Determination of Trace Rare Earth Elements in Tungsten-Molybdenum Ore by Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion System
-
摘要:
钨钼矿和稀土均是重要战略资源,评估钨钼矿中稀土元素含量对矿产中稀土资源开发利用具有重要意义。钨钼矿样品前处理时碱熔熔剂会引入盐分基体,酸溶法钨钼元素易水解和产生稀土氟化物。本文拟建立一种在微波中以混合酸体系实现快速消解,结合电感耦合等离子体质谱法(ICP-MS)准确分析钨钼矿中16种稀土元素的分析方法。样品采用硝酸-氢氟酸-高氯酸-盐酸体系在微波中进行处理,随后赶酸至黏稠状并以柠檬酸-盐酸溶液温热溶解络合钨钼,避免在酸性环境下钨钼易发生水解及产生稀土氟化物等问题;利用ICP-MS在线加内标及动能歧视策略对样品分析稀土元素进行实时校正,降低基体效应、多原子离子等干扰的影响。该方法精密度RSD<2.0%(n=7),检出限为0.0002~0.0087µg/g,加标回收率为80.0%~114.0%,样品测试平均值与标准物质标准值对数误差的绝对值|ΔlgC|≤0.1,符合地质矿产行业要求。应用该方法分析钨钼矿标准物质(GBW07239和GBW07238)和三种实际样品,结果表明标准物质中16种稀土元素含量在标准值范围;应用于分析河南钨钼矿中稀土元素测定值在0.198~41.2µg/g之间,与吉林辉钼矿石中0.013~5.53µg/g和云南钨矿石石英片岩0.68~107.0µg/g、电气石岩0.071~2.11µg/g相较,具有空间分布特征和岩石种类差异研究意义。
-
关键词:
- 钨钼矿 /
- 稀土元素 /
- 微波消解 /
- 电感耦合等离子体质谱法 /
- 动能歧视
Abstract:BACKGROUND Tungsten-molybdenum ore and rare earth are both important strategic resources. It is of great significance to evaluate the contents of rare earth elements in tungsten-molybdenum ore for the development of rare earth resources in minerals. During the pretreatment of tungsten and molybdenum ore samples, the alkali melting flux will introduce the salt matrix, and the tungsten and molybdenum elements in an acid dissolution condition are easy to hydrolyze into tungstic acid and molybdic acid and produce rare earth fluoride.
OBJECTIVES To establish an analytical method for accurate determination of the 16 rare earth elements including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc, in tungsten-molybdenum ore by inductively coupled plasma-mass spectrometry (ICP-MS).
METHODS Tungsten-molybdenum ore samples were fast digested by microwave with four acid system (HNO3-HF-HClO4-HCl) in a high temperature and high-pressure environment. Then the digestion acid solution was evaporated to the viscous state, and the mixed solution (citric acid-hydrochloric acid) was used to dissolve the complexed tungsten and molybdenum at warm temperature, which effectively avoided the introduction of salt matrix in the pretreatment of tungsten-molybdenum ore samples. The problem of tungsten and molybdenum easily hydrolyzing into tungstic acid and molybdic acid was also solved, and rare earth fluoride in an acid environment was produced. Online internal standard and kinetic energy discrimination (KED) strategy were used in real-time to calibrate the sample analysis by ICP-MS, which solved the interference problems of matrix effect and polyatomic ions in the analysis process.
RESULTS The 16 rare earth element contents of tungsten molybdenum standard material (GBW07239 and GBW07238) and real samples (1#, 2# and 3#) was efficiently measured. The results showed that the concentrations of 16 rare earth elements were within the scope of the standard value, the contents of real samples were 0.198-41.2µg/g. Relative standard deviation (RSD) of method precision was lower than 2.0%, the method detection limit was 0.0002-0.0087µg/g, and the spiked recovery of real samples was between 80.0% and 114.0%. The absolute value of the logarithmic error between the average value of sample testing and the standard value of reference materials| ΔlgC|≤0, meet the requirements of the geological and mineral industry. The measured contents of rare earth elements in tungsten-molybdenum ore sampled from Henan are 0.198-41.2µg/g, compared with 0.013-5.53µg/g in molybdenite ore from Jilin, 0.68-107.0µg/g in tungsten ore (quartz schist) from Yunnan and 0.071-2.11µg/g in tungsten ore (tourmaline) from Yunnan. The content distribution of rare earth elements has spatial distribution characteristics and research significance for differences in rock types.
