定量校正,详细研究石榴石主量、微量和稀土元素组合及分布特征,进而有效地分析热液流体演化过程和磁铁矿富矿体的成因。LA-ICP-MS面扫描结果揭示了弓长岭厘米级石榴石连续型环带和次厘米级石榴石突变型环带的特征,准确区分了突变环带的位置和界线。分析结果表明,弓长岭二矿区厘米级石榴石中Si、Al、Fe等主量元素成分较为均一,未显示环带特征;而Mg、Mn、Ca、重稀土及Y元素均保留了原始的生长环带,具有重要的成因指示意义。该石榴石从核部到边部,其Mg含量逐渐升高,Mn含量逐渐降低,指示石榴石形成温度从核部到边部逐渐升高;而Ca含量从核部至边部先升高后降低,指示压力先升高再降低,显示进变质成因石榴石的特点。同时,该石榴石δEu值变化规律指示变质热液流体的氧逸度先减小再增大;重稀土和Y元素与Ca元素一致的变化特征表明其分布主要受压力控制。因此,结合前人研究成果综合推测,弓长岭富铁矿蚀变围岩中的石榴石形成于早元古代晚期胶—辽—吉带大陆碰撞造山过程中的进变质作用阶段,在该阶段形成的变质热液流体沿断层运移,对断层两侧的贫铁矿和围岩进行改造,从而形成富铁矿石及蚀变围岩。
Abstract:BACKGROUND With the advantage of high spatial resolution, low detection limit, and multi-element surface analysis, the mapping technique of laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) provides a new method for mineralogy research, which can display the element distribution characteristics in minerals, and constrain the evolution process of the ore-genesis fluid and ore genesis. The wall-rocks of magnetite-rich ore from the No.2 mining area of the Gongchangling iron deposit suffered obvious alteration, and the scale of magnetite-rich ore is roughly proportional to intensity of alteration. However, regarding the hydrothermal nature, it is argued for metamorphic or magmatic hydrothermal fluid. The garnet widely occurs in the altered wall-rock, which is closely related to the genesis of the magnetite-rich ore. Thus, by LA-ICP-MS mapping of garnet in the altered wall-rock of Gongchangling magnetite-rich ore, the element composition and distribution characteristics can be used to constrain the evolution process of hydrothermal fluid and the genesis of the magnetite-rich ore.
OBJECTIVES To study the composition and distribution characteristics of major and trace elements in garnet by LA-ICP-MS mapping, and to constrain the evolution process of the ore-forming fluid and the genesis of magnetite-rich ore.
METHODS The LA-ICP-MS mapping technique was applied to garnets from the Gongchangling No.2 mining area by simultaneously using Agilent 7700X inductively coupled plasma-mass spectrometry (ICP-MS) and Analyte Excite 193nm laser ablation system at the laboratory of mineralization and dynamics in Chang’an University, with laser frequencies of 10-20Hz, laser ablation spot sizes of 20-150μm square, laser ablation speeds of 20-150μm/s and laser ablation energy of 5.9J/cm2, within 4 hours. Fifty-one elements (from 7Li to 238U) were chosen for ICP-MS analysis and the dwell time of each element was 6ms. This method adopted an external standard (NIST610) as the calibration standard without an internal standard. The result was semi-quantitative and the color brightness was used to represent the elemental content. The Iolite software can be used to generate multi-elemental pictures and elemental ratio mappings, to facilitate data analysis and interpretation for geologists.
