Geochemical Characteristics and Environmental Risk Assessment of Heavy Metals in Weathering Profiles of Alkali-enriched Porphyry in Central Yunnan
-
摘要:
中国西南地区发育大规模富碱斑岩带,通常具有重金属高背景值的特征,岩石风化是重金属的重要来源,土壤重金属污染是全球性关注的热点问题。在云南水热条件充足、成土作用强烈的条件下,为了查清富碱斑岩成土过程中重金属元素地球化学行为特征以及可能带来的一系列生态环境问题。本文选择滇中姚安富碱斑岩岩石风化剖面为研究对象,采用电感耦合等离子体质谱/发射光谱法(ICP-MS/OES)、原子荧光光谱法(AFS)、X射线荧光光谱法(XRF)、容量法等方法测定岩石和土壤样品中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn、Al2O3、TFe2O3、CaO、Na2O、K2O、MgO、SiO2、有机碳等主微量元素含量和pH值,利用多元统计学方法和质量迁移系数研究风化剖面中重金属元素分布特征、迁移富集规律及影响因素,探讨富碱斑岩风化成土过程中重金属地球化学特征,揭示重金属元素迁移富集机制及可能带来的生态环境问题。结果表明:①富碱斑岩各风化层元素分布特征继承了基岩的特征,在风化成土过程中,As、Cr、Cu、Hg和Cd、Pb、Zn具有相似的地球化学行为,相对于Ti,重金属迁移能力强弱顺序为:Cd>Zn>Pb>Hg>Cu>As>Ni>Cr;②Cu、Cr、Ni、Hg受其自身化学性质和脱硅富铝铁作用的影响,随风化最终富集于黏土矿物与Al、Fe氧化物/氢氧化物中,As与Fe、Al结合成难溶性的化合物而显著富集,土壤层迁移系数均值为7.64,Cd、Pb、Zn在酸性和强淋溶条件下显著地淋失迁移,土壤层迁移系数均值分别为−0.67、−0.45、−0.59。与大部分铅锌矿区相似,As受富铝铁作用影响原地次生富集,Cd、Pb、Zn受自身活泼的化学性质和pH影响大量淋失;③研究区土壤生态环境可能存在As、Pb污染的风险,Pb的大量淋失可能随地表径流迁入蜻岭河,应加强对富碱斑岩上覆土壤中As、Pb和流经富碱斑岩区河流中Pb、Zn的监测。
Abstract:BACKGROUND The contents of many heavy metals in soil in many areas of southwest China are much higher than the national soil background value, and related studies show that most heavy metals in soil are in a state of “high background and low activity”, which is closely related to the special geological process in the area. Most scholars have concentrated more on the weathering process and post-weathering heavy metals of granite, basalt, carbonate rocks and other geological bodies with high background value of heavy metals in southwest China. However, alkali-enriched porphyry also has the characteristics of high background value of heavy metals, and the geochemical behavior characteristics of heavy metals in the weathering process of alkali-enriched porphyry are less studied. The ecological and environmental effects of heavy metal element migration and transformation during weathering are still unclear. There is a large-scale alkali-enriched porphyry belt located in southwest China. Most of the alkali-enriched porphyry areas have precious metals such as gold and silver, and polymetallic deposits such as copper, lead and zinc. Therefore, soil in alkali-enriched porphyry areas usually has the characteristic of high background value of heavy metals.
OBJECTIVES For identifying geochemical characteristics of heavy metal elements and a series of ecological and environmental problems during the soil-forming process of alkali-enriched porphyry, to provide a scientific basis for the prevention and control of heavy metal pollution in alkali-enriched porphyry areas and rational planning of agricultural planting.
METHODS For sufficient hydrothermal conditions and strong soil-forming in Yunnan Province, a rock weathering profile of Yao’an alkali-enriched porphyry in central Yunnan Province was selected as the research object. The contents of As, Cd, Cr, Cu, Hg, Ni, Pb, Zn, Al2O3, TFe2O3, CaO, Na2O, K2O, MgO, SiO2, organic carbon and pH in rock/soil samples were determined by inductively coupled plasma-mass spectrometry/optimal emission spectrometry (ICP-MS/OES), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF) and volumetric method. Multivariate statistics method and mass migration coefficient were used to study the distribution characteristics, migration and enrichment rules of heavy metal elements in the weathering profile, as well as the factors affecting the migration and enrichment of heavy metals.
