中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

沉积岩中总有机碳测定的自动预处理方法

许智超, 孙玮琳, 王晓芳, 杨佳佳, 沈斌, 徐学敏, 张小涛, 秦婧. 沉积岩中总有机碳测定的自动预处理方法[J]. 岩矿测试, 2023, 42(6): 1230-1239. doi: 10.15898/j.ykcs.202208240157
引用本文: 许智超, 孙玮琳, 王晓芳, 杨佳佳, 沈斌, 徐学敏, 张小涛, 秦婧. 沉积岩中总有机碳测定的自动预处理方法[J]. 岩矿测试, 2023, 42(6): 1230-1239. doi: 10.15898/j.ykcs.202208240157
XU Zhichao, SUN Weilin, WANG Xiaofang, YANG Jiajia, SHEN Bin, XU Xuemin, ZHANG Xiaotao, QIN Jing. Automatic Pretreatment Methods for Determination of Total Organic Carbon in Sedimentary Rocks[J]. Rock and Mineral Analysis, 2023, 42(6): 1230-1239. doi: 10.15898/j.ykcs.202208240157
Citation: XU Zhichao, SUN Weilin, WANG Xiaofang, YANG Jiajia, SHEN Bin, XU Xuemin, ZHANG Xiaotao, QIN Jing. Automatic Pretreatment Methods for Determination of Total Organic Carbon in Sedimentary Rocks[J]. Rock and Mineral Analysis, 2023, 42(6): 1230-1239. doi: 10.15898/j.ykcs.202208240157

沉积岩中总有机碳测定的自动预处理方法

  • 基金项目: 中国地质科学院基本科研业务费项目(CSJ202206); 中国地质调查局地质调查项目(DD20221783)
详细信息
    作者简介: 许智超,博士,工程师,主要从事非常规油气的储层特征研究。E-mail:xuzhichaojerry@163.com。
    通讯作者: 孙玮琳,正高级工程师,主要从事有机地球化学研究。E-mail:sunweilin2003@163.com。
  • 中图分类号: P588.2; X502

Automatic Pretreatment Methods for Determination of Total Organic Carbon in Sedimentary Rocks

More Information
  • 总有机碳(TOC)是衡量烃源岩有机质丰度的首要指标,实现其高效准确测定具有重要的现实意义。在TOC整体测试流程中,用稀盐酸去除无机碳的样品预处理过程目前主要采用手动法进行,存在周期长、氯化物残留等问题,成为制约整体测试效率的首要因素。学者们研究了溶样时间、溶样温度、离心洗样等对TOC测定值的影响,但尚未形成系统的预处理方法,预处理效率也未得到实质性改善。本文利用自主研制的有机碳自动预处理仪建立了两种自动预处理方法;根据国家标准 《沉积岩中总有机碳的测定》(GB/T 19145—2022)规定的预处理流程,采用多种岩性、不同TOC水平的国家标准物质和质量控制样品对这两种预处理方法进行了方法验证;并进一步分析了自动预处理方法的优势。结果表明,两种自动预处理的方法回收率总体为96.23%~102.12%,相对标准偏差为0.37%~3.23%,满足标准规定的数据准确性、重复性和再现性要求,数据质量较手动法得到进一步提升;自动预处理法的预处理时长大幅缩短至4~6h/批,提高了测试效率;氯离子活度对洗样次数的变化更为敏感,且可监测并有效降低样品中氯化物的残留量,建议作为洗样终点的定量监测指标。建立的两种自动预处理方法可替代手动法进行TOC测试的样品预处理,在保障数据质量和测试效率的前提下又可解放人力,使总有机碳的测试能力得以显著提升。

  • 加载中
  • 图 1  TOC-AP80型岩石总有机碳自动预处理仪

    Figure 1. 

    图 2  手动法预处理滤液pH和a(Cl)随清洗次数的变化趋势

    Figure 2. 

    图 3  自动预处理方法测定TOC的相对标准偏差相较于手动法均有不同程度地降低

    Figure 3. 

    图 4  自动预处理方法下的pH和Cl活度快速趋于目标值

    Figure 4. 

    表 1  实验样品

    Table 1.  Selected samples for comparison experiment.