CONCLUSIONS The tungsten-molybdenum ore samples are completely dissolved by microwave with the four-acid system. This method satisfies the requirements of the geology and mineral industry and can provide reference for the analysis technology of trace rare earth elements in tungsten-molybdenum ore for high-throughput sample analysis capability.
-
表 1 ICP-MS仪器工作参数
Table 1. Instrument operation parameters of ICP-MS.
仪器工作参数 设定值 仪器工作参数 设定值 射频功率 1400W 扫描方式 跳峰扫描 雾化气流速 1.25L/min 驻留时间 20.0ms 辅助气流速 1.00L/min 采样深度 2.70mm 冷却气流速 14.0L/min 氧化物离子产率 <1.0% 碰撞气流速 1.35mL/min 双电荷离子产率 <1.0% 表 2 微波升温消解程序
Table 2. Heating digestion procedure of microwave.
升温步骤 预加压
(MPa)升温时间
(min)设定温度
(℃)保温时间
(min)1 4.0 8.0 150 3.0 2 4.0 8.0 240 3.0 3 4.0 10.0 270 40.0 表 3 分析元素的方法检出限、定量限和线性方程
Table 3. Method detection limit, quantitation limit and linear equation of analytical elements.
分析元素 线性方程 相关系数
r方法检出限
(µg/g)方法定量限
(µg/g)45Sc y=0.0019x+7.81×10−5 1.0000 0.0087 0.029 89Y y=0.0094x+13.6×10−5 1.0000 0.0015 0.0050 139La y=0.0197x+39.7×10−5 0.9999 0.0077 0.026 142Ce y=0.0107x+15.4×10−5 0.9999 0.0064 0.021 141Pr y=0.0275x+3.20×10−5 0.9999 0.0017 0.0057 146Nd y=0.0053x+4.50×10−5 0.9999 0.0058 0.019 149Sm y=0.0027x+2.52×10−5 1.0000 0.0024 0.0080 153Eu y=0.0112x+142×10−5 1.0000 0.0009 0.0030 160Gd y=0.0067x+48.9×10−5 1.0000 0.0025 0.0083 159Tb y=0.0263x+0.01021 0.9999 0.0054 0.018 164Dy y=0.0080x+4.56×10−6 1.0000 0.0005 0.0017 165Ho y=0.0276x+4.55×10−6 1.0000 0.0004 0.0013 170Er y=0.0054x+2.37×10−5 1.0000 0.0018 0.0060 169Tm y=0.0311x+1.50×10−6 1.0000 0.0002 0.0007 174Yb y=0.0108x+1.22×10−5 1.0000 0.0009 0.0030 175Lu y=0.0246x+7.93×10−5 1.0000 0.0005 0.0017 注:表中线性方程中x为元素浓度,y为元素信号响应值(cps)与内标元素信号响应(cps)的均值比值。 表 4 样品中分析元素测试结果(n=3)
Table 4. Results of analytical elements in the samples (n=3).
