中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

滇中富碱斑岩风化剖面中重金属元素地球化学特征和环境风险评价

徐磊, 赵萌生, 徐杰, 程琰勋, 瞿镪, 陈伟志, 张亚, 王浩宇, 巴永, 文方平, 钱坤. 滇中富碱斑岩风化剖面中重金属元素地球化学特征和环境风险评价[J]. 岩矿测试, 2023, 42(3): 616-631. doi: 10.15898/j.ykcs.202210090187
引用本文: 徐磊, 赵萌生, 徐杰, 程琰勋, 瞿镪, 陈伟志, 张亚, 王浩宇, 巴永, 文方平, 钱坤. 滇中富碱斑岩风化剖面中重金属元素地球化学特征和环境风险评价[J]. 岩矿测试, 2023, 42(3): 616-631. doi: 10.15898/j.ykcs.202210090187
XU Lei, ZHAO Mengsheng, XU Jie, CHENG Yanxun, QU Qiang, CHEN Weizhi, ZHANG Ya, WANG Haoyu, BA Yong, WEN Fangping, QIAN Kun. Geochemical Characteristics and Environmental Risk Assessment of Heavy Metals in Weathering Profiles of Alkali-enriched Porphyry in Central Yunnan[J]. Rock and Mineral Analysis, 2023, 42(3): 616-631. doi: 10.15898/j.ykcs.202210090187
Citation: XU Lei, ZHAO Mengsheng, XU Jie, CHENG Yanxun, QU Qiang, CHEN Weizhi, ZHANG Ya, WANG Haoyu, BA Yong, WEN Fangping, QIAN Kun. Geochemical Characteristics and Environmental Risk Assessment of Heavy Metals in Weathering Profiles of Alkali-enriched Porphyry in Central Yunnan[J]. Rock and Mineral Analysis, 2023, 42(3): 616-631. doi: 10.15898/j.ykcs.202210090187

滇中富碱斑岩风化剖面中重金属元素地球化学特征和环境风险评价

  • 基金项目: 中国地质调查局地质调查项目“滇中大姚、姚安、南华、双柏四县土地质量地球化学调查”和“滇中楚雄地区土地质量地球化学调查”(ZD20220211,ZD20220210)
详细信息
    作者简介: 徐磊,硕士,工程师,主要从事矿床地球化学及土地质量地球化学调查与研究。E-mail:1790968844@qq.com
    通讯作者: 赵萌生,硕士,工程师,主要从事地质矿产及土地质量地球化学调查与研究。E-mail:724374968@qq.com
  • 中图分类号: O657.63

Geochemical Characteristics and Environmental Risk Assessment of Heavy Metals in Weathering Profiles of Alkali-enriched Porphyry in Central Yunnan

More Information
  • 中国西南地区发育大规模富碱斑岩带,通常具有重金属高背景值的特征,岩石风化是重金属的重要来源,土壤重金属污染是全球性关注的热点问题。在云南水热条件充足、成土作用强烈的条件下,为了查清富碱斑岩成土过程中重金属元素地球化学行为特征以及可能带来的一系列生态环境问题。本文选择滇中姚安富碱斑岩岩石风化剖面为研究对象,采用电感耦合等离子体质谱/发射光谱法(ICP-MS/OES)、原子荧光光谱法(AFS)、X射线荧光光谱法(XRF)、容量法等方法测定岩石和土壤样品中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn、Al2O3、TFe2O3、CaO、Na2O、K2O、MgO、SiO2、有机碳等主微量元素含量和pH值,利用多元统计学方法和质量迁移系数研究风化剖面中重金属元素分布特征、迁移富集规律及影响因素,探讨富碱斑岩风化成土过程中重金属地球化学特征,揭示重金属元素迁移富集机制及可能带来的生态环境问题。结果表明:①富碱斑岩各风化层元素分布特征继承了基岩的特征,在风化成土过程中,As、Cr、Cu、Hg和Cd、Pb、Zn具有相似的地球化学行为,相对于Ti,重金属迁移能力强弱顺序为:Cd>Zn>Pb>Hg>Cu>As>Ni>Cr;②Cu、Cr、Ni、Hg受其自身化学性质和脱硅富铝铁作用的影响,随风化最终富集于黏土矿物与Al、Fe氧化物/氢氧化物中,As与Fe、Al结合成难溶性的化合物而显著富集,土壤层迁移系数均值为7.64,Cd、Pb、Zn在酸性和强淋溶条件下显著地淋失迁移,土壤层迁移系数均值分别为−0.67、−0.45、−0.59。与大部分铅锌矿区相似,As受富铝铁作用影响原地次生富集,Cd、Pb、Zn受自身活泼的化学性质和pH影响大量淋失;③研究区土壤生态环境可能存在As、Pb污染的风险,Pb的大量淋失可能随地表径流迁入蜻岭河,应加强对富碱斑岩上覆土壤中As、Pb和流经富碱斑岩区河流中Pb、Zn的监测。