RESULTS Based on the analysis of the content and distribution characteristics of eight heavy metals in the weathering profile of Yao’an alkali-enriched porphyry, the migration and enrichment mechanism of heavy metals during the weathering process was identified, and the environmental risk assessment of the surface soil in the area was carried out. (1) In the weathering profile, all the weathering strata have the same source as the bedrock material, and there is no exogenous addition. Different degrees of desiliconization and aluminum-iron enrichment occur in the whole weathering process, especially in the surface layer. In the bottom-up evolution process, all of the heavy metal elements except Cd show an overall trend of increasing content. As, Cr, Cu, Hg and Ni are enriched to different degrees during weathering, while Cd, Pb and Zn are leaching out. The order of heavy metal migration capacity from strong to weak is Cd>Zn>Pb>Hg>Cu>As>Ni>Cr. As, Cr, Cu, and Hg have similar geochemical behavior, as do Cd, Pb, and Zn. (2) Cd, Pb and Zn occur mainly in feldspar minerals and lead-zinc metallic minerals and exhibit the characteristics of migration and leaching under acidic and strong leaching conditions. Although the bedrock is obviously deficient in Cu, Cr, Ni and Hg, it is eventually enriched in-situ in clay minerals and Al and Fe oxides/hydroxides with weathering due to its own chemical properties and the effect of desilication to enrich aluminum and iron. The enrichment of As is mainly controlled by aluminum-Fe enrichment, and the strong aluminum-Fe enrichment in the study area results in the in-situ secondary enrichment of As. (3) The soil ecological environment in the study area may be polluted by As and Pb due to the high content of Pb in the bedrock and the effect of aluminum-iron enrichment.
CONCLUSIONS The risk of As and Pb pollution may exist in the soil ecological environment of the study area, and a large amount of Pb leaching may migrate into the Dragonling River with surface runoff. It is necessary to strengthen the monitoring of heavy metals such as As and Pb in the overlying soil of alkali-enriched porphyry and heavy metals such as Pb and Zn in the rivers around alkali-enriched porphyry so as to ensure ecological safety.
-
表 1 富碱斑岩风化剖面中微量元素组成与理化指标
Table 1. Composition and physical and chemical indexes of trace elements in weathering profile of alkali-rich porphyry.
风化层
划分样品编号 深度
(cm)As
(mg/kg)Cd
(mg/kg)Cr
(mg/kg)Cu
(mg/kg)Hg
(mg/kg)Ni
(mg/kg)Pb
(mg/kg)Zn
(mg/kg)Zr
(mg/kg)Ti
(mg/kg)SOM
(%)CIA
(%)全风化层 YPM01-01 30 71.70 0.16 142.00 52.40 0.05 60.40 241.00 147.00 756.00 6076 0.40 93.04 YPM01-02 90 70.10 0.16 128.00 41.00 0.05 50.60 201.00 119.00 754.00 5896 0.53 90.50 半风化层 YPM01-03 200 74.10 0.16 134.00 39.50 0.04 51.10 204.00 141.00 735.00 5681 0.34 91.69 YPM01-04 270 63.90 0.10 105.00 18.30 0.03 48.40 168.00 152.00 957.00 6398 0.28 81.18 YPM01-05 320 6.81 0.09 58.40 12.50 0.02 60.00 108.00 192.00 827.00 4252 0.17 72.82 YPM01-06 370 7.45 0.08 53.70 11.90 0.01 46.20 123.00 145.00 899.00 4316 0.14 64.20 过渡层 YPM01-07 440 5.12 0.20 52.30 17.30 0.01 51.40 117.00 171.00 894.00 3813 0.16 62.55 YPM01-08 530 2.25 0.21 61.20 21.70 ☆ 49.40 108.00 183.00 891.00 3471 0.14 59.96 YPM01-09 700 3.19 0.12 57.80 15.90 ☆ 52.10 84.00 196.00 833.00 3817 0.10 58.65 YPM01-10 820 3.34 0.18 59.90 17.60 0.005 50.60 88.80 182.00 854.00 3960 0.07 58.88 YPM01-11 900 1.40 0.09 79.70 13.70 0.01 59.80 93.40 142.00 864.00 3639 0.24 55.56 基岩 YPM01-12 1000 2.41 0.14 10.20 8.36 0.01 10.40 118.00 94.40 584.00 1757 0.12 46.08 UCC 1.50 0.098 35.85 25.00 0.0123 20.44 20.17 71.00 190.00 3000 △ △ 碱性侵入岩区表层土壤 5.10 0.11 32.00 13.00 0.06 13.00 36.00 65.00 311.00 3571 2.14 △ 云南省表层土壤 10.60 0.27 91.00 40.00 0.07 38.00 39.00 96.00 336.00 6193 2.48 △ 注:“△”表示低于检测限,“☆”表示无此数据,UCC数据来源于文献[26],碱性侵入岩区表层、深层土壤数据来源于文献[27]。 表 2 风化剖面重金属元素迁移系数皮尔逊相关性特征
Table 2. Pearson correlation characteristics of heavy metal migration coefficient in weathering profile.