RESULTS (1) LA-ICP-MS mapping indicates that the Si, Al, Fe, La, Ce, Pr and Nd compositions of the centimeter-scale garnet (Grt-1, particle size of 1.5cm×1.5cm) from the altered wall-rock are homogeneous, while the Mg, Mn, Ca, Li, Sc, V, heavy rare earth elements (HREEs) and Y retain the original compositional zonation. Most elements in the smaller garnet (Grt-2, particle size of 0.6cm×0.7cm) are mainly homogenized without zonation. (2) The two garnets from the altered wall-rock of the Gongchangling iron deposit show different elemental distribution. The centimeter-scale garnets (Grt-1) are more likely to retain the original compositional zonation when the metamorphic temperature is below 600℃. The results of LA-ICP-MS mapping of the centimeter-scale garnet (Grt-1) reveal the element correlations, to better understand the geochemical process in minerals. (3) The Mg content gradually increases and Mn content gradually decreases from the core to the rim of the garnet, indicating that the formation of the Gongchangling garnet is controlled by equilibrium growth and the formation temperature of the garnet gradually increases from the core to the rim. The Ca content of the garnet increases firstly and then decreases from the core to the rim, indicating that the pressure increases firstly and then decreases, which is consistent with the garnet formed during prograde metamorphism. The δEu anomalies of the garnet decreases firstly and then increases from the core to the rim, indicating that the oxygen fugacity of the metamorphic hydrothermal fluid decreases firstly and then increases. Since the characteristics of HREEs and Y in garnet are consistent with the characteristics of Ca, it is inferred that the distribution of the HREEs and Y is also mainly controlled by pressure.
CONCLUSIONS The centimeter-scale garnet from the Gongchangling altered wall-rock retains the original compositional zonation, and the LA-ICP-MS elemental mapping of the centimeter-scale garnet can be completed within 4 hours. The element distribution in the garnet indicates that the temperature gradually increases, the pressure increases firstly and then decreases, and the oxygen fugacity decreases firstly and then increases in the evolution process of the metamorphic hydrothermal fluid. Thus, it is inferred that the garnet in the altered wall-rock of the Gongchangling magnetite-rich ore was formed in the stage of prograde metamorphism associated with the Jiao—Liao—Ji Belt, and the magnetite-rich ore was derived from the reformation of BIF (low-grade iron ore) by metamorphic hydrothermal fluid.
-
表 1 LA-ICP-MS工作参数
Table 1. LA-ICP-MS operation conditions.
ICP-MS工作参数 实验条件 激光剥蚀系统工作参数 实验条件 仪器型号 Agilent 7700X 仪器型号 Analyte Excite 193 射频功率 1450W 激光能量密度 5.9J/cm2 冷却气流速 15L/min 载气(He)流量 0.7~0.8L/min 载气(Ar)流速 0.7~0.8L/min 束斑 20~150μm 采样锥和截取锥 镍锥 扫描速度 20~150μm/s 灵敏度 238U信号:>7×108cps 频率 10~20Hz 矩管采样深度 4.5~5mm 单个元素积分时间 6ms 元素总积分时间 0.4022ms 背景信号采集时间 10s -
[1] Miguel G,Charles K,Lawrence D M,et al. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185−205. doi: 10.1016/j.gca.2007.09.033
[2] 栾燕,何克,谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7): 1206−1218. doi: 10.12097/j.issn.1671-2552.2019.07.013
Luan Y,He K,Tan X J. In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS[J]. Geological Bulletin of China, 2019, 38(7): 1206−1218. doi: 10.12097/j.issn.1671-2552.2019.07.013
[3] 栾燕,孙晓辉,刘民武,等. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167−175.
Luan Y,Sun X H,Liu M W,et al. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167−175.
[4] 涂家润,卢宜冠,孙凯,等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226−238. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202008
Tu J R,Lu Y G,Sun K,et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202008
[5] 胡靓,张德贤,娄威,等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574.
Hu L,Zhang D X,Lou W,et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsum-salt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.
[6] 汪方跃,葛粲,宁思远,等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422−3436.
Wang F Y,Ge C,Ning S Y,et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422−3436.
