中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

振荡提取-荧光分光光度法分析土壤样品中石油类物质

李媛, 段小燕, 施玉格, 李刚. 振荡提取-荧光分光光度法分析土壤样品中石油类物质[J]. 岩矿测试, 2023, 42(6): 1240-1247. doi: 10.15898/j.ykcs.202211150218
引用本文: 李媛, 段小燕, 施玉格, 李刚. 振荡提取-荧光分光光度法分析土壤样品中石油类物质[J]. 岩矿测试, 2023, 42(6): 1240-1247. doi: 10.15898/j.ykcs.202211150218
LI Yuan, DUAN Xiaoyan, SHI Yuge, LI Gang. Determination of Petroleum Oil in Soil by Fluorescence Spectrophotometry with Oscillatory Extraction[J]. Rock and Mineral Analysis, 2023, 42(6): 1240-1247. doi: 10.15898/j.ykcs.202211150218
Citation: LI Yuan, DUAN Xiaoyan, SHI Yuge, LI Gang. Determination of Petroleum Oil in Soil by Fluorescence Spectrophotometry with Oscillatory Extraction[J]. Rock and Mineral Analysis, 2023, 42(6): 1240-1247. doi: 10.15898/j.ykcs.202211150218

振荡提取-荧光分光光度法分析土壤样品中石油类物质

  • 基金项目: 新疆维吾尔自治区科学技术厅特培项目“新疆乌鲁木齐市大气中汞形态和污染特征研究”(2021D03017)
详细信息
    作者简介: 李媛,博士,高级工程师,从事环境监测工作。E-mail:13458532@qq.com。
    通讯作者: 施玉格,硕士,高级工程师,从事环境监测工作。E-mail:398971475@qq.com。
  • 中图分类号: TL271;S151.9

Determination of Petroleum Oil in Soil by Fluorescence Spectrophotometry with Oscillatory Extraction

More Information
  • 石油类物质是中国建设用地土壤污染风险管控的污染物之一,开展土壤中石油类物质的检测对土壤污染防治工作具有重要意义。本文采用正己烷为萃取溶剂,土壤经振荡提取后,以荧光光度法为检测手段,建立了一种绿色环保、灵敏高效的土壤石油类物质检测方法。通过对实验过程进行优化,该方法的线性相关系数r≥0.999,检出限为3mg/kg。使用10种不同类型土壤进行方法精密度和准确度验证,精密度为2.5%~9.2%,基体加标回收率为80.0%~110%。为验证方法可比性,分别使用本方法和《土壤 石油类的测定 红外分光光度法》(HJ 1051—2019)对5种不同类型土壤进行检测比对,测定结果相对偏差在5.0%~15%之间,具有较好的一致性。

  • 加载中
  • 图 1  不同波长下石油类物质响应值测定结果

    Figure 1. 

    表 1  实际样品石油类物质的测定精密度

    Table 1.  The precision results of petroleum oil in different actual soil samples

    测定次数实际样品石油类物质的测定结果(mg/kg)
    样品1-1样品1-2样品1-3样品1-4样品1-5样品1-6样品2-1样品2-2样品2-3样品2-4
    132483121224<3<3<3<3
    230434131323<3<3<3<3
    335503151123<3<3<3<3
    432474121422<3<3<3<3
    535484141223<3<3<3<3
    631444141222<3<3<3<3
    平均值(mg/kg)32474131223////
    SD(mg/kg)2.12.70.11.21.00.8////
    RSD(%)6.65.72.59.28.33.5////
    下载: 导出CSV

    表 2  化工厂厂界周边土壤样品中石油类物质的准确度测定结果

    Table 2.  The accuracy results of petroleum oil in perimeter soil samples from the chemical plant

    测定
    次数
    样品1-1样品1-2样品1-3样品1-4样品1-5样品1-6
    样品(mg/kg)加标样品(mg/kg)样品(mg/kg)加标样品(mg/kg)样品(mg/kg)加标样品(mg/kg)样品(mg/kg)加标样品(mg/kg)样品(mg/kg)加标样品(mg/kg)样品(mg/kg)加标样品(mg/kg)
    1327948149313122512302476
    2307343145413132213282364
    3359050140313152511302370
    4327447155412122114292271
    5358548150412142512272376
    6317044138411142512282268
    平均值327847146412132412292371
    加标量5010010102050
    回收率
    (%)
    92.099.080.0110.085.096.0
    下载: 导出CSV

    表 3  农用地土壤样品中石油类物质的准确度测定结果

    Table 3.  The accuracy results of petroleum oil in soil samples from agricultural land