分析元素 GBW07239 GBW07238 标准值(µg/g) 测定均值±SD(µg/g) ΔlgC 标准值(µg/g) 测定均值±SD(µg/g) ΔlgC 45Sc 8.40±0.80 8.57±0.37 0.01 3.40±0.30 3.14±0.08 −0.03 89Y 34.2±2.20 32.2±0.10 −0.03 11.4±1.20 11.1±0.42 −0.01 139La 37.4±1.90 36.0±0.24 −0.02 7.10±0.60 7.22±0.20 0.01 142Ce 60.3±3.30 62.4±0.93 0.02 20.8±1.80 19.7±0.28 −0.02 141Pr 7.40±0.60 7.29±0.56 −0.01 3.00±0.40 2.75±0.18 −0.04 146Nd 29.8±2.10 30.6±0.82 0.01 11.3±2.20 9.84±0.52 −0.06 149Sm 6.40±0.50 6.50±0.23 0.01 2.10±0.40 1.84±0.06 −0.06 153Eu 1.50±0.10 1.53±0.05 0.01 0.59±0.11 0.587±0.07 0.00 160Gd 5.80±0.40 5.70±0.07 −0.01 1.90±0.30 1.65±0.03 −0.06 159Tb 0.98±0.08 0.983±0.06 0.00 0.34±0.05 0.325±0.03 −0.02 164Dy 5.80±0.40 5.89±0.42 0.01 1.80±0.30 1.64±0.15 −0.04 165Ho 1.20±0.10 1.23±0.04 0.01 0.36±0.06 0.330±0.04 −0.04 170Er 3.20±0.40 3.35±0.35 0.02 1.00±0.20 0.837±0.04 −0.08 169Tm 0.44±0.06 0.491±0.01 0.05 0.14±0.03 0.117±0.004 −0.08 174Yb 2.80±0.30 3.00±0.13 0.03 1.00±0.20 0.857±0.03 −0.07 175Lu 0.41±0.06 0.416±0.02 0.01 0.16±0.05 0.118±0.007 −0.13 表 5 样品元素含量、加标回收率和精密度测试结果
Table 5. Measured values, spiked recovery and precision of analytical elements in the environment samples.
分析元素 样品1#
含量测定均值±SD
(µg/g,n=3)样品2#
含量测定均值±SD
(µg/g,n=3)样品3#
含量测定均值±SD
(µg/g,n=3)样品1#
(n=7)
RSD(%)样品1#
加标量样品1#加标浓度均值
(n=2)加标回收率
(%)45Sc 5.79±0.24 12.4±0.24 10.4±0.12 0.90 0.5 6.22 86.0 5.0 10.4 92.2 25.0 31.3 102.0 89Y 20.6±0.34 28.2±1.03 41.2±0.23 0.36 0.5 21.0 80.0 5.0 25.9 106.0 25.0 47.7 108.0 139La 12.8±0.60 24.5±0.35 27.5±1.57 0.79 0.5 13.3 100.0 5.0 18.0 104.0 25.0 37.6 99.2 142Ce 12.5±0.49 35.8±1.56 28.1±1.65 0.83 0.5 13.0 100.0 5.0 17.3 96.0 25.0 35.6 92.4 141Pr 3.50±0.12 10.4±0.54 5.92±0.31 0.67 0.5 3.92 84.0 5.0 8.41 98.2 25.0 27.3 95.2 146Nd 10.2±0.42 23.2±1.15 23.2±1.27 0.67 0.5 10.6 80.0 5.0 14.9 94.0 25.0 33.3 92.4 149Sm 3.67±0.10 5.39±0.28 5.35±0.25 0.97 0.5 4.13 92.0 5.0 9.03 107.0 25.0 31.1 110.0 153Eu 0.744±0.02 1.18±0.07 1.27±0.07 1.13 0.5 1.27 105.0 5.0 6.19 109.0 25.0 28.1 109.0 160Gd 3.26±0.01 5.54±0.19 5.39±0.26 0.65 0.5 3.67 82.0 5.0 8.71 109.0 25.0 29.4 105.0 159Tb 0.485±0.01 0.886±0.03 0.899±0.03 1.00 0.5 1.01 105.0 5.0 5.87 108.0 25.0 26.4 104.0 164Dy 3.09±0.03 5.35±0.15 4.48±0.24 0.65 0.5 3.64 110.0 5.0 8.51 108.0 25.0 29.0 104.0 165Ho 0.627±0.01 1.10±0.05 1.23±0.03 0.69 0.5 1.19 113.0 5.0 5.90 105.0 25.0 26.3 103.0 170Er 1.78±0.04 3.19±0.14 3.44±0.05 0.81 0.5 2.34 112.0 5.0 6.96 104.0 25.0 27.1 101.0 169Tm 0.198±0.01 0.462±0.02 0.477±0.01 1.17 0.5 0.708 102.0 5.0 5.35 103.0 25.0 25.2 100.0 174Yb 1.45±0.07 3.02±0.11 2.19±0.11 0.88 0.5 2.02 114.0 5.0 6.55 102.0 25.0 26.2 99.0 175Lu 0.213±0.01 0.441±0.02 0.461±0.01 0.65 0.5 0.759 109.0 5.0 5.56 107.0 25.0 26.3 104.0 表 6 酸体系消解效果对比
Table 6. Comparison for digestion effect of acid systems.