[7] Raimondo T,Payne J,Wade B,et al. Trace element mapping by LA-ICP-MS:Assessing geochemical mobility in garnet[J]. Contributions to Mineralogy and Petrology, 2017, 172: 17. doi: 10.1007/s00410-017-1339-z
[8] 员媛娇,范成龙,吕喜平,等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007
Yuan Y J,Fan C L,Lyu X P,et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit,Inner Mongolia,China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007
[9] Ubide T,Mckenna C A,Chew D M,et al. High-resolution LA-ICP-MS trace element mapping of igneous minerals:In search of magma histories[J]. Chemical Geology, 2015, 409: 157−168. doi: 10.1016/j.chemgeo.2015.05.020
[10] Godet A,Raimondo T,Guilmette C. Atoll garnet:Insights from LA-ICP-MS trace element mapping[J]. Contributions to Mineralogy and Petrology, 2022, 177: 57. doi: 10.1007/s00410-022-01924-7
[11] Li D F,Fu Y,Sun X M,et al. LA-ICP-MS trace element mapping:Element mobility of hydrothermal magnetite from the giant Beiya Fe-Au skarn deposit,SW China[J]. Ore Geology Reviews, 2018, 92: 463−474. doi: 10.1016/j.oregeorev.2017.11.027
[12] Warren T,Steffen H,Torsten V. Oxygen isotope compositions of iron oxides from high-grade BIF-hosted iron ore deposits of the central Hamersley Province,Western Australia:Constraints on the evolution of hydrothermal fluids[J]. Economic Geology, 2009, 104(7): 1019−1035. doi: 10.2113/econgeo.104.7.1019
[13] Lascelles D F. Banded iron formation to high-grade iron ore:A critical review of supergene enrichment models[J]. Australian Journal of Earth Sciences, 2012, 59(8): 1105−1125. doi: 10.1080/08120099.2012.739575
[14] 刘军,靳淑韵. 辽宁弓长岭铁矿磁铁富矿的成因研究[J]. 现代地质, 2010, 24(1): 80−88.
Liu J,Jin S Y. Genesis study of magnetite-rich ore in Gongchangling iron deposit,Liaoning[J]. Geoscience, 2010, 24(1): 80−88.
[15] 王恩德,夏建明,赵纯福,等. 弓长岭铁矿床磁铁富矿形成机制探讨[J]. 地质学报, 2012, 86(11): 1761−1772. doi: 10.3969/j.issn.0001-5717.2012.11.005
Wang E D,Xia J M,Zhao C F,et al. Forming mechanism of high-grade magnetite bodies in Gongchangling,Liaoning Province[J]. Acta Geologica Sinica, 2012, 86(11): 1761−1772. doi: 10.3969/j.issn.0001-5717.2012.11.005
[16] 李厚民,刘明军,李立兴,等. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 岩石学报, 2014, 30(5): 1205−1217.
Li H M,Liu M J,Li L X,et al. SHRIMP U-Pb geochronology of zircons from the garnet-rich altered rocks in the mining area Ⅱ of the Gongchangling iron deposit:Constraints on the ages of the high-grade iron deposit[J]. Acta Petrologica Sinica, 2014, 30(5): 1205−1217.
[17] Li H M,Yang X Q,Li L X,et al. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan—Benxi area,China:Evidence from geology,geochemistry and stable isotopic characteristics[J]. Journal of Asian Earth Sciences, 2015, 113: 998−1016. doi: 10.1016/j.jseaes.2015.02.011
[18] Sun X H,Tang H S,Luan Y,et al. Geochronological constraints on the genesis of high-grade iron ore in the Gongchangling BIFs from the Anshan—Benxi area,North China Craton[J]. Ore Geology Reviews, 2020, 122: 103504. doi: 10.1016/j.oregeorev.2020.103504
[19] 翟明国,Sills J D,Windley B F. 鞍本地区鞍山群变质矿物及变质作用[J]. 岩石矿物学杂志, 1990, 9(2): 148−158.
Zhai M G,Sills J D,Windley B F. Metamorphic minerals and metamorphism of Anshan Group in Anshan—Benxi area,Liaoning[J]. Acta Petrologica et Mineralogica, 1990, 9(2): 148−158.
