中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

铁含量对白云石拉曼光谱特征的影响

庞江, 张烨毓, 黄毅, 王海波, 刘虎, 王代富, 方继瑶. 铁含量对白云石拉曼光谱特征的影响[J]. 岩矿测试, 2023, 42(4): 852-862. doi: 10.15898/j.ykcs.202211030210
引用本文: 庞江, 张烨毓, 黄毅, 王海波, 刘虎, 王代富, 方继瑶. 铁含量对白云石拉曼光谱特征的影响[J]. 岩矿测试, 2023, 42(4): 852-862. doi: 10.15898/j.ykcs.202211030210
PANG Jiang, ZHANG Yeyu, HUANG Yi, WANG Haibo, LIU Hu, WANG Daifu, FANG Jiyao. Effect of Fe Content on Raman Spectral Characteristics of Dolomite[J]. Rock and Mineral Analysis, 2023, 42(4): 852-862. doi: 10.15898/j.ykcs.202211030210
Citation: PANG Jiang, ZHANG Yeyu, HUANG Yi, WANG Haibo, LIU Hu, WANG Daifu, FANG Jiyao. Effect of Fe Content on Raman Spectral Characteristics of Dolomite[J]. Rock and Mineral Analysis, 2023, 42(4): 852-862. doi: 10.15898/j.ykcs.202211030210

铁含量对白云石拉曼光谱特征的影响

  • 基金项目: 四川省中央引导地方科技发展专项项目“四川盆地海相高演化页岩有机质孔隙发育机制及含气量评价研究”(2020ZYD027)
详细信息
    作者简介: 庞江,硕士,工程师,从事矿物学和油气储层地质学研究工作。E-mail:18392179630@163.com
    通讯作者: 张烨毓,硕士,高级工程师,从事非常规油气储层研究工作。E-mail:147329836@qq.com
  • 中图分类号: O657.31

Effect of Fe Content on Raman Spectral Characteristics of Dolomite

More Information
  • 白云石中Fe含量分析是研究白云石(岩)成因的重要手段,研究白云石中Fe含量与拉曼光谱之间的关系能够提供一种利用拉曼光谱原位测定白云石中Fe含量的潜在方法。本次研究应用显微共聚焦激光拉曼光谱仪对不同Fe含量的白云石进行了拉曼光谱分析,并对其拉曼光谱变化特征进行了研究。研究结果表明,相较于白云石,铁白云石各个拉曼特征峰均向低频方向偏移。白云石的拉曼特征峰位移与Fe含量呈明显的线性关系,随着Fe含量增加,白云石的各个拉曼特征峰位移均减小。相较于[CO3]2−基团内部振动特征峰(v1v3v4峰),两个晶格振动特征峰(T峰和L峰)随Fe含量变化的偏移更为明显。研究认为,由于Fe2+的离子半径大于Mg2+,当Fe2+替代白云石晶格中的Mg2+后,晶格中金属-氧键平均键长变长、平均键能变弱,从而改变了金属-氧键和C-O键拉曼活性振动,致使拉曼特征峰向低频方向偏移。本次研究初步建立了基于拉曼光谱中L峰和v1峰的峰间距测定白云石中Fe含量的方法,与传统方法相比,该方法对样品要求较低,能够进行非破坏性测试。

  • 加载中
  • 图 1  方解石族矿物中[CO3]2-基团4种内部振动模式示意图2729

    Figure 1. 

    图 2  不同成分白云石的拉曼光谱特征(KY-1、KY-2、KY-2-2、KY-3、KY-4、KY-5、KY-5-2、KY-6、KY-6-2和KY-7号红色谱图为本次研究获得,其余黑色谱图收集自RRUFF数据库)

    Figure 2. 

    图 3  白云石主要拉曼特征峰位移与其FeCO3含量的线性关系

    Figure 3. 

    图 4  白云石v1峰和L峰的峰间距与其FeCO3含量的线性关系

    Figure 4. 

    表 1  白云石矿物拉曼特征峰位移及化学成分数据

    Table 1.  Dates of Raman peak position and chemical composition of dolomite minerals.

