中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

广西桂西地区沉积型铝土矿矿物特征研究

韦连军, 陈燕清, 雷满奇, 黄庆柒. 广西桂西地区沉积型铝土矿矿物特征研究[J]. 岩矿测试, 2023, 42(6): 1220-1229. doi: 10.15898/j.ykcs.202209200177
引用本文: 韦连军, 陈燕清, 雷满奇, 黄庆柒. 广西桂西地区沉积型铝土矿矿物特征研究[J]. 岩矿测试, 2023, 42(6): 1220-1229. doi: 10.15898/j.ykcs.202209200177
WEI Lianjun, CHEN Yanqing, LEI Manqi, HUANG Qingqi. Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi[J]. Rock and Mineral Analysis, 2023, 42(6): 1220-1229. doi: 10.15898/j.ykcs.202209200177
Citation: WEI Lianjun, CHEN Yanqing, LEI Manqi, HUANG Qingqi. Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi[J]. Rock and Mineral Analysis, 2023, 42(6): 1220-1229. doi: 10.15898/j.ykcs.202209200177

广西桂西地区沉积型铝土矿矿物特征研究

  • 基金项目: 地质勘查广西财政专项资金(桂地矿综研[2021]9,桂地矿地[2022]20号)
详细信息
    作者简介: 韦连军,高级工程师,从事矿物加工技术研究及科研管理。E-mail:120018983@qq.com
    通讯作者: 陈燕清,硕士,高级工程师,从事选矿技术研究及矿产资源综合利用研究。E-mail:491082556@qq.com。
  • 中图分类号: TD989;TF041

Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi

More Information
  • 随着中国铝土矿资源日益消耗,高硫铝土矿将成为重要的新型铝土矿资源。中国有大量品位较高的高硫型沉积型铝土矿,但这类矿石由于硫含量高(硫含量>0.7%),严重影响后续提铝工艺流程,因而一直未被工业化利用,在铝土矿资源日益紧缺之时,若能开发利用,对中国铝工业发展具有重要意义。2020—2021年在广西桂西地区自平果—靖西一带铝土矿成矿带新探获得相当量的沉积型铝土矿,该沉积型铝土矿是堆积型铝土矿的矿源层,二者在空间分布上存在重叠,矿石多与黄铁矿密切共生,部分矿段的硫含量高出工业利用允许最高含量的数倍或数十倍,尽管矿石品位较高,但硫含量多在2%~8%,目前该铝土矿矿石性质及工业化技术指标尚不明确。因此,本文以广西桂西地区的沉积型铝土矿为研究对象,采用X射线荧光光谱、偏光显微镜、X射线衍射及扫描电镜-能谱等分析测试技术研究了铝土矿的矿石矿物组成特性,探究了沉积型铝土矿的矿石性质。分析结果表明,该矿石中Al2O3含量为64.21%,S含量为5.13%,属于高硫沉积型铝土矿;矿石中铝矿物主要为一水硬铝石、绿泥石;铁矿物主要有黄铁矿、赤铁矿及褐铁矿;一水硬铝石,其结晶粒度细,呈鲕状集合体形式,表面较光滑;黄铁矿中粗粒、中粒级黄铁矿多以半自形及他形存在,粒径较大。结合本项目组早前对高硫型铝土矿进行的大量试验研究认为,该沉积型铝土矿高硫问题可通过选矿技术方法分离黄铁矿,后续建议通过破碎磨矿手段使矿石矿物单体解离,再辅以合理的选矿药剂制度将黄铁矿浮选分离出来,从而使浮硫后的含铝矿物满足下一步的氧化铝提取入料要求。

  • 加载中
  • 图 1  沉积型铝土矿X射线衍射分析图谱

    Figure 1. 

    图 2  沉积型铝土矿中以集合体存在形式的一水硬铝石嵌布特征的显微照片

    Figure 2. 

    图 3  沉积型铝土矿中黄铁矿嵌布特征的显微照片

    Figure 3. 

    图 4  沉积型铝土矿中一水硬铝石赋存形式和元素含量

    Figure 4. 

    图 5  沉积型铝土矿中黄铁矿赋存形式和元素含量

    Figure 5. 

    表 1  沉积型铝土矿矿石样品X射线荧光光谱半定量分析结果

    Table 1.  Semi-quantitative analysis of X-ray fluorescence spectrometry of sedimentary bauxite ore samples.