[20] 刘明军,李厚民,李立兴,等. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征[J]. 岩矿测试, 2012, 31(6): 1067−1076. doi: 10.15898/j.cnki.11-2131/td.2012.06.006
Liu M J,Li H M,Li L X,et al. Petrological and mineralogical characteristics of the skarnoid in No. 2 mining area of the Gongchangling iron deposit,Liaoning,China[J]. Rock and Mineral Analysis, 2012, 31(6): 1067−1076. doi: 10.15898/j.cnki.11-2131/td.2012.06.006
[21] Sun X H,Zhu X Q,Tang H S,et al. The Gongchangling BIFs from the Anshan—Benxi area,NE China:Petrological-geochemical characteristics and genesis of high-grade iron ores[J]. Ore Geology Reviews, 2014, 60: 112−125. doi: 10.1016/j.oregeorev.2013.12.017
[22] 万渝生,董春艳,颉颃强,等. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1447−1478.
Wan Y S,Dong C Y,Xie H Q,et al. Formation ages of early Precambrian BIFs in the North China Carton:SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica, 2012, 86(9): 1447−1478.
[23] 张连昌,翟明国,万渝生,等. 华北克拉通前寒武纪BIF铁矿研究:进展与问题[J]. 岩石学报, 2012, 28(11): 3431−3445.
Zhang L C,Zhai M G,Wan Y S,et al. Study of the Precambrian BIF-iron deposits in the North China Craton:Progresses and questions[J]. Acta Petrologica Sinica, 2012, 28(11): 3431−3445.
[24] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 2009, 25(8): 1772−1792.
Zhao G C. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and dicussion[J]. Acta Petrologica Sinica, 2009, 25(8): 1772−1792.
[25] 杨崇辉,杜利林,宋会侠,等. 华北克拉通古元古代地层划分与对比[J]. 岩石学报, 2018, 34(4): 1019−1057.
Yang C H,Du L L,Song H X,et al. Stratigraphic division and correlation of the Pleoproterozoic strata in the North China Craton:A review[J]. Acta Petrologica Sinica, 2018, 34(4): 1019−1057.
[26] 侯可军. 辽宁鞍山—本溪地区条带状硅铁建造的形成与地球早期大气和硫循环[D]. 北京: 中国地质科学院, 2007: 15−20.
Hou K J. The genesis of the BIFs in Anshan—Benxi area, the Archean atmosphere and sulfur cycle[D]. Beijing: Chinese Academy of Geological Sciences, 2007: 15−20.
[27] 周世泰. 鞍山—本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994: 220-226.
Zhou S T. Geology of banded iron ore in Anshan—Benxi area[M]. Beijing: Geological Publishing House, 1994: 220-226.
[28] 万渝生. 辽宁弓长岭含铁岩系的形成与演化[D]. 北京: 中国地质科学院, 1992: 61-62.
Wan Y S. Formation and evolution of the iron-bearing rock series of Gongchangling area, Liaoning Province[D]. Beijing: Chinese Academy of Geological Sciences, 1992: 61-62.
[29] Dong C Y,Wan Y S,Xie H Q,et al. The Mesoarchean Tiejiashan—Gongchangling potassic granite in the Anshan—Benxi area,North China Craton:Origin by recycling of Paleo- to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies[J]. Lithos, 2017, 290-291: 116−135. doi: 10.1016/j.lithos.2017.08.009
[30] 朱凯,刘正宏,徐仲元,等. 弓长岭铁矿蚀变岩及富矿成因[J]. 地学前缘, 2016, 23(5): 235−251. doi: 10.13745/j.esf.2016.05.024
Zhu K,Liu Z H,Xu Z Y,et al. Genesis of altered rocks and high-grade iron ore in Gongchangling iron deposit[J]. Earth Science Frontiers, 2016, 23(5): 235−251. doi: 10.13745/j.esf.2016.05.024
[31] 沈其韩,宋会侠. 华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题[J]. 岩石学报, 2015, 31(10): 2795−2815.