酸种类 是否赶酸 复溶酸种类 消解效果 2mL硝酸+6mL盐酸 否 - 消解后底部有大量沉淀 2mL硝酸+4mL盐酸+2mL氢氟酸 否 - 消解后底部有少量沉淀 2mL硝酸+1mL盐酸+4mL氢氟酸+1mL高氯酸 否 - 消解后底部有微量沉淀 2mL硝酸+1mL盐酸+4mL氢氟酸+1mL高氯酸 是 硝酸溶液 消解后及复溶后底部有微量沉淀 2mL硝酸+1mL盐酸+4mL氢氟酸+1mL高氯酸 是 盐酸溶液 消解后有微量沉淀,复溶后溶液略有浑浊 2mL硝酸+1mL盐酸+4mL氢氟酸+1mL高氯酸 是 盐酸+柠檬酸溶液 消解后有微量沉淀,复溶后溶液澄清 表 7 微波消解条件优化
Table 7. Optimization for digestion conditions of microwave.
预加氮气压力
(MPa)工作温度
(℃)保持时间
(min)样品消解效果 4.0 260 40 消解复溶后有微量沉淀 4.0 270 40 消解复溶后溶液澄清 4.0 280 40 消解复溶后溶液澄清 4.0 270 20 消解复溶后有微量沉淀 4.0 270 60 消解复溶后溶液澄清 3.0 270 40 消解复溶后有微量沉淀 5.0 270 40 消解复溶后溶液澄清 表 8 样品元素分析质量数及内标元素
Table 8. Mass number of analytical elements in the samples and internal standard elements.
分析元素 质量数 内标元素 分析元素 质量数 内标元素 镧La 139 Rh 镝Dy 164 Ir 铈Ce 142 Rh 钬Ho 165 Ir 镨Pr 141 Rh 铒Er 170 Ir 钕Nd 146 Rh 铥Tm 169 Ir 钐Sm 149 Ir 镱Yb 174 Ir 铕Eu 153 Ir 镥Lu 175 Ir 钆Gd 160 Ir 钇Y 89 Rh 铽Tb 159 Ir 钪Sc 45 Rh -
[1] 杨丹辉. 中国稀土产业发展与政策研究[M]. 北京: 中国社会科学出版社, 2015: 1-18.
Yang D H. Research on China’s rare earth industry development and policy[M]. China Social Sciences Press, 2015: 1-18.
[2] 侯振宇,何扬. 我国稀土资源概况及应用前景[J]. 内蒙古科技与经济, 2017(7): 28−30,33. doi: 10.3969/j.issn.1007-6921.2017.07.015
Hou Z Y,He Y. General situation and application prospect of rare earth resources in China[J]. Inner Mongolia Science Technology & Economy, 2017(7): 28−30,33. doi: 10.3969/j.issn.1007-6921.2017.07.015
[3] 吴葆存,于亚辉,闫红岭,等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39−45.
Wu B C,Yu Y H,Yan H L,et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39−45.
[4] 姜云军,李星,姜海伦,等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030−1034.
Jiang Y J,Li X,Jiang H L,et al. Determination of tungsten,molybdenum,boron,sulfur and phosphorus in tungsten molybdenum ores by inductively coupled plasma atomic emission spectrometry combined with alkali fusion and separation using ion exchange resin[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(9): 1030−1034.
[5] 王力强,王家松,魏双,等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688−697.
Wang L Q,Wang J S,Wei S,et al. Determination of W,Mo and 11 other elements in tungsten molybdenum ores by inductively coupled plasma optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688−697.
[6] 王琳琳,王力,霍亮,等. 电感耦合等离子体质谱法测定辉钼矿中稀土元素[J]. 世界地质, 2020, 39(3): 731−736.
Wang L L,Wang L,Huo L,et al. Determination of rare earth element in molybdenite by ICP-MS[J]. World Geology, 2020, 39(3): 731−736.