  • 加载中
  • 图 1  研究区地质背景及采样点位图

    Figure 1. 

    图 2  风化剖面Ti-Al2O3与Yb-Y关系图

    Figure 2. 

    图 3  风化剖面中风化强度演化特征

    Figure 3. 

    图 4  重金属上陆壳(UCC)标准值化垂向分布特征

    Figure 4. 

    图 5  基岩与全风化层重金属元素标准化图解

    Figure 5. 

    图 6  风化剖面重金属元素迁移系数垂向分布特征

    Figure 6. 

    图 7  全风化层重金属风险筛选值和管制值标准化图解

    Figure 7. 

    表 1  富碱斑岩风化剖面中微量元素组成与理化指标

    Table 1.  Composition and physical and chemical indexes of trace elements in weathering profile of alkali-rich porphyry.

    风化层
    划分
    样品编号深度
    (cm)
    As
    (mg/kg)
    Cd
    (mg/kg)
    Cr
    (mg/kg)
    Cu
    (mg/kg)
    Hg
    (mg/kg)
    Ni
    (mg/kg)
    Pb
    (mg/kg)
    Zn
    (mg/kg)
    Zr
    (mg/kg)
    Ti
    (mg/kg)
    SOM
    (%)
    CIA
    (%)
    全风化层YPM01-013071.700.16142.0052.400.0560.40241.00147.00756.0060760.4093.04
    YPM01-029070.100.16128.0041.000.0550.60201.00119.00754.0058960.5390.50
    半风化层YPM01-0320074.100.16134.0039.500.0451.10204.00141.00735.0056810.3491.69
    YPM01-0427063.900.10105.0018.300.0348.40168.00152.00957.0063980.2881.18
    YPM01-053206.810.0958.4012.500.0260.00108.00192.00827.0042520.1772.82
    YPM01-063707.450.0853.7011.900.0146.20123.00145.00899.0043160.1464.20
    过渡层YPM01-074405.120.2052.3017.300.0151.40117.00171.00894.0038130.1662.55
    YPM01-085302.250.2161.2021.7049.40108.00183.00891.0034710.1459.96
    YPM01-097003.190.1257.8015.9052.1084.00196.00833.0038170.1058.65
    YPM01-108203.340.1859.9017.600.00550.6088.80182.00854.0039600.0758.88
    YPM01-119001.400.0979.7013.700.0159.8093.40142.00864.0036390.2455.56
    基岩YPM01-1210002.410.1410.208.360.0110.40118.0094.40584.0017570.1246.08
    UCC1.500.09835.8525.000.012320.4420.1771.00190.003000
    碱性侵入岩区表层土壤5.100.1132.0013.000.0613.0036.0065.00311.0035712.14
    云南省表层土壤10.600.2791.0040.000.0738.0039.0096.00336.0061932.48
    注:“△”表示低于检测限,“☆”表示无此数据,UCC数据来源于文献[26],碱性侵入岩区表层、深层土壤数据来源于文献[27]。
    下载: 导出CSV

    表 2  风化剖面重金属元素迁移系数皮尔逊相关性特征

    Table 2.  Pearson correlation characteristics of heavy metal migration coefficient in weathering profile.