    样品编号矿物种类化学成分(%)拉曼特征峰峰位(cm−1数据来源
    MgOCaOMnOFeOTLL2v4v2v1v3
    KY-1 白云石 20.60 32.40 0.02 0.08 177 301 / 724 / 1098 1445 本次研究
    KY-2 白云石 21.90 30.45 / / 176 300 / 726 / 1098 1441
    KY-2-1 白云石 18.74 27.21 0.10 5.88 173 296 / 722 / 1095 1440
    KY-3 白云石 21.97 30.85 / 0.04 176 301 / 724 / 1097 1445
    KY-4 白云石 21.84 30.85 / 0.03 176 300 / 725 / 1098 1441
    KY-5 白云石 21.81 29.95 0.01 0.04 177 299 / 725 / 1097 1443
    KY-5-1 白云石 16.02 27.55 0.37 9.14 171 293 / 722 / 1094 1438
    KY-6 白云石 18.01 28.74 0.01 6.32 172 293 / 723 / 1094 1440
    KY-6-2 白云石 21.79 30.63 / 0.04 175 297 / 723 / 1095 1442
    KY-7 白云石 19.78 29.07 0.01 4.17 173 294 / 723 / 1095 1443
    R050181 铁白云石 6.87 27.16 1.69 20.57 170 284 / 723 / 1094 1443 RRUFF数据库
    http://rruff.info/
    R050197 铁白云石 6.88 29.87 1.60 17.95 170 284 / 720 / 1093 1436
    X050018 铁白云石 - - - - / 283 / 724 / 1092 1438
    X050019 铁白云石 - - - - / 288 / 724 / 1095 1441
    R040030 白云石 21.32 29.75 0.09 0.00 178 302 341 726 883 1100 1444
    R050129 白云石 13.22 29.68 1.07 10.84 171 290 / 721 / 1092 1437
    X050062 白云石 - - - - / 302 / 726 883 1097 /
    X050063 白云石 - - - - / 302 / 726 881 1097 /
    R050241 白云石 20.71 26.88 0.08 0.62 176 299 339 725 881 1098 1442
    R050272 白云石 12.60 27.60 7.48 6.84 173 295 / 722 / 1095 1441
    R050357 白云石 18.37 29.06 0.12 0.65 176 300 338 725 882 1098 1442
    R050370 白云石 16.36 26.53 0.70 6.40 172 291 / 723 / 1094 1440
    R100118 白云石 - - - - 178 301 340 726 882 1099 /
    R100168 白云石 - - - - 177 301 340 725 882 1099 /
    注:“-”表示未进行测试,“/”表示未检出或低于检测限。
    下载: 导出CSV

    表 2  方解石、白云石和菱铁矿拉曼活性振动特征峰峰位(据文献[2931]修改)

    Table 2.  Summary of Raman peak positions for lattice vibration and internal vibration modes in calcite, dolomite, magnesite (Modified from Reference [29,31]).

    拉曼活性振动模式峰位(cm−1
    方解石白云石菱镁矿
    晶格振动T(平移)154175213
    L(摆动)284299,331329
    内部C—O键
    振动
    v1(对称伸缩)108510971094
    2v2(面外弯曲)174817501762
    v3(反对称伸缩)143414391444
    v4(面内弯曲)711724738
    下载: 导出CSV
  • [1]

    马锋,杨柳明,顾家裕,等. 世界白石岩油气田勘探综述[J]. 沉积学报, 2011, 29(5): 1010−1021.

    Ma F,Yang L M,Gu J Y,et al. The summary on exploration of the dolomite oilfields in the world[J]. Acta Sedimentologica Sinica, 2011, 29(5): 1010−1021.

    [2]

    苏中堂,佘伟,廖慧鸿,等. 白云岩储层成因研究进展及发展趋势[J]. 天然气地球科学, 2022, 33(7): 1175−1188.

    Su Z T,She W,Liao H H,et al. Research progress and development trend of the genesis of dolomite reservoirs[J]. Natural Gas Geoscience, 2022, 33(7): 1175−1188.

    [3]

    赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:地球科学, 2014, 44(9): 1952−1939.