    测定次数2-12-22-32-4
    样品
    (mg/kg)
    加标样品
    (mg/kg)
    样品
    (mg/kg)
    加标样品
    (mg/kg)
    样品
    (mg/kg)
    加标样品
    (mg/kg)
    样品
    (mg/kg)
    加标样品
    (mg/kg)
    1<39<310<310<39
    2<39<39<39<38
    3<39<310<39<38
    4<38<39<38<38
    5<39<38<310<39
    6<38<38<39<39
    平均值9998
    加标量10101010
    回收率(%)90.090.090.080.0
    下载: 导出CSV

    表 4  采用不同硅酸镁净化方式石油类物质的测定结果

    Table 4.  The results of petroleum oil determined with different purification modes of magnesium silicate

    测定
    次数
    振荡吸附法
    (玻璃漏斗+玻纤滤膜)
    吸附柱吸附法振荡吸附法
    (玻璃漏斗+玻纤滤膜)
    吸附柱吸附法
    净化后测定值
    (mg/kg)
    杂质
    去除率(%)
    净化后测定值
    (mg/kg)
    杂质
    去除率(%)
    测定值
    (mg/kg)
    空白加标回收率
    (%)
    测定值
    (mg/kg)
    空白加标回收率
    (%)
    1590.0<3100.01890.020100.0
    2688.0<3100.01890.01995.0
    3688.0<3100.01890.021105.0
    4590.0<3100.01890.01995.0
    5492.0<3100.01995.01995.0
    6590.0<3100.01995.020100.0
    平均值590.0<3100.01890.020100.0
    下载: 导出CSV

    表 5  不同硅酸镁填充高度对植物油的吸附效率

    Table 5.  The absorption efficiency of vegetable oil with different height of magnesium silicate extraction column

    参数100mL浓度为500mg/L的植物油溶液
    硅酸镁高度(mm)406080100120
    植物油测定浓度(mg/L)9.833.320.000.000.00
    吸附效率(%)99.099.6100.0100.0100.0
    下载: 导出CSV

    表 6  本文的荧光分光光度法与红外分光光度法(现行标准方法)比对结果

    Table 6.  Comparison of analytical results of petroleum oil determined with fluorescence spectrophotometry (this method) and infrared spectrophotometry (standard methods)

    实际样品
    编号
    红外分光光度法(mg/kg)荧光分光光度法(mg/kg)红外分光光度法和
    荧光分光光度法
    相对偏差(%)
    样品3-1<4<3/
    样品3-2<4<3/
    样品3-3161215
    样品3-453485.0
    样品3-539329.9
    下载: 导出CSV
  • [1]

    吕志萍,程龙飞. 石油污染土壤中石油含量对玉米的影响[J]. 油气田环境保护, 2001, 11(1): 36−37.

    Lyu Z P,Cheng L F. The influence on corn growth caused by petroleum concentration of soil contaminated by petroleum[J]. Environmental Protection of Oil & Gas Fields, 2001, 11(1): 36−37.

    [2]

    魏样. 土壤石油污染的危害及现状分析[J]. 中国资源综合利用, 2020, 38(4): 120−122. doi: 10.3969/j.issn.1008-9500.2020.04.033

    Wei Y. The harm and present situation of soil oil pollution[J]. China Resources Comprehensive Utilization, 2020, 38(4): 120−122. doi: 10.3969/j.issn.1008-9500.2020.04.033

    [3]

    李玉芳,潘萌,顾涛,等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578−586.

    Li Y F,Pan M,Gu T,et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation,Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578−586.

    [4]

    曹小聪,吴晓晨,徐文帅,等. 水和沉积物中石油烃的分析方法及污染特征研究进展[J]. 黄靖工程技术学报, 2020, 10(5): 871−882.

    Cao X C,Wu X C,Xu W S,et al. Research progress of analytical methods and pollution characteristics of petroleum hydrocarbons in water and sediment[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 871−882.

    [5]

    刘丹青. 我国污染场地土壤石油烃环境质量标准体系的现状与趋势[J]. 中国环境监测, 2020, 36(1): 138−146.

    Liu D Q. Current situation and trend of petroleum hydrocarbon related standard system in contaminated site soils of China[J]. Environmental Monitoring in China, 2020, 36(1): 138−146.

    [6]

    安彩秀,刘淑红,史会卿,等. 一种计算环境样品中石油类总量的红外标准曲线法[J]. 岩矿测试, 2022, 41(5): 1−9.

    An C X,Liu S H,Shi H Q,et al. An infrared standard curve method for calculating the total amount of petroleum in environmental samples[J]. Rock and Mineral Analysis, 2022, 41(5): 1−9.