    元素AsCdCrCuHgNiPbZn
    As1
    Cd0.4221
    Cr0.634**0.5381
    Cu0.603*0.1750.594*1
    Hg0.818**−0.2200.3640.5291
    Ni−0.610*−0.1190.174−0.246−0.652*1
    Pb0.1370.639*−0.3650.3410.477−0.663*1
    Zn−0.889**0.680*−0.661*−0.349−0.722**0.4440.1011
    注:“**”表示在p=0.01水平上显著;“*”表示在p=0.05水平上显著;n=12。
    下载: 导出CSV

    表 3  风化剖面重金属元素与其他指标的皮尔逊相关性特征

    Table 3.  Pearson correlation characteristics of heavy metal elements and other indicators in weathering profile.

    指标AsCdCrCuHgNiPbZn
    SiO2−0.895**−0.211−0.973**−0.942**−0.874**−0.542−0.872**0.094
    Al2O30.938**0.0550.925**0.851**0.929**0.4470.907**−0.145
    TFe2O30.888**0.1550.907**0.922**0.929**0.3940.912**−0.260
    MgO−0.684*−0.240−0.439−0.615*−0.675*0.432−0.782**0.758**
    CaO−0.3380.021−0.588*−0.376−0.281−0.899**−0.236−0.581*
    Na2O−0.879**−0.033−0.899**−0.805**−0.871**−0.546−0.832**−0.001
    K2O−0.975**−0.086−0.884**−0.871**−0.975**−0.213−0.967**0.375
    SOM0.871**0.0430.864**0.816**0.929**0.2830.860**−0.468
    CIA0.931**0.0540.926**0.850**0.921**0.4690.895**−0.117
    Si/(Al+Fe)−0.876**−0.071−0.939**−0.835**−0.866**−0.606*−0.833**0.004
    注:“**”表示在p=0.01水平上显著; “*”表示在p=0.05水平上显著; n=12。
    下载: 导出CSV
  • [1]

    Castilho P D,Rix I. Ammonium acetate extraction for soil heavy metal speciation;model aided soil test interpretation[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1-4):59−64. doi: 10.1080/03067319308027611

    [2]

    Sun Y,Zhou Q,Xie X,et al. Spatial,sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang,China[J]. Journal of Hazardous Materials, 2010, 174(1-3):455−462. doi: 10.1016/j.jhazmat.2009.09.074

    [3]

    顾涛,赵信文,胡雪原,等. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价[J]. 岩矿测试,2018,37(4):419−430.

    Gu T,Zhao X W,Hu X Y,et al. Distribution characteristics and risk assessment of heavy metals in soil from an agricultural park of Xinmadun Village,Zhuhai City[J]. Rock and Mineral Analysis, 2018, 37(4):419−430.

    [4]

    何腾兵,董玲玲,刘元生,等. 贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J]. 水土保持学报,2006,20(6):157−162.

    He T B,Dong L L,Liu Y S,et al. Change of physical-chemical properties and heavy mental element in soil from different parent material/rock[J]. Journal of Soil and Water Conservation, 2006, 20(6):157−162.

    [5]

    Wu W H,Qu S Y,Nel W,et al. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds:A comparative study from different regions in China[J]. Chemosphere, 2021, 262:127897. doi: 10.1016/j.chemosphere.2020.127897

    [6]

    Madrid L,Diaz‐Barrientos E. Influence of carbonate on the reaction of heavy metals in soils[J]. Journal of Soil Science, 1992, 43(4):709−721. doi: 10.1111/j.1365-2389.1992.tb00170.x

    [7]

    Cervi E C,da Costa A C S,de Souza Junior I G. Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt[J]. Journal of Applied Geophysics, 2014, 111:377−383. doi: 10.1016/j.jappgeo.2014.10.024

    [8]

    夏学齐,季峻峰,杨忠芳,等. 母岩类型对土壤和沉积物镉背景的控制:以贵州为例[J]. 地学前缘,2022,29(4):438−447.