    样品编号TOC含量
    (%)
    岩性样品类型
    GBW(E)003140.53±0.06黑色页岩国家标准物质
    GBW(E)003174.72±0.26黑色页岩国家标准物质
    GBW(E)003186.61±0.34泥岩国家标准物质
    GBW(E)003201.87±0.10灰岩国家标准物质
    QC011.40±0.14硅质泥页岩质量控制样品
    QC388.13±0.47碳质泥页岩质量控制样品
    QC1818.30±1.23油页岩质量控制样品
    QC1463.95±5.28质量控制样品

    注:国家标准物质的TOC用“标准值及不确定度”表示;质量控制样品的TOC为参考值。

    下载: 导出CSV

    表 2  自动预处理方法的TOC准确度评价满足国家标准要求

    Table 2.  Accuracy of tested TOC by automatic pretreatment method meeting the quality control requirements in GB/T 19145—2022

    样品
    编号
    岩性TOC标准值及不确定度
    (%)
    自动法A自动法B
    TOC测试值
    (%)
    TOC平均值
    (%)
    方法回收率
    (%)
    TOC测试值
    (%)
    TOC平均值
    (%)
    方法回收率
    (%)
    GBW(E)
    070314
    页岩0.53±0.060.540.5498.11~101.890.510.5296.23~100
    0.540.53
    0.520.51
    0.540.51
    GBW(E)
    070317
    页岩4.72±0.264.744.74100.21~100.854.694.7599.36~101.27
    4.734.76
    4.764.78
    4.744.75
    GBW(E)
    070318
    泥岩6.61±0.346.566.6799.24~102.126.626.5898.18~100.15
    6.726.62
    6.636.49
    6.756.60
    GBW(E)
    070320
    灰岩1.87±0.101.861.8798.93~101.071.851.8497.86~98.93
    1.891.83
    1.871.83
    1.851.84
    下载: 导出CSV

    表 3  自动预处理方法的TOC重复性满足国家标准要求

    Table 3.  Repetitiveness of tested TOC by automatic pretreatment method meeting the quality control requirements in GB/T 19145—2022

    样品编号岩性TOC含量
    参考值
    (%)
    自动法A测试的TOC含量(%)自动法B 测试的TOC含量(%)重复性限
    (%)
    第1组第2组均值X1均值X2TOC D95第1组第2组均值X1均值X2TOC D95
    QC01 硅质
    泥页岩
    1.40±0.14 1.38 1.41 1.36 1.40 0.04 1.35 1.31 1.33 1.37 0.04 ≤0.07
    1.37 1.39 1.31 1.39
    1.36 1.39 1.31 1.38
    1.32 1.40 1.35 1.38
    QC38 碳质
    泥页岩
    8.13±0.47 8.06 8.05 8.14 8.09 0.05 8.03 8.04 8.03 8.03 0.00 ≤0.22
    8.19 8.10 8.05 7.98
    8.15 8.13 8.01 8.02
    8.14 8.09 8.02 8.08
    QC18 油页岩 18.30±1.23 18.31 18.09 18.29 18.13 0.16 18.00 18.13 18.03 18.11 0.08 ≤0.38
    18.30 18.02 17.94 18.19
    18.33 18.15 18.02 18.11
    18.21 18.27 18.16 18.03
    QC14 63.95±5.28 64.50 64.17 63.92 64.88 0.96 65.88 65.35 64.99 65.28 0.28 ≤1.26
    61.76 65.26 64.30 63.85
    64.86 65.26 63.41 65.54
    64.56 64.84 66.39 66.38
    下载: 导出CSV

    表 4  自动预处理方法的TOC再现性满足国家标准要求

    Table 4.  Reproducibility of tested TOC by automatic pretreatment method meeting the quality control requirements in GB/T 19145—2022

    标准物质编号岩性TOC含量标准值
    及不确定度(%)
    自动法A测试的TOC含量(%)自动法B测试的TOC含量(%)再现性限
    (%)
    第1组第2组均值Y1均值Y2TOC D95第1组第2组均值Y1均值Y2TOC D95
    GBW(E)070314 页岩 0.53±0.06 0.54 0.53 0.54 0.54 0.00 0.51 0.53 0.52 0.50 0.02 ≤0.15
    0.54 0.54 0.53 0.50
    0.52 0.55 0.51 0.48
    0.54 0.53 0.51 0.50
    GBW(E)070317 页岩 4.72±0.26 4.74 4.73 4.74 4.75 0.01 4.69 4.64 4.75 4.70 0.05 ≤0.61
    4.73 4.76 4.76 4.65
    4.76 4.77 4.78 4.78
    4.74 4.72 4.75 4.73
    GBW(E)070318 泥岩 6.61±0.34 6.56 6.75 6.67 6.74 0.07 6.62 6.63 6.58 6.55 0.03 ≤1.18
    6.72 6.68 6.62 6.44
    6.63 6.75 6.49 6.51
    6.75 6.77 6.60 6.61
    GBW(E)070320 灰岩 1.87±0.10 1.86 1.80 1.87 1.81 0.06 1.85 1.82 1.84 1.83 0.01 ≤0.27
    1.89 1.81 1.83 1.83
    1.87 1.81 1.83 1.81
    1.85 1.83 1.84 1.85
    下载: 导出CSV
  • [1]