元素 As Cd Cr Cu Hg Ni Pb Zn As 1 Cd 0.422 1 Cr 0.634** 0.538 1 Cu 0.603* 0.175 0.594* 1 Hg 0.818** −0.220 0.364 0.529 1 Ni −0.610* −0.119 0.174 −0.246 −0.652* 1 Pb 0.137 0.639* −0.365 0.341 0.477 −0.663* 1 Zn −0.889** 0.680* −0.661* −0.349 −0.722** 0.444 0.101 1 注:“**”表示在p=0.01水平上显著;“*”表示在p=0.05水平上显著;n=12。 表 3 风化剖面重金属元素与其他指标的皮尔逊相关性特征
Table 3. Pearson correlation characteristics of heavy metal elements and other indicators in weathering profile.
指标 As Cd Cr Cu Hg Ni Pb Zn SiO2 −0.895** −0.211 −0.973** −0.942** −0.874** −0.542 −0.872** 0.094 Al2O3 0.938** 0.055 0.925** 0.851** 0.929** 0.447 0.907** −0.145 TFe2O3 0.888** 0.155 0.907** 0.922** 0.929** 0.394 0.912** −0.260 MgO −0.684* −0.240 −0.439 −0.615* −0.675* 0.432 −0.782** 0.758** CaO −0.338 0.021 −0.588* −0.376 −0.281 −0.899** −0.236 −0.581* Na2O −0.879** −0.033 −0.899** −0.805** −0.871** −0.546 −0.832** −0.001 K2O −0.975** −0.086 −0.884** −0.871** −0.975** −0.213 −0.967** 0.375 SOM 0.871** 0.043 0.864** 0.816** 0.929** 0.283 0.860** −0.468 CIA 0.931** 0.054 0.926** 0.850** 0.921** 0.469 0.895** −0.117 Si/(Al+Fe) −0.876** −0.071 −0.939** −0.835** −0.866** −0.606* −0.833** 0.004 注:“**”表示在p=0.01水平上显著; “*”表示在p=0.05水平上显著; n=12。 -
[1] Castilho P D,Rix I. Ammonium acetate extraction for soil heavy metal speciation;model aided soil test interpretation[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1-4):59−64. doi: 10.1080/03067319308027611
[2] Sun Y,Zhou Q,Xie X,et al. Spatial,sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang,China[J]. Journal of Hazardous Materials, 2010, 174(1-3):455−462. doi: 10.1016/j.jhazmat.2009.09.074
[3] 顾涛,赵信文,胡雪原,等. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价[J]. 岩矿测试,2018,37(4):419−430.
Gu T,Zhao X W,Hu X Y,et al. Distribution characteristics and risk assessment of heavy metals in soil from an agricultural park of Xinmadun Village,Zhuhai City[J]. Rock and Mineral Analysis, 2018, 37(4):419−430.
[4] 何腾兵,董玲玲,刘元生,等. 贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J]. 水土保持学报,2006,20(6):157−162.
He T B,Dong L L,Liu Y S,et al. Change of physical-chemical properties and heavy mental element in soil from different parent material/rock[J]. Journal of Soil and Water Conservation, 2006, 20(6):157−162.