Shen Q H,Song H X. Progress,prospecting and key scientific problems in origin researches of high-grade iron ore of the banded iron formation (BIF) in the North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2795−2815.
[32] 刘大为,王铭晗,刘素巧,等. 辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(3): 694−705.
Liu D W,Wang M H,Liu S Q,et al. Geochemical characteristics and genesis of band iron formation in No. 2 mining area of Gongchangling iron deposit,Liaoning Province[J]. Journal of Jinlin University (Earth Science Edtion), 2017, 47(3): 694−705.
[33] Sassi R,Harte B,Carswell D A,et al. Trace element distribution in Central Dabie eclogites[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 298−315. doi: 10.1007/s004100000133
[34] Caddick M J,Kohn M J. Garnet:Witness to the evolution of destructive plate boundaries[J]. Elements, 2013, 9(6): 427−432. doi: 10.2113/gselements.9.6.427
[35] Ague J J,Carlson W D. Metamorphism as garnet sees it:The kinetics of nucleation and growth, equilibration,and diffusional relaxation[J]. Elements, 2013, 9(6): 439−445. doi: 10.2113/gselements.9.6.439
[36] 邹屹,陈俊行,吴佳林,等. 变质地质学中的扩散:原理、前沿应用和问题[J]. 岩石学报, 2022, 38(10): 2949−2970. doi: 10.18654/1000-0569/2022.10.04
Zou Y,Chen J X,Wu J L,et al. Diffusion in metamorphic geology:Principles,applications,and problems[J]. Acta Petrologica Sinica, 2022, 38(10): 2949−2970. doi: 10.18654/1000-0569/2022.10.04
[37] Ganguly J. Cation diffusion kinetics in aluminosilicate garnets and geological applications[J]. Reviews in Mineralogy and Geochemistry, 2010, 72(1): 559−601. doi: 10.2138/rmg.2010.72.12
[38] Caddick M J,Konopásek J,Thompson A B. Preservation of garnet growth zoning and the duration of prograde metamorphism[J]. Journal of Petrology, 2010, 51(11): 2327−2347. doi: 10.1093/petrology/egq059
[39] Chernoff C B,Carlson W D. Trace element zoning as a record of chemical disequilibrium during garnet growth[J]. Geology (Boulder), 1999, 27(6): 555−558.
[40] Frank S S,Matthew J K. Trace element zoning in garnet as a monitor of crustal melting[J]. Geology, 1996, 24(12): 1099−1102. doi: 10.1130/0091-7613(1996)024<1099:TEZIGA>2.3.CO;2
[41] 陈能松,孙敏,杨勇,等. 变质石榴石的成分环带与变质过程[J]. 地学前缘, 2003, 10(3): 315−320.
Chen N S,Sun M,Yang Y,et al. Major- and trace-element zoning in metamorphic garnets and their metamorphic process implications[J]. Earth Science Frontiers, 2003, 10(3): 315−320.