    Peters K E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. Geochemistry Treatise of Petroleum Geology Reprint, 1988, 7(3): 392−404.

    [2]

    陈建平,梁狄刚,张水昌,等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报, 2012, 86(7): 1132−1142.

    Chen J P,Liang D G,Zhang S C,et al. Evaluation criterion and methods of the hydrocarbon generation potential for China’s Paleozoic marine source rocks[J]. Acta Geologica Sinica, 2012, 86(7): 1132−1142.

    [3]

    曹茜,王兴志,戚明辉,等. 页岩油地质评价实验测试技术研究进展[J]. 岩矿测试, 2020, 39(3): 337−349. doi: 10.15898/j.cnki.11-2131/td.202001060005

    Cao Q,Wang X Z,Qi M H,et al. Research progress on experimental technologies of shale oil geological evaluation[J]. Rock and Mineral Analysis, 2020, 39(3): 337−349. doi: 10.15898/j.cnki.11-2131/td.202001060005

    [4]

    宋振响,徐旭辉,王保华,等. 页岩气资源评价方法研究进展与发展方向[J]. 石油与天然气地质, 2020, 41(5): 1038−1047. doi: 10.11743/ogg20200514

    Song Z X,Xu X H,Wang B H,et al. Advances in shale gas resource assessment methods and their future evolvement[J]. Oil & Gas Geology, 2020, 41(5): 1038−1047. doi: 10.11743/ogg20200514

    [5]

    贾建亮,刘招君,孟庆涛,等. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368−377.

    Jia J L,Liu Z J,Meng Q T,et al. Response mechanism between oil yield and total organic carbon of non-marine oil shale in China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 368−377.

    [6]

    葛勋,郭彤楼,马永生,等. 四川盆地东南缘林滩场地区上奥陶统五峰组—龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633−647. doi: 10.11743/ogg20220312

    Ge X,Guo T L,Ma Y S,et al. Prediction of shale reservoir sweet spots of the upper Ordovician Wufeng—Longmaxi Formations in Lintanchang area,southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633−647. doi: 10.11743/ogg20220312

    [7]

    胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5): 34−44.

    Hu K. Reservoir and sweet spot distribution characteristics of shale gas in Wufeng—Longmaxi Formation,southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 34−44.

    [8]

    刘贝. 泥页岩中有机质: 类型、热演化与有机孔隙[J/OL]. 地球科学 [2022-04-05]. https: //kns.cnki.net/kcms/detail/42.1874.P.20220414.0922.010.html.

    Liu B. Organic matter in shales: Types, thermal evolution, and organic pores[J/OL]. Earth Science [2022-04-05]. http: //kns.cnki.net/kcms/detail/42.1874.P.20220414.0922.010.html.

    [9]

    陈维堃,腾格尔,张春贺,等. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906−919. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206004

    Chen W K,Tenger,Zhang C H,et al. Research progress on characterization technology of nano organic pore structure in shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906−919. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206004

    [10]

    帅琴,黄瑞成,高强,等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931−938. doi: 10.3969/j.issn.0254-5357.2012.06.003

    Shuai Q,Huang R C,Gao Q,et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931−938. doi: 10.3969/j.issn.0254-5357.2012.06.003

    [11]

    丁安徐,李小越,蔡潇,等. 页岩气地质评价实验测试技术研究进展[J]. 天然气与石油, 2014, 32(2): 43−48.

    Ding A X,Li X Y,Cai X,et al. Research progress of shale gas geological evaluation test technology[J]. Natural Gas and Oil, 2014, 32(2): 43−48.