[5] Wu W H,Qu S Y,Nel W,et al. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds:A comparative study from different regions in China[J]. Chemosphere, 2021, 262:127897. doi: 10.1016/j.chemosphere.2020.127897
[6] Madrid L,Diaz‐Barrientos E. Influence of carbonate on the reaction of heavy metals in soils[J]. Journal of Soil Science, 1992, 43(4):709−721. doi: 10.1111/j.1365-2389.1992.tb00170.x
[7] Cervi E C,da Costa A C S,de Souza Junior I G. Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt[J]. Journal of Applied Geophysics, 2014, 111:377−383. doi: 10.1016/j.jappgeo.2014.10.024
[8] 夏学齐,季峻峰,杨忠芳,等. 母岩类型对土壤和沉积物镉背景的控制:以贵州为例[J]. 地学前缘,2022,29(4):438−447.
Xia X Q,Ji J F,Yang Z F,et al. Parent rock type control on cadmium background in soil and sediment:An example from Guizhou Province[J]. Earth Science Frontiers, 2022, 29(4):438−447.
[9] 武永锋,刘丛强,涂成龙. 贵阳城市土壤重金属元素形态分析[J]. 矿物学报,2008,28(2):177−180.
Wu Y F,Liu C Q,Tu C L. Speciation analysis of heavy metals in urban soils of Guiyang[J]. Acta Mineralogica Sinica, 2008, 28(2):177−180.
[10] Mendoza-Grimon V,Hernandez-Moreno J M,Rodriguez Martin J A,et al. Trace and major element associations in basaltic ash soils of El Hierro Island[J]. Journal of Geochemical Exploration, 2014, 147:277−282. doi: 10.1016/j.gexplo.2014.06.010
[11] Mikkonen H G,Robert V D G,Clarke B O,et al. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper,chromium,nickel and zinc in soil[J]. Chemosphere, 2018, 210:193−203. doi: 10.1016/j.chemosphere.2018.06.138
[12] 孙子媛,文雪峰,吴攀,等. 喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J]. 地球与环境,2019,47(1):50−56.
Sun Z Y,Wen X F,Wu P,et al. Excessive degrees and migration characteristics of heavy metals in typical weathering profiles in karst areas[J]. Earth and Environment, 2019, 47(1):50−56.
[13] 贺灵,吴超,曾道明,等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试,2021,40(3):384−396.
He L,Wu C,Zeng D M,et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3):384−396.
[14] 陈纳川. 滇西卓潘碱性杂岩体风化过程中元素迁移过程和机制[D]. 北京: 中国地质大学(北京), 2019: 53-59.
Chen N C. Study on the process of the element migration and its mechanism during weathering of the Zhuopan alkaline complex in Yunnan Province[D]. Beijing: China University of Geosciences (Beijing), 2019: 53-59.
[15] 郭小飞,刘汇川,吴开兴,等. 金沙江—哀牢山富碱侵入岩带的判别、成因及构造环境[J]. 江西理工大学学报,2018,39(5):71−78.
Guo X F,Liu H C,Wu K X,et al. Study on discrimination,genesis and tectonic setting of Jinsha River—Mount Ailao alkaline-rich intrusive rocks[J]. Journal of Jiangxi University of Science and Tachnology, 2018, 39(5):71−78.
[16] 张涛,季宏兵,温月花,等. 昆明石林碳酸盐岩红色风化壳元素地球化学特征[J]. 高校地质学报,2017,23(3):465−477.
Zhang T,Ji H B,Wen Y H,et al. Geochemical characteristics of red weathering cruston carbonate rocks in Shilin County,Kunming[J]. Geological Journal of China Universities, 2017, 23(3):465−477.
[17] 张连凯,季宏兵,刘秀明,等. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质,2021,48(2):651−660.
Zhang L K,Ji H B,Liu X M,et al. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 2021, 48(2):651−660.
[18] 徐磊,黄加忠,张亚,等. 滇中高山丘陵区土壤重金属来源及影响因素——以武定县为例[J]. 中国农学通报,2022,38(1):82−92.