    Zhao W Z,Shen A J,Zheng J F,et al. The porosity origin of dolostone reservoirs in the Tarim,Sichuan and Ordos Basins and its implication to reservoir prediction[J]. Science China:Earth Sciences, 2014, 44(9): 1952−1939.

    [4]

    杜金虎,邹才能,徐春春,等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268−277.

    Du J H,Zou C N,Xu C C,et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of Central Sichuan paleo-uplift,Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268−277.

    [5]

    乐宏,赵路子,杨雨,等. 四川盆地寒武系沧浪铺组油气勘探重大发现及其启示[J]. 天然气工业, 2020, 40(11): 11−19. doi: 10.3787/j.issn.1000-0976.2020.11.002

    Yue H,Zhao L Z,Yang Y,et al. Great discovery of oil and gas exploration in Cambrian Canglangpu Formation of the Sichuan Basin and its implications[J]. Natural Gas Industry, 2020, 40(11): 11−19. doi: 10.3787/j.issn.1000-0976.2020.11.002

    [6]

    杨雨,谢继容,赵路子,等. 四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示——以川中北部地区JT1井天然气立体勘探为例[J]. 天然气工业, 2021, 41(2): 1−9.

    Yang Y,Xie J R,Zhao L Z,et al. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment:A case study of the tridimensional exploration of Well JT1 in the Central-Northern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2): 1−9.

    [7]

    肖冰清,曹淑娟,邬光辉. 塔西南地区海相碳酸盐岩勘探突破新领域:寒武系白云岩[J]. 海相油气地质, 2017, 22(2): 17−24. doi: 10.3969/j.issn.1672-9854.2017.02.003

    Xiao B Q,Cao S J,Wu G H,et al. New realm of marine carbonate exploration in Southwestern Tarim Basin:Cambrian dolomite[J]. Marine Origin Petroleum Geology, 2017, 22(2): 17−24. doi: 10.3969/j.issn.1672-9854.2017.02.003

    [8]

    谢会文,能源,敬兵,等. 塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J]. 中国石油勘探, 2017, 22(3): 1−11.

    Xie H W,Neng Y,Jing B,et al. New discovery in exploration of Cambrian—Ordovician dolomite buried hills in Tarim Basin and its significance[J]. China Petroleum Exploration, 2017, 22(3): 1−11.

    [9]

    何海清,郭绪杰,赵振宇,等. 鄂尔多斯盆地奥陶系盐下马四段天然气成藏新认识及勘探重大突破[J]. 石油勘探与开发, 2022, 49(3): 429−439.

    He H Q,Guo X J,Zhao Z Y,et al. New understandings on gas accumulation and major exploration breakthroughs in subsalt Ma4 Member of Ordovician Majiagou Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2022, 49(3): 429−439.

    [10]

    Burns S J,Mckenzie J A,Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2010, 47(S1): 49−61.

    [11]

    李红,柳益群. “白云石(岩)问题”与湖相白云岩研究[J]. 沉积学报, 2013, 31(2): 302−314.

    Li H,Liu Y Q. “Dolomite Problem” and research of ancient lacustrine dolostones[J]. Acta Sedimentologica Sinica, 2013, 31(2): 302−314.

    [12]

    张亦凡,马怡飞,姚奇志,等. “白云石问题”及其实验研究[J]. 高校地质学报, 2015, 21(3): 395−406.

    Zhang Y F,Ma Y F,Yao Q Z,et al. “Dolomite Problem” and experimental studies of dolomite formation[J]. Geological Journal of China Universities, 2015, 21(3): 395−406.

    [13]

    何治亮,马永生,张军涛,等. 中国的白云岩与白云岩储层:分布,成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1−14.

    He Z L,Ma Y S,Zhang J T,et al. Distribution,genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil and Gas Geology, 2020, 41(1): 1−14.

