中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

无氧铜样品盘异常热本底对激光40Ar/39Ar定年的影响

师文贝, 韩志宇, 杨列坤, 王非. 无氧铜样品盘异常热本底对激光40Ar/39Ar定年的影响[J]. 岩矿测试, 2023, 42(4): 737-747. doi: 10.15898/j.ykcs.202212060229
引用本文: 师文贝, 韩志宇, 杨列坤, 王非. 无氧铜样品盘异常热本底对激光40Ar/39Ar定年的影响[J]. 岩矿测试, 2023, 42(4): 737-747. doi: 10.15898/j.ykcs.202212060229
SHI Wenbei, HAN Zhiyu, YANG Liekun, WANG Fei. Abnormal Hot Blank of Oxygen-free Copper Sample Holder and Implications for Laser 40Ar/39 Ar Dating[J]. Rock and Mineral Analysis, 2023, 42(4): 737-747. doi: 10.15898/j.ykcs.202212060229
Citation: SHI Wenbei, HAN Zhiyu, YANG Liekun, WANG Fei. Abnormal Hot Blank of Oxygen-free Copper Sample Holder and Implications for Laser 40Ar/39 Ar Dating[J]. Rock and Mineral Analysis, 2023, 42(4): 737-747. doi: 10.15898/j.ykcs.202212060229

无氧铜样品盘异常热本底对激光40Ar/39Ar定年的影响

  • 基金项目: 国家自然科学基金青年基金项目(41903050);中国科学院地质与地球物理研究所实验技术创新基金项目(T201904)
详细信息
    作者简介: 师文贝,博士,高级工程师,主要从事Ar/Ar定年技术及应用研究。E-mail:shiwenbei@mail.iggcas.ac.cn
  • 中图分类号: P597

Abnormal Hot Blank of Oxygen-free Copper Sample Holder and Implications for Laser 40Ar/39 Ar Dating

  • 激光40Ar/39Ar定年方法中扣除的本底是样品测试过程中的系统冷本底。在满足激光加热样品时样品盘升温幅度有限和样品盘已完全脱气两个条件的情况下,这一处理方式的有效性才能得到保证。本文利用具有不同大气暴露史的无氧铜样品盘结合透长石标准样品YBCs,使用相同的脱气及测试流程,对比分析了不同样品盘的冷、热本底以及放置于不同样品盘时YBCs的大气氩含量。分析结果表明,放置于暴露大气14个月的样品盘内时,YBCs透长石大气氩含量高达约34.4%,使用预先激光去气的样品盘此值可降低至约2%;暴露大气约10个月的样品盘,激光加热其两个样品孔时,40Ar脱气量可达约1.6×10−14~3.1×10−14mol;暴露时长约为26个月的样品盘,40Ar含量升高至约0.8×10−13~2.0×10−13mol;它们均远高于系统冷本底3.8×10−16~6.2×10−16mol。两个样品盘热本底40Ar/36Ar值约为310,高于大气氩比值。因此,对于暴露大气时间较长的样品盘,约150℃去气四天的流程不足以使其完全脱气。激光加热样品时会导致样品盘局部升温,脱气不完全的样品盘会释放出大量热本底。模拟以及标准样品测试均显示了这种情况会影响辐照参数J值以及年龄的计算。激光微量年轻样品40Ar/39Ar定年过程中,建议装样后对无氧铜样品盘进行300~400℃至少5h的预脱气,以保证测试数据质量。实验室不具备预脱气条件时,持续使用同一样品盘也可以有效地降低异常热本底对测试结果的影响。

  • 加载中
  • 图 1  YBCs透长石A5和A5-1使用大气值(40Ar/36Ar=295.5)和热本底比值(40Ar/36Ar=310)校正大气氩时,对J值计算的影响程度对比。a为在放置14个月的样品盘C内的测试结果,变化幅度约为2.5%; b为置入激光去气后的盘D的测试结果,变化幅度约为0.9‰

    Figure 1. 

    图 2  系统冷本底、无氧铜盘实际热本底及其同位素比值随激光能量变化的情况。其中,a、b为A盘的结果;c、d为B盘的结果;e、f为D盘的结果。预先经过激光加热的D盘获得了与冷本底一致的40Ar信号量以及40Ar/36Ar比值

    Figure 2. 