    Xia X Q,Ji J F,Yang Z F,et al. Parent rock type control on cadmium background in soil and sediment:An example from Guizhou Province[J]. Earth Science Frontiers, 2022, 29(4):438−447.

    [9]

    武永锋,刘丛强,涂成龙. 贵阳城市土壤重金属元素形态分析[J]. 矿物学报,2008,28(2):177−180.

    Wu Y F,Liu C Q,Tu C L. Speciation analysis of heavy metals in urban soils of Guiyang[J]. Acta Mineralogica Sinica, 2008, 28(2):177−180.

    [10]

    Mendoza-Grimon V,Hernandez-Moreno J M,Rodriguez Martin J A,et al. Trace and major element associations in basaltic ash soils of El Hierro Island[J]. Journal of Geochemical Exploration, 2014, 147:277−282. doi: 10.1016/j.gexplo.2014.06.010

    [11]

    Mikkonen H G,Robert V D G,Clarke B O,et al. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper,chromium,nickel and zinc in soil[J]. Chemosphere, 2018, 210:193−203. doi: 10.1016/j.chemosphere.2018.06.138

    [12]

    孙子媛,文雪峰,吴攀,等. 喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J]. 地球与环境,2019,47(1):50−56.

    Sun Z Y,Wen X F,Wu P,et al. Excessive degrees and migration characteristics of heavy metals in typical weathering profiles in karst areas[J]. Earth and Environment, 2019, 47(1):50−56.

    [13]

    贺灵,吴超,曾道明,等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试,2021,40(3):384−396.

    He L,Wu C,Zeng D M,et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3):384−396.

    [14]

    陈纳川. 滇西卓潘碱性杂岩体风化过程中元素迁移过程和机制[D]. 北京: 中国地质大学(北京), 2019: 53-59.

    Chen N C. Study on the process of the element migration and its mechanism during weathering of the Zhuopan alkaline complex in Yunnan Province[D]. Beijing: China University of Geosciences (Beijing), 2019: 53-59.

    [15]

    郭小飞,刘汇川,吴开兴,等. 金沙江—哀牢山富碱侵入岩带的判别、成因及构造环境[J]. 江西理工大学学报,2018,39(5):71−78.

    Guo X F,Liu H C,Wu K X,et al. Study on discrimination,genesis and tectonic setting of Jinsha River—Mount Ailao alkaline-rich intrusive rocks[J]. Journal of Jiangxi University of Science and Tachnology, 2018, 39(5):71−78.

    [16]

    张涛,季宏兵,温月花,等. 昆明石林碳酸盐岩红色风化壳元素地球化学特征[J]. 高校地质学报,2017,23(3):465−477.

    Zhang T,Ji H B,Wen Y H,et al. Geochemical characteristics of red weathering cruston carbonate rocks in Shilin County,Kunming[J]. Geological Journal of China Universities, 2017, 23(3):465−477.

    [17]

    张连凯,季宏兵,刘秀明,等. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质,2021,48(2):651−660.

    Zhang L K,Ji H B,Liu X M,et al. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 2021, 48(2):651−660.

    [18]

    徐磊,黄加忠,张亚,等. 滇中高山丘陵区土壤重金属来源及影响因素——以武定县为例[J]. 中国农学通报,2022,38(1):82−92.

    Xu L,Huang J Z,Zhang Y,et al. Sources and influencing factors of soil heavy metals in the high mountain and hilly area of central Yunnan:Taking Wuding County as an example[J]. Chinese Agricultural Science Bulletin, 2022, 38(1):82−92.

    [19]

    秦元礼,张富贵,彭敏,等. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探,2020,56(3):540−550.

    Qin Y L,Zhang F G,Peng M,et al. Geochemical distribution characteristics and sources of heavy metals in soils of Wuding County,Yunnan Province[J]. Geology and Exploration, 2020, 56(3):540−550.