    [12]

    代海,马铃,周智勇,等. 湿法氧化-非分散红外吸收测定水中总有机碳[J]. 广州化工, 2016, 44(23): 102−103. doi: 10.3969/j.issn.1001-9677.2016.23.037

    Dai H,Ma L,Zhou Z Y,et al. Determination of total organic carbon in water by wet oxidation and non-dispersive infrared absorption[J]. Guangzhou Chemical Industry, 2016, 44(23): 102−103. doi: 10.3969/j.issn.1001-9677.2016.23.037

    [13]

    唐伟祥,孟凡乔,张煜,等. 不同土壤有机碳测定方法的比较[J]. 土壤, 2018, 50(3): 6.

    Tang W X,Meng F Q,Zhang Y,et al. Method comparison for determining soil organic carbon[J]. Soils, 2018, 50(3): 6.

    [14]

    林春茹. 两种测定海洋沉积物中总有机碳方法对比探究[J]. 四川水泥, 2020(1): 129. doi: 10.3969/j.issn.1007-6344.2020.01.114

    Lin C R. Comparative study on two methods for determination of total organic carbon in marine sediments[J]. Sichuan Cement, 2020(1): 129. doi: 10.3969/j.issn.1007-6344.2020.01.114

    [15]

    邱灵佳,黄国林,苏玉,等. 总有机碳测定方法研究进展[J]. 广东化工, 2015, 42(9): 107−108. doi: 10.3969/j.issn.1007-1865.2015.09.050

    Qiu L J,Huang G L,Su Y,et al. An overview on current measurement methods of total organic carbon[J]. Guangdong Chemical Industry, 2015, 42(9): 107−108. doi: 10.3969/j.issn.1007-1865.2015.09.050

    [16]

    齐东子. 总有机碳含量测定方法分析[J]. 科技创新与应用, 2016(28): 185.

    Qi D Z. Analysis of determination method of total organic carbon content[J]. Technology Innovation and Application, 2016(28): 185.

    [17]

    Hazra B,Dutta S,Kumar S. TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis:Critical consideration and insights[J]. International Journal of Coal Geology, 2017, 169: 106−115. doi: 10.1016/j.coal.2016.11.012

    [18]

    Behar F,Beaumont V,Penteado H. Rock-eval 6 technology:Performances and developments[J]. Oil and Gas Science and Technology, 2001, 56(2): 111−134. doi: 10.2516/ogst:2001013

    [19]

    李小辉,孙慧莹,刘春霞. 岩石热解法测定页岩中有机碳[J]. 当代化工, 2017, 46(3): 429−431. doi: 10.3969/j.issn.1671-0460.2017.03.015

    Li X H,Sun H Y,Liu C X. Application of rock pyrolysis method in measuring organic carbon in shale[J]. Contemporary Chemical Industry, 2017, 46(3): 429−431. doi: 10.3969/j.issn.1671-0460.2017.03.015

    [20]

    何海龙,君珊,张学宽. 总有机碳(TOC)分析仪测定土壤中TOC的研究[J]. 分析仪器, 2014(5): 59−61. doi: 10.3969/j.issn.1001-232x.2014.05.012

    He H L,Jun S,Zhang X K. Analysis of total organic carbon in soil by TOC analyzer[J]. Analytical Instrumentation, 2014(5): 59−61. doi: 10.3969/j.issn.1001-232x.2014.05.012

    [21]

    杨海燕. TOC-L总有机碳分析仪测定总有机碳的实验方法探究[J]. 全面腐蚀控制, 2021, 35(10): 34−38. doi: 10.13726/j.cnki.11-2706/tq.2021.10.034.05

    Yang H Y. Study on the experimental method for determination of total organic carbon by TOC-L total organic carbon analyzer[J]. Total Corrosion Control, 2021, 35(10): 34−38. doi: 10.13726/j.cnki.11-2706/tq.2021.10.034.05

    [22]

    罗彦莉,郭蕊,张大亮,等. 总有机碳测定仪在农业检测中的应用研究[J]. 化肥工业, 2019, 46(6): 27−29. doi: 10.3969/j.issn.1006-7779.2019.06.008

    Luo Y L,Guo R,Zhang D L,et al. Application research of total organic carbon analyzer in agricultural testing[J]. Chemical Fertilizer Industry, 2019, 46(6): 27−29. doi: 10.3969/j.issn.1006-7779.2019.06.008

    [23]