    图 3  样品大气氩来源于异常热本底时,使用大气氩初始值(40Ar/36Ar=295.5)扣除样品大气氩,样品年龄偏离真实值的百分比(t/(%))。假定热本底40Ar/36Ar=310;x、y、z轴分别指示模拟计算中样品大气氩含量、40Ar*/39ArK以及 J 值的变化范围

    Figure 3. 

    图 4  标准样品大气氩来源于异常热本底时,使用大气氩初始值(40Ar/36Ar=295.5)扣除样品大气氩, J 值偏离真实值的百分比(t/(%))。假定热本底40Ar/36Ar=310, x轴为计算中标准样品大气氩含量的变化范围

    Figure 4. 

    表 1  透长石YBCs样品A5及A5-1测试结果对比:A5显示样品各阶步均含有大量大气氩,A5-1大气氩含量正常(初始氩校正采用40Ar/36Ar=295.5)

    Table 1.  Result comparison of sanidine YBCs. A5 placed on an OFC tray exposures to air for fourteen months; A5-1 on a reusing tray; data calculation under 40Ar/36Ar=295.5. The proportion of atmospheric argon of steps of A5 is high, and return to normal of A5-1.

    透长石YBCs样品A5
    激光能量
    (W)
    是否可以形成
    坪的阶步
    40Ar/39Ar36Ar/39Ar40Ar*/39Ark40Ar*(%)辐照剂量监测
    J±2σ
    0.24-10.319367 0.0168385.3434651.780.0030628±0.0000796
    0.39-7.0880520.0066385.1261972.320.0031926±0.0000388
    0.54-8.3066390.0102215.2858963.630.0030961±0.0000489
    0.70-7.1925480.0071385.0830770.670.0032197±0.0000417
    1.32-7.2059400.0073935.0209169.680.0032595±0.0000454
    全熔----65.590.0031648±0.0000226
    透长石YBCs样品A5-1
    激光能量
    (W)
    是否可以形成
    坪的阶步
    40Ar/39Ar36Ar/39Ar40Ar*/39Ark40Ar*(%)辐照剂量监测
    J±2σ
    0.16-5.3635790.0000235.3565799.870.0030553±0.0000345
    0.395.1278970.0000605.1098699.650.0032028±0.0000205
    0.545.1941420.0004065.0737297.680.0032256±0.0000205
    0.705.3128080.0007525.0901295.810.0032152±0.0000204
    1.325.1861700.0002425.1142598.610.0032000±0.0000194
    全熔----97.950.0032045±0.0000106
    注:“”表示可以形成坪的阶步;“-”表示不可以形成坪的阶步。
    下载: 导出CSV
  • [1]

    McDougall I, Harrison T M. Geochronology and thermochronology by the 40Ar/39Ar method (The second edition)[M]. New York: Oxford Uninversity Press, 1999: 81-82.

    [2]

    张佳, 刘汉彬, 李军杰, 等. K-Ar稀释法中40Ar含量测量过程中实验参数的确定[J]. 岩矿测试, 2021, 40(3): 451−459.

    Zhang J, Liu H B, Li J J, et al. Determination of experimental parameters during measurement of 40Ar content in K-Ar dilution method[J]. Rock and Mineral Analysis, 2021, 40(3): 451−459.

    [3]

    Shi W B, Wang F, Wu L, et al. Geologically meaningful 40Ar/39Ar ages of altered biotite from a polyphase deformed shear zone obtained by in vacuo step-heating method: A case study of the Waziyü detachment fault, Northeast China[J]. Minerals, 2020, 10: 648.

    [4]

    Wang F, He H Y, Zhu R X, et al. Laser step-heating 40Ar/39Ar dating on young volcanic rocks[J]. Chinese Science Bulletin, 2006, 51(23): 2892−2896. doi: 10.1007/s11434-006-2195-9

    [5]

    Barfod D N, Mark D F, Tait A, et al. Argon extraction from geological samples by CO2 scanning laser step-heating[J]. London Geological Society (Special Publications), 2014, 378: 79−90. doi: 10.1144/SP378.23

    [6]

    高梓涵, 李立武, 王玉慧, 等. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用[J]. 岩矿测试, 2019, 38(5): 469−478.