[7] 戴雪峰,沈璐佳,代小吕. 电感耦合等离子体质谱法测定钨钼矿中稀土元素[J]. 广州化工, 2016, 44(1): 116−118. doi: 10.3969/j.issn.1001-9677.2016.01.045
Dai X F,Shen L J,Dai X L. Determination of rare earth elements in tungsten and molybdenum ores by inductively coupled plasma mass spectrometry[J]. Guangzhou Chemical Industry, 2016, 44(1): 116−118. doi: 10.3969/j.issn.1001-9677.2016.01.045
[8] 苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007
Su C F. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007
[9] 高小飞,倪文山,毛香菊,等. 电感耦合等离子体质谱法测定钨钼矿中锗[J]. 冶金分析, 2018, 38(8): 37−42.
Gao X F,Ni W S,Mao X J,et al. Determination of germanium in tungsten molybdenum ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(8): 37−42.
[10] 张祎玮,蒋俊平,李浩,等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605−613.
Zhang Y W,Jiang J P,Li H,et al. Optimization of microwave digestion inductively coupled plasma mass spectrometry for determination of rare earth elements in soil[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 605−613.
[11] 吴英, 胡华兵, 刘志勇. ICP-AES法对钐铕钆富集物中稀土元素谱线干扰的研究[C]//第十五届全国稀土分析化学学术研讨会论文集. 2015: 107-112.
Wu Y, Hu H B, Liu Z Y. ICP-AES method for detection of samarium europium gadolinium richment of rare earth elements in the research of spectral line interference[C]//Proceedings of the 15th National Symposium on Rare Earth Analytical Chemistry. 2015: 107-112.
[12] 李鹰,俞晓峰,寿淼钧,等. 电感耦合等离子体质谱法测定岩石和水系沉积物中痕量稀土元素[J]. 冶金分析, 2016, 36(2): 33−37.
Li Y,Yu X F,Shou M J,et al. Determination of trace rare earth elements in rock and stream sediments by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(2): 33−37.
[13] 巩海娟,王玉,韩健,等. 一体化碰撞反应(iCRC)-电感耦合等离子体质谱(ICP-MS)法测定地质样品中痕量稀土元素[J]. 中国无机分析化学, 2020, 10(2): 42−47. doi: 10.3969/j.issn.2095-1035.2020.02.009
Gong H J,Wang Y,Han J,et al. Determination of trace rare earth elements in geological samples by integrated collision reaction (iCRC)-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 42−47. doi: 10.3969/j.issn.2095-1035.2020.02.009
[14] 梁亚丽,杨珍,阿丽莉,等. ICP-MS法测定钼矿石中伴生锂、镓和稀土元素[J]. 吉林大学学报(理学版), 2021, 59(2): 427−434.
Liang Y L,Yang Z,A L L,et al. Determination of associated lithium,gallium and rare earth elements in molybdenum ore by inductively coupled plasma mass spectrometry method[J]. Journal of Jilin University (Science Edition), 2021, 59(2): 427−434.
[15] 王冠,李华玲,任静,等. 高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J]. 岩矿测试, 2013, 32(4): 561−567.
Wang G,Li H L,Ren J,et al. Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICPMS[J]. Rock and Mineral Analysis, 2013, 32(4): 561−567.
[16] 马莉,司晗. 微波消解样品-电感耦合等离子体质谱法同时测定土壤中重金属元素和稀土元素[J]. 环境科学导刊, 2016, 35(2): 88−91. doi: 10.3969/j.issn.1673-9655.2016.02.019
Ma L,Si H. Determination of heavy metals and rare earth elements in soils by inductively coupled plasma-mass spectrometry with microwave digestion[J]. Environmental Science Survey, 2016, 35(2): 88−91. doi: 10.3969/j.issn.1673-9655.2016.02.019
[17] 白金峰,薄玮,张勤,等. 高分辨电感耦合等离子体质谱法测定地球化学样品中的36种元素[J]. 岩矿测试, 2012, 31(5): 814−819. doi: 10.3969/j.issn.0254-5357.2012.05.010
Bai J F,Bo W,Zhang Q,et al. Determination of 36 elements in geochemical samples by high resolution inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(5): 814−819. doi: 10.3969/j.issn.0254-5357.2012.05.010
[18] 白金峰,张勤,孙晓玲,等. 高分辨电感耦合等离子体质谱法测定地球化学样品中钪钇和稀土元素[J]. 岩矿测试, 2011, 30(1): 17−22. doi: 10.3969/j.issn.0254-5357.2011.01.004
Bai J F,Zhang Q,Sun X L,et al. Determination of Sc,Y and rare earth elements in geochemical samples by high resolution inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 17−22. doi: 10.3969/j.issn.0254-5357.2011.01.004
[19] 张维权,卢水淼,夏晓峰,等. 超级微波消解-全自动重金属分析联用系统测定土壤中18种元素的含量[J]. 理化检验(化学分册), 2022, 58(5): 523−527.