    矿石成分 含量(%) 矿石成分 含量(%)
    Al2O3 70.37 CaO 0.05
    SO3 10.54 P2O5 0.04
    Fe2O3 8.20 Nb 0.04
    SiO2 6.04 Cl 0.03
    Ti 4.15 Y 0.03
    Zr 0.37 Th 0.02
    K2O 0.13
    下载: 导出CSV

    表 2  沉积型铝土矿矿石样品主要化学成分分析

    Table 2.  Main chemical composition analysis of sedimentary bauxite ore samples.

    矿石成分 含量(%) 矿石成分 含量(%)
    Al2O3 64.21 Ga 0.0072
    Fe2O3 7.77 Sc 0.0066
    S 5.13 稀土总量 0.046
    TiO2 4.07 总碳(C) 3.40
    SiO2 3.85 有机碳 3.03
    A/S 16.68 烧减量 19.21

    注:表中A/S为矿石中氧化铝和氧化硅百分含量的比值(Al2O3/SiO2),下文同。

    下载: 导出CSV

    表 3  沉积型铝土矿的矿物成分及含量

    Table 3.  Chemical components and content of sedimentary bauxite.

    矿物 含量(%) 矿物 含量(%)
    一硬水铝矿 50 绿泥石 33
    三水铝石 3 金红石 4
    滑石 3 黄铁矿 4
    高岭石 2 锐钛石 <1
    石英 <1 赤铁矿及褐铁矿 ≤1
    下载: 导出CSV

    表 4  沉积型铝土矿中的铁矿物和钛矿物物相组成

    Table 4.  Phase composition characteristics of iron minerals and titanium minerals in sedimentary bauxite.

    铁矿物物相 磁铁矿和雌黄铁矿
    中的Fe
    菱铁矿中的Fe 赤铁矿和褐铁矿中的Fe 硫化铁中的Fe 硅酸铁中的Fe
    含量(%) 0.24 0.99 0.40 3.80 0.10
    占比(%) 4.34 17.92 7.24 68.78 1.72
    钛矿物物相 金红石中的Ti 钛磁铁矿中的Ti 钛铁矿中的Ti 榍石和硅酸盐中的Ti
    含量(%) 1.88 0.00 0.06 0.36
    占比(%) 82.10 0.00 2.40 15.50
    下载: 导出CSV
  • [1]

    张歆, 吴泽港, 刘风琴, 等. 高硫铝土矿脱硫技术研究现状与发展趋势[J]. 有色金属(冶炼部分), 2023(4): 20−27.

    Zhang X, Wu Z G, Liu F Q, et al. Research status and development trend of high-sulfur desulfurization technology[J]. Nonferrous Metals (Extractive Metallurgy), 2023(4): 20−27.

    [2]

    李林松, 金会心, 刘文纪, 等. 铝土矿资源状况及高硫铝土矿脱硫方法[J]. 广州化工, 2021, 49(17): 18−22.

    Li L S, Jin H X, Liu W J, et al. Status of high sulfur bauxite resource and desulfurization method[J]. Guangzhou Chemical Industry, 2021, 49(17): 18−22.

    [3]

    何润德, 胡四春, 黎志英, 等. 用高硫型铝土矿生产氧化铝过程中湿法除硫方法讨论[J]. 湿法冶金, 2004, 23(2): 66−68.

    He R D, Hu S C, Li Z Y, et al. Discussion on the method of hydrometallurgical desulfurization during producing alumina with high grade bauxite containing sulfur[J]. Hydrometallurgy of China, 2004, 23(2): 66−68.

    [4]

    宋翔宇. 从某高硫铝土矿中浮选分离硫铝试验研究[J]. 湿法冶金, 2012, 31(4): 243−247. doi: 10.13355/j.cnki.sfyj.2012.04.014

    Song X Y. Experimental study on separation of sulfur and aluminum minerals from high sulfur bauxite by flotation[J]. Hydrometallurgy of China, 2012, 31(4): 243−247. doi: 10.13355/j.cnki.sfyj.2012.04.014

    [5]

    卯松, 李先海, 张覃. 贵州某高硫铝土矿工艺矿物学研究[J]. 矿产保护与利用, 2022, 42(3): 146−150.

    Mao S, Li X H, Zhang Q. Study on process mineralogy of a high-sulfur bauxite ore in Guizhou[J]. Conservation and Utilization of Mineral, 2022, 42(3): 146−150.

    [6]

    惠博, 曾令熙, 刘飞燕. 重庆地区铝土矿工艺矿物学研究[J]. 中国矿业, 2012, 21(8): 70−73. doi: 10.3969/j.issn.1004-4051.2012.08.019

    Hui B, Zeng L X, Liu F Y. The bauxite processing mineralogy study in Chongqing[J]. China Mining Magazine, 2012, 21(8): 70−73. doi: 10.3969/j.issn.1004-4051.2012.08.019

    [7]

    孟祥仑, 尹本纯, 覃丰. 桂西地区沉积型铝土矿床成矿地质特征及找矿方案[J]. 冶金管理, 2019(5): 115−117.