    Gao Z H, Li L W, Wang Y H, et al. Development of a double vacuum furnace tube and its application in gas composition determination during rock heating degassing[J]. Rock and Mineral Analysis, 2019, 38(5): 469−478.

    [7]

    张万峰, 邱华宁, 郑德文, 等. 40Ar/39Ar定年自动去气系统的研制及其性能[J]. 地球化学, 2020, 49(5): 509−515.

    Zhang W F, Qiu H N, Zheng D W, et al. An automatic degassing system for 40Ar/39Ar dating[J]. Geochimica, 2020, 49(5): 509−515.

    [8]

    Wang F, Shi W B, Zhang W B, et al. Multiple phases of mountain building on the Northern Tibetan margin[J]. Lithosphere, 2020: 8829964.

    [9]

    邱华宁. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例[J]. 地球化学, 2006, 35(2): 133−140. doi: 10.3321/j.issn:0379-1726.2006.02.003

    Qiu H N. Construction and development of new Ar-Ar laboratories in China: Insight from GV-5400 Ar-Ar laboratory in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences[J]. Geochimica, 2006, 35(2): 133−140. doi: 10.3321/j.issn:0379-1726.2006.02.003

    [10]

    McIntosh W C, Heizler M T. Applications of CO2 laser heating in 40Ar/39Ar geochronology[C]//Lanphere M A, Dalrymple G B, Turrin B D. Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. USA: US Geological Survey Circular 1107, 1994: 212.

    [11]

    Wang F, Jourdan F, Lo C H, et al. YBCs sanidine: A new standard for 40Ar/39Ar dating[J]. Chemical Geology, 2014, 388: 87−97. doi: 10.1016/j.chemgeo.2014.09.003

    [12]

    Koppers A A P. ArArCALC-software for 40Ar/39Ar age calculations[J]. Computers & Geosciences, 2002, 28: 605−619.

    [13]

    Steiger R H, Jäger E. Subcommision on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36: 359−362. doi: 10.1016/0012-821X(77)90060-7

    [14]

    杨列坤, 王非, 贺怀宇, 等. 年轻火山岩氩同位素体系定年技术最新进展及问题[J]. 地震地质, 2009, 31(1): 174−185. doi: 10.3969/j.issn.0253-4967.2009.01.016

    Yang L K, Wang F, He H Y, et al. Achievements and limitations of 40Ar/39Ar dating on young volcanic rocks[J]. Seismology and Geology, 2009, 31(1): 174−185. doi: 10.3969/j.issn.0253-4967.2009.01.016

    [15]

    高本辉, 李林. 金属片高温出气[J]. 电子管技术, 1978(2): 136−143.

    Gao B H, Li L. The sheet metal outgassing characteristics at high temperature[J]. Evacuated Tube Technology, 1978(2): 136−143.

    [16]

    Renne P R, Cassata W S, Morgan L E. The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: Time for a change?[J]. Quaternary Geochronology, 2009, 4: 288−298. doi: 10.1016/j.quageo.2009.02.015

    [17]

    Nier A O. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium[J]. Physical Review, 1950, 77: 789−793. doi: 10.1103/PhysRev.77.789

    [18]

    Lee J Y, Marti K, Severinghas J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4507−4512. doi: 10.1016/j.gca.2006.06.1563

    [19]

    Wang F, Shi W, Guillou H, et al. A new unspiked K−Ar dating approach using laser fusion on microsamples[J]. Rapid Communications in Mass Spectrometry, 2019, 33: 587−599. doi: 10.1002/rcm.8385

    [20]

    Phillips D, Matchan E L, Honda M, et al. Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2017, 196: 351−369. doi: 10.1016/j.gca.2016.09.027

    [21]

    Velthaus V, Tietz B, Trautmann C, et al. Desorption measurements of accelerator-related materials exposed to different stimuli[J]. Vacuum, 2021, 194: 110608. doi: 10.1016/j.vacuum.2021.110608

  • 加载中

(4)

(1)

计量
  • 文章访问数:  744
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2022-12-06
修回日期:  2023-03-07
录用日期:  2023-06-16
刊出日期:  2023-08-31

目录