Xu L,Huang J Z,Zhang Y,et al. Sources and influencing factors of soil heavy metals in the high mountain and hilly area of central Yunnan:Taking Wuding County as an example[J]. Chinese Agricultural Science Bulletin, 2022, 38(1):82−92.
[19] 秦元礼,张富贵,彭敏,等. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探,2020,56(3):540−550.
Qin Y L,Zhang F G,Peng M,et al. Geochemical distribution characteristics and sources of heavy metals in soils of Wuding County,Yunnan Province[J]. Geology and Exploration, 2020, 56(3):540−550.
[20] 侯良刚,袁玲,李徐瑾. 云南姚安县老街子碱性杂岩体特征及稀土找矿前景[J]. 云南地质,2020,39(1):20−25. doi: 10.3969/j.issn.1004-1885.2020.01.005
Hou L G,Yuan L,Li X J. The feature and REE prospecting potentiality of Laojiezi alkaline complex body in Yao’an County,Yunnan[J]. Yunnan Geology, 2020, 39(1):20−25. doi: 10.3969/j.issn.1004-1885.2020.01.005
[21] 江小均,严清高,李文昌,等. 滇中老街子Pb-Ag多金属矿床的成矿时代及成矿动力学背景探讨:来自硫化物Re-Os同位素证据[J]. 地质学报,2018,92(6):1280−1296.
Jiang X J,Yan Q G,Li W C,et al. The metallogenic age and geodynamic setting of the Laojiazi Pb-Ag polymetallic deposit,central Yunnan Province:Evidence from Re-Os isotope of sulfides[J]. Acata Geological Sinica, 2018, 92(6):1280−1296.
[22] Reiche D. Graphie representation of chemical weathering[J]. Journal of Sedimentary Petrology, 1943, 13(2):58−68.
[23] Ruxton B F. Measures of the degree of chemical weathering of rocks[J]. The Journal of Geology, 1968, 76(5):518−527. doi: 10.1086/627357
[24] 李德胜,杨忠芳,靳职斌. 太原盆地土壤微量元素的地球化学特征[J]. 地质与勘探,2004,40(3):86−89.
Li D S,Yang Z F,Jin J B. Geochemical characteristics of trace elements of soil from the Taiyuan Basin[J]. Geology and Prospecting, 2004, 40(3):86−89.
[25] 巫锡勇,罗健,魏有仪. 岩石风化与岩石化学成分的变化研究[J]. 地质与勘探,2004,40(4):85−88.
Wu X Y,Luo J,Wei Y Y. Research of rock weathering and chemical composition of rock[J]. Geology and Prospecting, 2004, 40(4):85−88.
[26] Taylor S R,McLennan S M. The continental crust:Its composition and evolution[J]. Physics of The Earth and Planetary Tnteriors, 1985, 42(3):196−197.
[27] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020: 1910−1921.
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China [M]. Beijing: Geological Publishing House, 2020: 1910−1921.
[28] Babechuk M G,Widdowson M,Murphy M,et al. A combined Y/Ho,high field strength element (HFSE) and Nd isotope perspective on basalt weathering,Deccan Traps,India[J]. Chemical Geology, 2015, 396:25−41. doi: 10.1016/j.chemgeo.2014.12.017
[29] Mahmoodi M,Khormali F,Amini A,et al. Weathering and soils formation on different parent materials in Golestan Province,northern Iran[J]. Journal of Mountain Science, 2016, 13(5):870−881. doi: 10.1007/s11629-015-3567-x
[30] Fralick P W,Kronberg B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1-2):111−124. doi: 10.1016/S0037-0738(97)00049-3
[31] 毛俊杰,刘威,冯志刚,等. 黑色页岩风化剖面母岩均一性的验证[J]. 南华大学学报(自然科学版),2021,35(4):29−34.
Mao J J,Liu W,Feng Z G,et al. Verification of parent rock chemical homogeneity for weathering profile of black shale[J]. Journal of University of South China (Science and Technology), 2021, 35(4):29−34.
[32] 白佳灵,冯志刚,马强,等. 湘西北黑色泥灰岩风化剖面重金属富集的地球化学机制[J]. 地球与环境,2019,47(4):436−447.