    [14]

    张军涛,何治亮,岳小娟,等. 鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因[J]. 石油与天然气地质, 2017, 38(4): 776−783. doi: 10.11743/ogg20170414

    Zhang J T,He Z L,Yue X J,et al. Genesis of iron-rich dolostones in the 5th member of the Majiagou Formation of the Ordovician in Ordos Basin[J]. Oil and Gas Geology, 2017, 38(4): 776−783. doi: 10.11743/ogg20170414

    [15]

    Hendry J P,Wilkinson M,Fallick A E,et al. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea[J]. Journal of Sedimentary Research, 2000, 70(1): 227−239. doi: 10.1306/2DC4090D-0E47-11D7-8643000102C1865D

    [16]

    沈江远,闫琢玉,付和平,等. 西永2井中新统铁白云岩空间变异特征及成因[J]. 海洋地质前沿, 2021, 37(6): 39−48.

    Sheng J Y,Yan Z Y,Fu H P,et al. Spatial variation and genesis of Miocene ankerite in Well Xiyong 2[J]. Marine Geology Frontiers, 2021, 37(6): 39−48.

    [17]

    Xi K,Cao Y,Zhu R,et al. Evidences of localized CO2-induced diagenesis in the Cretaceous Quantou Formation,Southern Songliao Basin,China[J]. International Journal of Greenhouse Gas Control, 2016, 52: 155−174. doi: 10.1016/j.ijggc.2016.07.010

    [18]

    庞江,罗静兰,马永坤,等. 白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系[J]. 地质学报, 2019, 93(3): 724−737.

    Pang J,Luo J L,Ma Y K,et al. Forming mechanism of ankerite in Tertiary reservoir of the Baiyun Sag,Pearl River Mouth Basin,and its relationship to CO2-bearing fluid activity[J]. Acta Geologica Sinica, 2019, 93(3): 724−737.

    [19]

    柳益群,李红,朱玉双,等. 白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩[J]. 沉积学报, 2010, 28(5): 861−867.

    Liu Y Q,Li H,Zhu Y S,et al. Permian lacustrine eruptive hydrothermal dolomite,Santanghu Basin,Xinjiang Province[J]. Acta Sedimentologica Sinica, 2010, 28(5): 861−867.

    [20]

    由雪莲,贾文强,徐帆,等. 铁白云石矿物学特征及原生次生成因机制[J]. 地球科学, 2018, 43(11): 4046−4055.

    You X L,Jia W Q,Xu F,et al. Mineralogical characteristics of ankerite and mechanisms of primary and secondary origins[J]. Earth Science, 2018, 43(11): 4046−4055.

    [21]

    Guedes A,Valentim B,Prieto A C,et al. Micro-Raman spectroscopy of collotelinite,fusinite and macrinite[J]. International Journal of Coal Geology, 2010, 83(4): 415−422. doi: 10.1016/j.coal.2010.06.002

    [22]

    宁珮莹,张天阳,马泓,等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640−648.

    Ning P Y,Zhang T Y,Ma H,et al. Characterization of hydrous mineral inclusions in ruby and sapphire by infrared spectroscopy and microscopic confocal laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640−648.

    [23]

    何佳乐,龚婷婷,潘忠习,等. 细微矿物拉曼成像分析技术与方法研究[J]. 岩矿测试, 2021, 40(4): 491−503.

    He J L,Gong T T,Pan Z X,et al. Raman imaging analysis method of fine minerals in rock ore[J]. Rock and Mineral Analysis, 2021, 40(4): 491−503.

    [24]

    薛金涛,李春燕,吴纯洁,等. 拉曼光谱在多组分定量分析中方法学验证的探讨[J]. 光谱学与光谱分析, 2017, 37(1): 120−123.

    Xue J T,Li C Y,Wu C J,et al. The study of methodogy validation in multi component quantitative analysis of Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 120−123.

    [25]

    马瑛,王琦,丘志力,等. 湖南砂矿金刚石中石墨包裹体拉曼光谱原位测定:形成条件及成因指示[J]. 光谱学与光谱分析, 2018, 38(6): 99−103.

    Ma Y,Wang Q,Qiu Z L,et al. In-situ Raman spectroscopy determination testing and genesis of graphite inclusions in alluvial diamonds from Hunan[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 99−103.