[42] 王娟,张妍,宋传中,等. 石榴石钇(Y)元素电子探针分析及应用——以佛子岭石榴云母片岩为例[J]. 岩石学报, 2022, 38(3): 619−638. doi: 10.18654/1000-0569/2022.03.03
Wang J,Zhang Y,Song C Z,et al. Analysis and application of yttrium element in garnet by electron micro-probe analyzer:A case study of garnet-mica schist from Foziling Group[J]. Acta Petrologica Sinica, 2022, 38(3): 619−638. doi: 10.18654/1000-0569/2022.03.03
[43] Lanzirotti A. Yttrium zoning in metamorphic garnets[J]. Geochimica et Cosmochimica Acta, 1995, 59(19): 4105−4110. doi: 10.1016/0016-7037(95)00320-Y
[44] Frost B R,Tracy R J. P-T paths from zoned garnets; some minimum criteria[J]. American Journal of Science, 1991, 291(10): 917−939. doi: 10.2475/ajs.291.10.917
[45] 陈丹玲,孙勇,刘良,等. 柴北缘鱼卡河榴辉岩的变质演化——石榴石成分环带及矿物反应结构的证据[J]. 岩石学报, 2005, 21(4): 1039−1048. doi: 10.3321/j.issn:1000-0569.2005.04.002
Chen D L,Sun Y,Liu L,et al. Metamorphic evolution of the Yuka eclogite in the North Qaidam,NW China:Evidences from the compositional zonation of garnet and reaction texture in the rock[J]. Acta Petrologica Sinica, 2005, 21(4): 1039−1048. doi: 10.3321/j.issn:1000-0569.2005.04.002
[46] 陈鑫,郑有业,许荣科,等. 柴北缘超高压变质带折返过程对金红石成矿的制约:来自鱼卡和铁石观西地区石榴石成分环带的证据[J]. 地球科学与环境学报, 2016, 38(2): 143−159.
Chen X,Zheng Y Y,Xu R K,et al. Exhumation processes of UHP matamorphic belt in the Northern Qaidam and their constrains to rutile mineralization:Evidences from compositional zoning of garnets in Yuqia and West Tieshiguan area[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 143−159.
[47] 陈意,苏斌,郭顺. 大别—苏鲁造山带橄榄岩:进展和问题[J]. 中国科学:地球科学, 2015, 58(9): 1679−1699.
Chen Y,Su B,Guo S. The Dabie—Sulu orogenic peridotites:Progress and key issues[J]. Science China:Earth Sciences, 2015, 58(9): 1679−1699.
[48] 刘丛强,解广轰,增田彰正,等. 压力对稀土元素分配系数相对变化的影响——以宽甸、汉诺坝玄武岩中巨晶矿物为例[J]. 地球化学, 1992(1): 19−33. doi: 10.19700/j.0379-1726.1992.01.003
Liu C Q,Xie G H,Masuda A,et al. Effect of pressure on the peak position in the REE partition pattern:Evidence from megacryst minerals in Kuandian and Hannuoba basalts[J]. Geochimica, 1992(1): 19−33. doi: 10.19700/j.0379-1726.1992.01.003
[49] Han C M,Xiao W J,Su B X,et al. Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in Eastern Liaoning Province:Constraints from geochemistry and SHRIMP zircon U-Pb dating[J]. Precambrian Research, 2014, 254: 306−322. doi: 10.1016/j.precamres.2014.09.007
[50] Li L X,Li H M,Liu M J,et al. Timing of deposition and tectonothermal events of banded iron formations in the Anshan—Benxi area, Liaoning Province, China:Evidence from SHRIMP U-Pb zircon geochronology of the wall rocks[J]. Journal of Asian Earth Sciences, 2016, 129: 276−293. doi: 10.1016/j.jseaes.2016.08.022
[51] Li L X,Zi J W,Li H M,et al. High–grade magnetite mineralization at 1.86Ga in Neoarchean banded iron formations,Gongchangling,China:In situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite[J]. Economic Geology, 2019, 114(6): 1159−1175. doi: 10.5382/econgeo.4678
[52] Wan Y S,Dong C Y,Liu D Y,et al. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton:A review[J]. Precambrian Research, 2012, 222-223: 265−289. doi: 10.1016/j.precamres.2011.05.001
[53] Hu G Y,Li Y H,Fan C F,et al. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province,Northeastern China[J]. Ore Geology Reviews, 2015, 65(4): 1127−1141.
[54] Liu J,Zhang J,Liu Z H,et al. Late Paleoproterozoic crustal thickening of the Jiao—Liao—Ji belt,North China Craton:Insights from ca.1.95-1.88Ga syn-collisional adakitic granites[J]. Precambrian Research, 2021, 355: 106120. doi: 10.1016/j.precamres.2021.106120