Zhang W Q,Lu S M,Xia X F,et al. Determination of 18 metal elements in soil with super microwave digestion automatic heavy metal analysis system[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2022, 58(5): 523−527.
[20] 吕康,李优琴,倪晓璐,等. 超级微波消解-电感耦合等离子体发射光谱(ICP-OES)法测定土壤中18种元素[J]. 中国无机分析化学, 2023, 13(2): 123−128.
Lyu K,Li Y Q,Ni X L,et al. Determination of eighteen elements in soil by super microwave digestion-inductively coupled plasma optical emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(2): 123−128.
[21] 吴浅耶,孙建民,张维权,等. 超级微波消解-碰撞池-电感耦合等离子体质谱法测定氮化铝粉中钠钨铁锌钛锰[J]. 冶金分析, 2022, 42(7): 19−25. doi: 10.13228/j.boyuan.issn1000-7571.011675
Wu Q Y,Sun J M,Zhang W Q,et al. Determination of sodium,tungsten,iron,zinc,titanium and manganese in aluminum nitride powder by super microwave digestion inductively coupled plasma mass spectrometry with collision cell[J]. Metallurgical Analysis, 2022, 42(7): 19−25. doi: 10.13228/j.boyuan.issn1000-7571.011675
[22] 赵波,潘建忠,闫君,等. 超级微波消解-串联四极杆电感耦合等离子体质谱法测定当归中27种无机元素[J]. 食品安全质量检测学报, 2021, 12(19): 7629−7636.
Zhao B,Pan J Z,Yan J,et al. Determination of 27 kinds of inorganic elements in Angelica sinensis by super microwave digestion-tandem quadrupole inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality, 2021, 12(19): 7629−7636.
[23] 兰冠宇,李鹰,俞晓峰,等. 超级微波消解-电感耦合等离子体质谱(ICP-MS)法测定土壤中13种元素[J]. 中国无机分析化学, 2021, 11(5): 1−8. doi: 10.3969/j.issn.2095-1035.2021.05.001
Lan G Y,Li Y,Yu X F,et al. Determination of 13 elements in soil by inductively coupled plasma mass spectrometry with ultra-microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(5): 1−8. doi: 10.3969/j.issn.2095-1035.2021.05.001
[24] 牛苑文,何兵兵,韩雪. 超级微波消解-ICP-MS法测定蔬菜中砷、镉、铅[J]. 食品安全导刊, 2022(9): 93−96. doi: 10.3969/j.issn.1674-0270.2022.9.spaqdk202209032
Niu Y W,He B B,Han X. Determination of arsenic,cadmium and lead in vegetables by ultrawave digestion-ICP-MS[J]. China Food Safety Magazine, 2022(9): 93−96. doi: 10.3969/j.issn.1674-0270.2022.9.spaqdk202209032
[25] 王蕾,张保科,马生凤,等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661−664.
Wang L,Zhang B K,Ma S F,et al. Determination of wolfram in tungsten ore by pressurized acid digestion inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661−664.
[26] 吴石头,王亚平,孙德忠,等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1): 12−19.
Wu S T,Wang Y P,Sun D Z,et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12−19.
[27] 王风,程相恩,陈传伟. 电感耦合等离子体原子发射光谱法测定钼矿石中的钨钼[J]. 冶金分析, 2014, 34(6): 53−56.
Wang F,Cheng X E,Chen C W. Determination of tungsten and molybdenum in molybdenum ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2014, 34(6): 53−56.
[28] 倪文山,刘长淼,姚明星,等. 电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J]. 冶金分析, 2016, 36(7): 69−73.