    [26]

    Edwards H,Villar S,Jehlicka J,et al. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals[J]. Spectrochimica Part A:Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2273−2280. doi: 10.1016/j.saa.2005.02.026

    [27]

    杜广鹏,范建良. 方解石族矿物的拉曼光谱特征[J]. 矿物岩石, 2010, 30(4): 32−35. doi: 10.3969/j.issn.1001-6872.2010.04.007

    Du G P,Fan J L. Characteristics of Raman spectral of calcite group minerals[J]. Journal of Mineralogy and Petrology, 2010, 30(4): 32−35. doi: 10.3969/j.issn.1001-6872.2010.04.007

    [28]

    White W B. The carbonate minerals[M]//Farmer V C. The infra-red spectra of the minerals. London: Mineralogical Society, 1974: 227-284.

    [29]

    Bischoff W D,Mackenzie F T,Sharma S K. Carbonate disorder in synthetic and biogenic magnesian calcites:A Raman spectral study[J]. American Mineralogist, 1985, 70: 581−589.

    [30]

    朱莹,黎晏彰,鲁安怀,等. 方解石、白云石、菱镁矿的中远红外光谱学特征研究[J]. 地学前缘, 2022, 29(1): 459−469.

    Zhu Y,Li Y Z,Lu A H,et al. Middle and far infrared spectroscopic analysis of calcite,dolomite and magnesite[J]. Earth Science Frontiers, 2022, 29(1): 459−469.

    [31]

    Wang D B,Hamm L M,Bodnar R J,et al. Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates[J]. Journal of Raman Spectroscopy, 2012, 43: 543−548. doi: 10.1002/jrs.3057

    [32]

    付宛璐,袁学银. 镁对方解石相变压力和拉曼光谱影响的实验研究[J]. 光谱学与光谱分析, 2019, 39(7): 2053−2058.

    Fu W L,Yuan X Y. Study on the influence of magnesium on the phase transition pressures and Raman vibrations of calcite[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2053−2058.

    [33]

    王祥. 方解石族和文石族碳酸盐高温振动光谱学研究——对碳同位素平衡分馏热力学模型的启示[D]. 武汉: 中国地质大学(武汉), 2020: 1−9.

    Wang X. High-temperature vibrational spectroscopy of calcite group and aragonite group carbonates: Implications for the thermo-equilibrium carbon isotope fractionation[D]. Wuhan: China University of Geosciences (Wuhan), 2020: 1−9.

    [34]

    Gligor J,Viktor S,Soptrajanov B,et al. Minerals from macedonia. Ⅳ. Discrimination between some carbonate minerals by FTIR spectroscopy[J]. Neues Jahrbuch für Mineralogie- Abhandlungen, 2002, 177(3): 241−253.

    [35]

    赵俊哲,吕新彪. 高压下白云石的原位拉曼光谱研究[J]. 岩矿测试, 2008, 27(5): 337−340. doi: 10.3969/j.issn.0254-5357.2008.05.005

    Zhao J Z,Lyu X B. Study on in-situ Raman spectra of dolomite under high pressure[J]. Rock and Mineral Analysis, 2008, 27(5): 337−340. doi: 10.3969/j.issn.0254-5357.2008.05.005

    [36]

    Herman R G, Bogdan C E, Sommer A J. Laser Raman microprobe study of the identification and thermal transformations of some carbonate and aluminosilicate minerals[M]//Advances in materials characterization Ⅱ. Springer US, 1987: 113−130.

    [37]

    潘兆橹. 结晶学及矿物学(下册)[M]. 北京: 地质出版社, 1998: 254−256.

    Yao Z L. Crystallography and mineralogy (Part Ⅱ)[M]. Beijing: Geological Publishing House, 1998: 254−256.

    [38]

    Chai L,Navrotsky A. Synthesis,characterization,and energetics of solid solution along the dolomite-ankerite join,and implications for the stability of ordered CaFe(CO3)2[J]. American Mineralogist, 1996, 81(9-10): 1141−1147. doi: 10.2138/am-1996-9-1012

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1110
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2022-11-03
修回日期:  2023-03-24
录用日期:  2023-06-07
刊出日期:  2023-08-31

目录