Bai J L,Feng Z G,Ma Q,et al. Geochemical mechanism for the enrichment of heavy metals in a weathering profile of black marlstone in the northwestern Hunan Province,China[J]. Earth and Environment, 2019, 47(4):436−447.
[33] Velbel P. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology, 2003, 202(3-4):397−416. doi: 10.1016/j.chemgeo.2002.11.001
[34] Rieu R,Allen P A,Plotze M,et al. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession,Mirbat area,South Oman:Implications for paleoweathering conditions[J]. Precambrian Research, 2007, 154(3-4):248−265. doi: 10.1016/j.precamres.2007.01.003
[35] 李徐生,韩志勇,杨守业,等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报,2007,62(11):1174−1184. doi: 10.3321/j.issn:0375-5444.2007.11.006
Li X S,Han Z Y,Yang S Y,et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang[J]. Aata Geographica Sinica, 2007, 62(11):1174−1184. doi: 10.3321/j.issn:0375-5444.2007.11.006
[36] 陈怀满. 环境土壤学(第三版)[M]. 北京: 科学出版社, 2018: 41-42.
Chen H M. Environmental soil science (The third edition)[M]. Beijing: Science Press, 2018: 41-42.
[37] 杨艳芳,李德成,张甘霖,等. 雷州半岛玄武岩发育的时间序列土壤的发生演变[J]. 土壤学报,2010,47(5):817−825.
Yang Y F,Li D C,Zhang G L,et al. Evolution of chrono sequential soils derived from volcanic basalt on tropical Leizhou Peninsula,South China[J]. Acta Pedologica Sinica, 2010, 47(5):817−825.
[38] 邓军,杨立强,葛良胜,等. 滇西富碱斑岩型金成矿系统特征与变化保存[J]. 岩石学报,2010,26(6):1633−1645.
Deng J,Yang L Q,Ge L S,et al. Character and post-ore changes modification and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan,China[J]. Acta Petrologica Sinica, 2010, 26(6):1633−1645.
[39] 吴鹏,杨航,韩润生,等. 滇中楚雄盆地老街子铅-银矿床镜铁矿特征及地质意义[J]. 岩石学报,2019,35(5):1489−1502. doi: 10.18654/1000-0569/2019.05.11
Wu P,Yang H,Han R S,et al. Signature and geological significance of the specularite from the Laojiezi Pb-Ag deposit in the Chuxiong Basin,central Yunnan,SW China[J]. Acta Petrologica Sinica, 2019, 35(5):1489−1502. doi: 10.18654/1000-0569/2019.05.11
[40] 袁余洋,蔡春芳,刘永林,等. 浙西底本剖面皮园村组硅质岩元素地球化学特征及成因分析[J]. 高校地质学报,2022,28(4):516−526.
Yuan Y Y,Cai C F,Liu Y L,et al. Geochemistry and genetic analysis of chert of the Piyuancun Formation in western Zhejiang[J]. Geological Journal of China Universities, 2022, 28(4):516−526.
[41] 罗晨皓,周晔,沈阳. 云南姚安Au-Pb-Ag矿床含矿富碱岩浆岩地球化学特征及岩石成因[J]. 地球科学,2019,44(6):2063−2083.
Luo C H,Zhou Y,Shen Y. The geochemical characteristics and petrogenesis of mineralized alkali-rich magmatic rock in Yao’an Au-Pb-Ag deposit,Yunnan Province[J]. Earth Science, 2019, 44(6):2063−2083.
[42] 王金贵. 我国典型农田土壤中重金属镉的吸附-解吸特征研究[D]. 杨凌: 西北农林科技大学, 2012: 1-5.
Wang J G. Adsorption-desorption characteristics of cadmium in typical agricultural soils in China[D]. Yangling: Northwest Agriculture and Forestry University, 2012: 1-5.