    高少鹏,徐柏青,王君波,等. 总有机碳分析仪准确测定湖泊沉积物中的TOC[J]. 分析试验室, 2019, 38(4): 413−416. doi: 10.13595/j.cnki.issn1000-0720.2018.072501

    Gao S P,Xu B Q,Wang J B,et al. Measuring total organic carbon precisely in lake sediment in Tibetan Plateau by TOC analyzer[J]. Chinese Journal of Analysis Laboratory, 2019, 38(4): 413−416. doi: 10.13595/j.cnki.issn1000-0720.2018.072501

    [24]

    韩万兵. 总有机碳分析仪测定土壤中的有机碳[J]. 煤炭与化工, 2017, 40(9): 72−74. doi: 10.19286/j.cnki.cci.2017.09.020

    Han W B. Determination of organic carbon in soil by total organic carbon analyzer[J]. Coal and Chemical Industry, 2017, 40(9): 72−74. doi: 10.19286/j.cnki.cci.2017.09.020

    [25]

    王贺. 沉积岩总有机碳样品处理中溶样时间对分析结果的影响探讨[J]. 石油化工应用, 2015, 34(10): 87−92. doi: 10.3969/j.issn.1673-5285.2015.10.021

    Wang H. The influence of sample dissolution time in total organic carbon analysis results of the sedimentary rocks[J]. Petrochemical Industry Application, 2015, 34(10): 87−92. doi: 10.3969/j.issn.1673-5285.2015.10.021

    [26]

    耿海燕,王明芳,韩文娟,等. 红外碳硫仪测定烃源岩中总有机碳[J]. 广东化工, 2019, 46(8): 188−190. doi: 10.3969/j.issn.1007-1865.2019.08.081

    Geng H Y,Wang M F,Han W J,et al. Determination of total organic carbon in source rocks by infrared carbon and sulfur meter[J]. Guangdong Chemical Industry, 2019, 46(8): 188−190. doi: 10.3969/j.issn.1007-1865.2019.08.081

    [27]

    喻涛,李春园. 盐酸、温度、时间及粒径对海洋沉积物碳酸盐去除的影响[J]. 热带海洋学报, 2006, 25(6): 33−38.

    Yu T,Li C Y. Effects of hydrochloric acid,temperature,time and grain size on carbonate removal from marine sediments in Northern South China Sea[J]. Journal of Tropical Oceanography, 2006, 25(6): 33−38.

    [28]

    李剑,孙友宝,马晓玲,等. 离子色谱(IC)前处理法测定土壤中的总有机碳含量[J]. 环境化学, 2014, 33(8): 1425−1426.

    Li J,Sun Y B,Ma X L,et al. Determination of total organic carbon in soil by ion chromatography (IC) pretreatment[J]. Environmental Chemistry, 2014, 33(8): 1425−1426.

    [29]

    周平,徐国盛,崔恒远,等. 沉积岩中总有机碳测定前的预处理方法[J]. 实验室研究与探索, 2019, 38(1): 45−48.

    Zhou P,Xu G S,Cui H Y,et al. Study on pretreatment method of total organic carbon before determination in sedimentary rock[J]. Research and Exploration in Laboratory, 2019, 38(1): 45−48.

    [30]

    顾涛,王迪民,杨梅,等. 高频红外碳硫仪测定土壤/沉积物中总有机碳研究[J]. 华南地质与矿产, 2015, 31(3): 306−310.

    Gu T,Wang D M,Yang M,et al. Determination of total organic carbon in soil and sediment by high frequency infrared carbon sulfur analyzer[J]. Geology and Mineral Resources of South China, 2015, 31(3): 306−310.

    [31]

    沈斌, 许智超, 王晓芳, 等. 用于岩石总有机碳测试的预处理系统[P]. 201922452256.7[2020-09-22].

    Shen B, Xu Z C, Wang X F, et al. Pretreatment system for determination of total organic carbon in rock[P]. 201922452256.7[2020-09-22].

    [32]

    杨佳佳,孙玮琳,徐学敏,等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11): 3515−3522. doi: 10.19762/j.cnki.dizhixuebao.2020188

    Yang J J,Sun W L,Xu X M,et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11): 3515−3522. doi: 10.19762/j.cnki.dizhixuebao.2020188

  • 加载中

(4)

(4)

计量
  • 文章访问数:  289
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2022-09-16
修回日期:  2022-11-18
录用日期:  2023-06-07
刊出日期:  2023-12-31

目录