Ni W S,Liu C M,Yao M X,et al. Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 69−73.
[29] 徐向阳. 电感耦合等离子体质谱(ICP-MS)在水质卫生检测中应用[J]. 中国卫生检验杂志, 2010, 20(10): 2661−2662,2665.
Xu X Y. Application in water quality sanitation detection by inductively coupled plasma-mass spectrometry (ICP-MS)[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(10): 2661−2662,2665.
[30] 肖玉芳,李明,江冶,等. ICP-MS测定稀土元素的干扰校正研究[J]. 江苏科技信息, 2015(22): 25−28. doi: 10.3969/j.issn.1004-7530.2015.22.010
Xiao Y F,Li M,Jiang Y,et al. Study on interference correction for determination of rare earth elements by ICP-MS[J]. Jiangsu Science & Technology Information, 2015(22): 25−28. doi: 10.3969/j.issn.1004-7530.2015.22.010
[31] 李刚,曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正[J]. 岩矿测试, 2008(3): 197−200.
Li G,Cao X Y. Interference and its elimination in determination of germanium and cadmium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2008(3): 197−200.
[32] 于亚辉,王琳,王明军,等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25−32.
Yu Y H,Wang L,Wang M J,et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25−32.
[33] 熊英,吴赫,王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除[J]. 岩矿测试, 2011, 30(1): 7−11.
Xiong Y,Wu H,Wang L S,et al. Elimination of interference in simultaneous determination of trace Ga,In,Ta,W and Mo in copper,lead and zinc ores by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 7−11.
[34] 章连香,冯先进. 八极杆碰撞/反应池(ORS)-电感耦合等离子体质谱(ICP-MS)法测定复杂矿物中的稀土元素[J]. 中国无机分析化学, 2017, 7(2): 22−26.
Zhang L X,Feng X J. Determination of rare earth elements in complex minerals by octopole reaction system (ORS)-inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(2): 22−26.
[35] 洪光辉,王晴晴,崔喜平,等. ICP-MS分析中的干扰及其消除研究进展[J]. 实验科学与技术, 2021, 19(3): 14−21. doi: 10.12179/1672-4550.20200366
Hong G H,Wang Q Q,Cui X P,et al. The development progress of interference and elimination with ICP-MS[J]. Experiment Science and Technology, 2021, 19(3): 14−21. doi: 10.12179/1672-4550.20200366
[36] 黄凤妹. 微波消解-电感耦合等离子体质谱法检测土壤中16种稀土元素[J]. 中国无机分析化学, 2012, 2(1): 43−46. doi: 10.3969/j.issn.2095-1035.2012.01.0009
Huang F M. Determination of 16 rare earth elements in soil by microwave digestion-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2012, 2(1): 43−46. doi: 10.3969/j.issn.2095-1035.2012.01.0009
[37] 王冠. 云南麻栗坡南秧田白钨矿床痕量稀土元素的测定及分布特征研究[D]. 成都: 成都理工大学, 2011.
Wang G. Characteristics and tracer action of rare earth elements Nanyangtian scheelite mining, Malipo, Yunnan[D]. Chengdu: Chengdu University of Technology, 2011.
[38] 韩江伟,云辉,胡红雷,等. 河南栾川矿集区深部钨钼矿体特征及资源预测[J]. 金属矿山, 2020(11): 141−151.
Han J W,Yun H,Hu H L,et al. Deep ore characteristics of Luanchuan ore concentration area and resource prediction in Henan Province[J]. Metal Mine, 2020(11): 141−151.
[39] 鞠楠. 吉林中部斑岩型钼矿成矿规律与远景预测[D]. 长春: 吉林大学, 2020.
Ju N. Metallogenic regularity and prospective prediction of porphyrymolybdenum deposits in Central Jilin Province, NE China[D]. Changchun: Jilin University, 2020.
[40] 秦燕,王登红,盛继福,等. 中国不同类型钨矿床稀土元素地球化学研究成果综述[J]. 中国地质, 2019, 46(6): 1300−1311.
Qin Y,Wang D H,Sheng J F,et al. A review of research achievements on REE geochemistry of tungsten deposits in China[J]. Geology in China, 2019, 46(6): 1300−1311.