    [7]

    薛广海,李强,刘庆,等. 当前国内外含油污泥处理标准及石油烃检测方法的深度剖析和对比[J]. 石油化工应用, 2019, 38(1): 1−6.

    Xue G H,Li Q,Liu Q,et al. In-depth analysis and comparison on the standards and testing methods for oil contaminated soil of domestic and international[J]. Petrochemical Industry Application, 2019, 38(1): 1−6.

    [8]

    赵昌平,冯小康,朱强. 快速溶剂萃取-气相色谱法测定土壤中石油烃(C10-C40)[J]. 理化检验(化学分册), 2020, 56(7): 827−831.

    Zhao C P,Feng X K,Zhu Q. GC determination of petroleum hydrocarb (C10-C40) in soil with rapid solvent extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(7): 827−831.

    [9]

    段旭,李慧慧,杨柳晨,等. 土壤中总石油烃测定3种前处理方法的比对[J]. 福建分析测试, 2019, 28(3): 47−50.

    Duan X,Li H H,Yang L C,et al. Three pretreatment methods of methods of determination of total petroleum hydrocarbon in soil[J]. Fujian Analysis & Testing, 2019, 28(3): 47−50.

    [10]

    曹攽,胡祖国,郑存江,等. 超声萃取-气相色谱法测定土壤中石油烃[J]. 理化检验(化学分册), 2018, 54(3): 275−279.

    Cao B,Hu Z G,Zheng C J,et al. Determination of petroleum hydrocarbons in soil by GC combined with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(3): 275−279.

    [11]

    Adeniji A O, Okoh O O, Okoh A I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review[J]. Journal of Chemistry, 2017, doi: 10.1155/2017/5178937.

    [12]

    吴嘉鹏,楼振纲,胡笑妍,等. 紫外法与红外法测定石油类的比对研究[J]. 中国无机分析化学, 2019, 9(6): 78−82. doi: 10.3969/j.issn.2095-1035.2019.06.017

    Wu J P,Lou Z G,Hu X Y,et al. Comparison of ultraviolet and infrared spectrophotometry in the determination of petroleum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 78−82. doi: 10.3969/j.issn.2095-1035.2019.06.017

    [13]

    刘玉龙,黄燕高,刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探[J]. 岩矿测试, 2019, 38(1): 102−111. doi: 10.15898/j.cnki.11-2131/td.201709040139

    Liu Y L,Huang Y G,Liu F. Analysis of total petroleum hydrocarbon fractions in soils by gas chromatography:Standardized calibration and quantitation method[J]. Rock and Mineral Analysis, 2019, 38(1): 102−111. doi: 10.15898/j.cnki.11-2131/td.201709040139

    [14]

    赵江华,王鹏,黎卫亮,等. 复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究[J]. 岩矿测试, 2021, 40(3): 375−383.

    Zhang J H,Wang P,Li W L,et al. An infrared standard curve method for calculating the total amount of petroleum in environmental samples[J]. Rock and Mineral Analysis, 2021, 40(3): 375−383.

    [15]

    Ann A,Michael R,Veronica M,et al. Long-term health effects of early life exposure to tetrachoroethylene (PCE)-contaminated drinking water:Aretrospective cohort study[J]. Environmental Health, 2015, 14(1): 36. doi: 10.1186/s12940-015-0021-z

    [16]

    左兆陆. 土壤石油烃类污染物荧光测量技术及应用研究[D]. 合肥: 中国科学技术大学, 2020.

    Zuo Z L. Application study on fluorescence measurement technology of petroleum hydrocarbon pollutants in soil[D]. Hefei: University of Science and Technology of China, 2020.

    [17]

    左兆陆,赵南京,孟德硕,等. 基于三维荧光光谱的土壤中石油类有机物分类识别[J]. 激光与光电子学进展, 2019, 56(22): 222601-1−222601-7.

    Zuo Z L,Zhao N J,Meng D S,et al. Indentification of petroleum organic matter in soil based on three-dimensional fluorescence spectroscopy[J]. Laser & Optoelectronics Progress, 2019, 56(22): 222601-1−222601-7.

    [18]

    魏玲. 石油产品及其污染土壤中多环芳烃的荧光光谱特征[D]. 南宁: 广西师范大学, 2010.

    Wei L. Characteristics of fluorescence spectra of polycyclic aromatic hydrocarbons in petroleum products and oil-contaminated soil[D]. Nanning: Guangxi Normal University, 2010.

  • 加载中

(1)

(6)

计量
  • 文章访问数:  239
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2022-11-15
修回日期:  2022-12-22
录用日期:  2023-03-31
刊出日期:  2023-12-31

目录