[43] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710):206−210. doi: 10.1038/279206a0
[44] Chadwick O A,Brimhall G H,Hendricks D M. From a black to a gray box—A mass balance interpretation of pedogenesis[J]. Geomorphology, 1990, 3(3-4):369−390. doi: 10.1016/0169-555X(90)90012-F
[45] Brimhall G H,Ford C,Bratt J,et al. Quantitative geochemical approach to pedogenesis:Importance of parent material reduction,volumetric expansion,and eolian influx in lateritization[J]. Geoderma, 1991, 51(1-4):51−91. doi: 10.1016/0016-7061(91)90066-3
[46] Merritts D J,Chadwick O A,Hendricks D M. Rates and processes of soil evolution on uplifted marine terraces,northern California[J]. Geoderma, 1991, 51(1):241−275.
[47] Riebe C S,Kirchner J W,Granger D E,et al. Strong tectonic and weak climatic control of long-term chemical weathering rates[J]. Geology, 2001, 29(6):511−514. doi: 10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2
[48] White A F,Blum A E,Schulz M S,et al. Chemical weathering in a tropical watershed,Luquillo Mountains,Puerto Rico:I. Long-term versus short-term weathering fluxes[J]. Geochimica et Cosmochimica Acta, 1998, 62(2):209−226. doi: 10.1016/S0016-7037(97)00335-9
[49] 李锐,高杰,张莉,等. 黔北白云岩红色风化壳元素地球化学特征[J]. 中国岩溶,2014,33(4):396−404.
Li R,Gao J,Zhang L,et al. Elementg geochemical characteristics of red weathering crust from dolomite,north Guizhou,China[J]. Carsologica Sinica, 2014, 33(4):396−404.
[50] 虎贵朋,韦刚健,马金龙,等. 粤北碳酸盐岩化学风化过程中的元素地球化学行为[J]. 地球化学,2017,46(1):33−45.
Hu G P,Wei G J,Ma J L,et al. Mobilization and re-distribution of major and trace elements during the process of moderate weathering of carbonates in northern Guangdong,South China[J]. Geochemica, 2017, 46(1):33−45.
[51] 徐建明. 土壤学(第四版)[M]. 北京: 中国农业出版社, 2019: 50-80.
Xu J M. Soil Science (The fourth edition)[M]. Beijing: China Agriculture Press, 2019: 50-80.
[52] 黄颜珠. 大宝山矿区Mn、Cu、Cd、Pb和As环境地球化学效应研究[D]. 广州: 华南理工大学, 2010: 86-88.
Huang Y Z. Study on geochemical environmental effects of Mn, Cu, Cd, Pb, As in Dabaoshan mine, Guangdong Province[D]. Guangzhou: South China University of Technology, 2010: 86-88.
[53] 冯乾伟,王兵,马先杰,等. 黔西北典型铅锌矿区土壤重金属污染特征及其来源分析[J]. 矿物岩石地球化学通报,2020,39(4):863−870.
Feng G W,Wang B,Ma X J,et al. Pollution characteristics and source analysis of heavy metals in soils of typical lead-zinc mining areas in northwest Guizhou,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39(4):863−870.
[54] 祝琳. 典型矾矿区环境质量综合评价与治理体系研究[D]. 合肥: 安徽建筑大学, 2020: 54−55.
Zhu L. Study on comprehensive evaluation and governance system of environmental quality in typical alunite mining area[D]. Hefei: Anhui Jianzhu University, 2020: 54−55.
[55] 吴鹏盛,施泽明,石建凡. 淋溶过程中重金属的风化淋滤特征[J]. 地质论评,2015,61(S1):53−54.
Wu P S,Shi Z M,Shi J F. Weathering and leaching characteristics of heavy metals in leaching process[J]. Geological Review, 2015, 61(S1):53−54.
[56] 叶霖,李朝阳,刘铁庚,等. 铅锌矿床中镉的表生地球化学研究现状[J]. 地球与环境,2006,34(1):55−60.
Ye L,Li C Y,Liu T G,et al. The status-quo of research on supergenic geochemistry of cadmium Pb-Zn deposits[J]. Earth and Environment, 2006, 34(1):55−60.
[57] 王京. 铅锌矿区重金属地球化学特征及环境影响评价——以汉源唐家乡铅锌矿为例[D]. 成都: 成都理工大学, 2017: 75−76.
Wang J. Geochemical characteristics and environmental impact assessment of heavy metals in lead zinc mine—In TangJia township Hanyuan lead-zinc deposit as an example[D]. Chengdu: Chengdu University of Technology, 2017: 75−76.