    [20]

    侯良刚,袁玲,李徐瑾. 云南姚安县老街子碱性杂岩体特征及稀土找矿前景[J]. 云南地质,2020,39(1):20−25. doi: 10.3969/j.issn.1004-1885.2020.01.005

    Hou L G,Yuan L,Li X J. The feature and REE prospecting potentiality of Laojiezi alkaline complex body in Yao’an County,Yunnan[J]. Yunnan Geology, 2020, 39(1):20−25. doi: 10.3969/j.issn.1004-1885.2020.01.005

    [21]

    江小均,严清高,李文昌,等. 滇中老街子Pb-Ag多金属矿床的成矿时代及成矿动力学背景探讨:来自硫化物Re-Os同位素证据[J]. 地质学报,2018,92(6):1280−1296.

    Jiang X J,Yan Q G,Li W C,et al. The metallogenic age and geodynamic setting of the Laojiazi Pb-Ag polymetallic deposit,central Yunnan Province:Evidence from Re-Os isotope of sulfides[J]. Acata Geological Sinica, 2018, 92(6):1280−1296.

    [22]

    Reiche D. Graphie representation of chemical weathering[J]. Journal of Sedimentary Petrology, 1943, 13(2):58−68.

    [23]

    Ruxton B F. Measures of the degree of chemical weathering of rocks[J]. The Journal of Geology, 1968, 76(5):518−527. doi: 10.1086/627357

    [24]

    李德胜,杨忠芳,靳职斌. 太原盆地土壤微量元素的地球化学特征[J]. 地质与勘探,2004,40(3):86−89.

    Li D S,Yang Z F,Jin J B. Geochemical characteristics of trace elements of soil from the Taiyuan Basin[J]. Geology and Prospecting, 2004, 40(3):86−89.

    [25]

    巫锡勇,罗健,魏有仪. 岩石风化与岩石化学成分的变化研究[J]. 地质与勘探,2004,40(4):85−88.

    Wu X Y,Luo J,Wei Y Y. Research of rock weathering and chemical composition of rock[J]. Geology and Prospecting, 2004, 40(4):85−88.

    [26]

    Taylor S R,McLennan S M. The continental crust:Its composition and evolution[J]. Physics of The Earth and Planetary Tnteriors, 1985, 42(3):196−197.

    [27]

    侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020: 1910−1921.

    Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China [M]. Beijing: Geological Publishing House, 2020: 1910−1921.

    [28]

    Babechuk M G,Widdowson M,Murphy M,et al. A combined Y/Ho,high field strength element (HFSE) and Nd isotope perspective on basalt weathering,Deccan Traps,India[J]. Chemical Geology, 2015, 396:25−41. doi: 10.1016/j.chemgeo.2014.12.017

    [29]

    Mahmoodi M,Khormali F,Amini A,et al. Weathering and soils formation on different parent materials in Golestan Province,northern Iran[J]. Journal of Mountain Science, 2016, 13(5):870−881. doi: 10.1007/s11629-015-3567-x

    [30]

    Fralick P W,Kronberg B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1-2):111−124. doi: 10.1016/S0037-0738(97)00049-3

    [31]

    毛俊杰,刘威,冯志刚,等. 黑色页岩风化剖面母岩均一性的验证[J]. 南华大学学报(自然科学版),2021,35(4):29−34.

    Mao J J,Liu W,Feng Z G,et al. Verification of parent rock chemical homogeneity for weathering profile of black shale[J]. Journal of University of South China (Science and Technology), 2021, 35(4):29−34.

    [32]

    白佳灵,冯志刚,马强,等. 湘西北黑色泥灰岩风化剖面重金属富集的地球化学机制[J]. 地球与环境,2019,47(4):436−447.

    Bai J L,Feng Z G,Ma Q,et al. Geochemical mechanism for the enrichment of heavy metals in a weathering profile of black marlstone in the northwestern Hunan Province,China[J]. Earth and Environment, 2019, 47(4):436−447.

    [33]

    Velbel P. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology, 2003, 202(3-4):397−416. doi: 10.1016/j.chemgeo.2002.11.001

    [34]

    Rieu R,Allen P A,Plotze M,et al. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession,Mirbat area,South Oman:Implications for paleoweathering conditions[J]. Precambrian Research, 2007, 154(3-4):248−265. doi: 10.1016/j.precamres.2007.01.003

    [35]

    李徐生,韩志勇,杨守业,等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报,2007,62(11):1174−1184. doi: 10.3321/j.issn:0375-5444.2007.11.006

    Li X S,Han Z Y,Yang S Y,et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang[J]. Aata Geographica Sinica, 2007, 62(11):1174−1184. doi: 10.3321/j.issn:0375-5444.2007.11.006

    [36]

    陈怀满. 环境土壤学(第三版)[M]. 北京: 科学出版社, 2018: 41-42.

    Chen H M. Environmental soil science (The third edition)[M]. Beijing: Science Press, 2018: 41-42.

    [37]

    杨艳芳,李德成,张甘霖,等. 雷州半岛玄武岩发育的时间序列土壤的发生演变[J]. 土壤学报,2010,47(5):817−825.

    Yang Y F,Li D C,Zhang G L,et al. Evolution of chrono sequential soils derived from volcanic basalt on tropical Leizhou Peninsula,South China[J]. Acta Pedologica Sinica, 2010, 47(5):817−825.

    [38]

    邓军,杨立强,葛良胜,等. 滇西富碱斑岩型金成矿系统特征与变化保存[J]. 岩石学报,2010,26(6):1633−1645.

    Deng J,Yang L Q,Ge L S,et al. Character and post-ore changes modification and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan,China[J]. Acta Petrologica Sinica, 2010, 26(6):1633−1645.

    [39]

    吴鹏,杨航,韩润生,等. 滇中楚雄盆地老街子铅-银矿床镜铁矿特征及地质意义[J]. 岩石学报,2019,35(5):1489−1502. doi: 10.18654/1000-0569/2019.05.11

    Wu P,Yang H,Han R S,et al. Signature and geological significance of the specularite from the Laojiezi Pb-Ag deposit in the Chuxiong Basin,central Yunnan,SW China[J]. Acta Petrologica Sinica, 2019, 35(5):1489−1502. doi: 10.18654/1000-0569/2019.05.11

    [40]

    袁余洋,蔡春芳,刘永林,等. 浙西底本剖面皮园村组硅质岩元素地球化学特征及成因分析[J]. 高校地质学报,2022,28(4):516−526.

    Yuan Y Y,Cai C F,Liu Y L,et al. Geochemistry and genetic analysis of chert of the Piyuancun Formation in western Zhejiang[J]. Geological Journal of China Universities, 2022, 28(4):516−526.

    [41]

    罗晨皓,周晔,沈阳. 云南姚安Au-Pb-Ag矿床含矿富碱岩浆岩地球化学特征及岩石成因[J]. 地球科学,2019,44(6):2063−2083.

    Luo C H,Zhou Y,Shen Y. The geochemical characteristics and petrogenesis of mineralized alkali-rich magmatic rock in Yao’an Au-Pb-Ag deposit,Yunnan Province[J]. Earth Science, 2019, 44(6):2063−2083.

    [42]

    王金贵. 我国典型农田土壤中重金属镉的吸附-解吸特征研究[D]. 杨凌: 西北农林科技大学, 2012: 1-5.

    Wang J G. Adsorption-desorption characteristics of cadmium in typical agricultural soils in China[D]. Yangling: Northwest Agriculture and Forestry University, 2012: 1-5.

    [43]

    Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710):206−210. doi: 10.1038/279206a0

    [44]

    Chadwick O A,Brimhall G H,Hendricks D M. From a black to a gray box—A mass balance interpretation of pedogenesis[J]. Geomorphology, 1990, 3(3-4):369−390. doi: 10.1016/0169-555X(90)90012-F

    [45]

    Brimhall G H,Ford C,Bratt J,et al. Quantitative geochemical approach to pedogenesis:Importance of parent material reduction,volumetric expansion,and eolian influx in lateritization[J]. Geoderma, 1991, 51(1-4):51−91. doi: 10.1016/0016-7061(91)90066-3

    [46]

    Merritts D J,Chadwick O A,Hendricks D M. Rates and processes of soil evolution on uplifted marine terraces,northern California[J]. Geoderma, 1991, 51(1):241−275.

    [47]

    Riebe C S,Kirchner J W,Granger D E,et al. Strong tectonic and weak climatic control of long-term chemical weathering rates[J]. Geology, 2001, 29(6):511−514. doi: 10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2

    [48]

    White A F,Blum A E,Schulz M S,et al. Chemical weathering in a tropical watershed,Luquillo Mountains,Puerto Rico:I. Long-term versus short-term weathering fluxes[J]. Geochimica et Cosmochimica Acta, 1998, 62(2):209−226. doi: 10.1016/S0016-7037(97)00335-9

    [49]

    李锐,高杰,张莉,等. 黔北白云岩红色风化壳元素地球化学特征[J]. 中国岩溶,2014,33(4):396−404.

    Li R,Gao J,Zhang L,et al. Elementg geochemical characteristics of red weathering crust from dolomite,north Guizhou,China[J]. Carsologica Sinica, 2014, 33(4):396−404.

    [50]

    虎贵朋,韦刚健,马金龙,等. 粤北碳酸盐岩化学风化过程中的元素地球化学行为[J]. 地球化学,2017,46(1):33−45.

    Hu G P,Wei G J,Ma J L,et al. Mobilization and re-distribution of major and trace elements during the process of moderate weathering of carbonates in northern Guangdong,South China[J]. Geochemica, 2017, 46(1):33−45.

    [51]

    徐建明. 土壤学(第四版)[M]. 北京: 中国农业出版社, 2019: 50-80.

    Xu J M. Soil Science (The fourth edition)[M]. Beijing: China Agriculture Press, 2019: 50-80.

    [52]

    黄颜珠. 大宝山矿区Mn、Cu、Cd、Pb和As环境地球化学效应研究[D]. 广州: 华南理工大学, 2010: 86-88.

    Huang Y Z. Study on geochemical environmental effects of Mn, Cu, Cd, Pb, As in Dabaoshan mine, Guangdong Province[D]. Guangzhou: South China University of Technology, 2010: 86-88.

    [53]

    冯乾伟,王兵,马先杰,等. 黔西北典型铅锌矿区土壤重金属污染特征及其来源分析[J]. 矿物岩石地球化学通报,2020,39(4):863−870.

    Feng G W,Wang B,Ma X J,et al. Pollution characteristics and source analysis of heavy metals in soils of typical lead-zinc mining areas in northwest Guizhou,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39(4):863−870.

    [54]

    祝琳. 典型矾矿区环境质量综合评价与治理体系研究[D]. 合肥: 安徽建筑大学, 2020: 54−55.

    Zhu L. Study on comprehensive evaluation and governance system of environmental quality in typical alunite mining area[D]. Hefei: Anhui Jianzhu University, 2020: 54−55.

    [55]

    吴鹏盛,施泽明,石建凡. 淋溶过程中重金属的风化淋滤特征[J]. 地质论评,2015,61(S1):53−54.

    Wu P S,Shi Z M,Shi J F. Weathering and leaching characteristics of heavy metals in leaching process[J]. Geological Review, 2015, 61(S1):53−54.

    [56]

    叶霖,李朝阳,刘铁庚,等. 铅锌矿床中镉的表生地球化学研究现状[J]. 地球与环境,2006,34(1):55−60.

    Ye L,Li C Y,Liu T G,et al. The status-quo of research on supergenic geochemistry of cadmium Pb-Zn deposits[J]. Earth and Environment, 2006, 34(1):55−60.

    [57]

    王京. 铅锌矿区重金属地球化学特征及环境影响评价——以汉源唐家乡铅锌矿为例[D]. 成都: 成都理工大学, 2017: 75−76.

    Wang J. Geochemical characteristics and environmental impact assessment of heavy metals in lead zinc mine—In TangJia township Hanyuan lead-zinc deposit as an example[D]. Chengdu: Chengdu University of Technology, 2017: 75−76.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  1452
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2022-10-09
修回日期:  2022-12-28
录用日期:  2023-03-31
刊出日期:  2023-06-30

目录