    Meng X L, Yi B C, Qin F. Geological characteristics and prospecting scheme of sedimentary bauxite deposits in Western Guangxi[J]. China Steel Focus, 2019(5): 115−117.

    [8]

    孙莉, 肖克炎, 娄德波. 中国铝土矿资源潜力预测评价[J]. 地学前缘, 2018, 25(3): 82−94. doi: 10.13745/j.esf.2018.03.007

    Sun L, Xiao K Y, Lou D B. Predictions and evaluation of bauxite resource in China[J]. Earth Science Frontiers, 2018, 25(3): 82−94. doi: 10.13745/j.esf.2018.03.007

    [9]

    高兰, 王登红, 熊晓云, 等. 中国铝土矿资源特征及潜力分析[J]. 中国地质, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005

    Gao L, Wang D H, Xiong X Y, et al. Minerogenetic characteristics and resource potential analysis of bauxite in China[J]. Geology in China, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005

    [10]

    周杰强, 梅光军, 于明明, 等. 低品位高硫铝土矿反浮选同步脱硫硅试验[J]. 金属矿山, 2018(7): 123−126. doi: 10.19614/j.cnki.jsks.201807024

    Zhou J Q, Mei G J, Yu M M, et al. Research on synchronous desulfurization and desilication of low grade high-sulfur bauxite by reverse flotation[J]. Metal Mine, 2018(7): 123−126. doi: 10.19614/j.cnki.jsks.201807024

    [11]

    覃丰, 孟祥仑, 尹本纯. 桂西沉积型铝土矿分布特征及控矿条件分析[J]. 世界有色金属, 2019(5): 92-94.

    Qin F, Meng X L, Yi B C. Distribution characteristics and ore-controlling conditions of sedimentary bauxite deposits in Western Guangxi[J]. World Nonferrous Metals, 2019(5): 92-94.

    [12]

    王冠, 戴婕, 王坤阳, 等. 应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 659−669.

    Wang G, Dai J, Wang K Y, et al. Occurrence of associated elements in a copper mine by EDX-SEM[J]. Rock and Mineral Analysis, 2021, 40(5): 659−669.

    [13]

    苗煦, 史淼, 王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探[J]. 岩矿测试, 2021, 40(4): 522−531. doi: 10.15898/j.cnki.11-2131/td.202012030155

    Miao X, Shi M, Wang L S. Mineral composition and genesis of black quartzite jade from Linwu County, Hunan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 522−531. doi: 10.15898/j.cnki.11-2131/td.202012030155

    [14]

    张启燕, 史维鑫, 刘晓, 等. 高光谱扫描在碳酸盐岩矿物组成分析中的应用[J]. 岩矿测试, 2022, 41(5): 815−825.

    Zhang Q Y, Shi W X, Liu X, et al. Application of hyperspectral scanning in mineral composition analysis of carbonate rocks[J]. Rock and Mineral Analysis, 2022, 41(5): 815−825.

    [15]

    胡璇, 石磊, 张炜华. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J]. 岩矿测试, 2017, 36(2): 124−129.

    Hu X, Shi L, Zhang W H. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124−129.

    [16]

    张启连, 赵辛金, 李玉坤, 等. 桂西二叠系铝土矿地球化学特征与沉积模式[J]. 地质论评, 2020, 66(4): 1043−1058.

    Zhang Q L, Zhao X J, Li Y K, et al. Geochemical characteristics and sedimentary mode of Permian bauxite deposit in Western Guangxi[J]. Geologigal Review, 2020, 66(4): 1043−1058.

    [17]

    陈燕清, 蒋奇亮. 拜耳法处理广西不同地区铝土矿适用性研究[J]. 矿产保护与利用, 2018(2): 95−100.

    Chen Y Q, Jiang Q L. Research on the applicability of Bayer method for bauxite in different areas of Guangxi Province[J]. Conservation and Utilization of Mineral Resources, 2018(2): 95−100.

    [18]

    夏瑜, 罗星, 周卫宁, 等. 广西平果太平矿区外围铝土矿石工艺矿物学研究[J]. 岩石矿物学杂志, 2019, 38(4): 579-586.

    Xia Y, Luo X, Zhou W N, et al. A study of technological mineralogy of bauxite in the Taiping mining area, Pingguo County, Guangxi[J]. Acta Petrologica et Mineralogica, 2019, 38(4): 579-586.

    [19]

    夏楚林, 张起钻, 高莉. 桂西堆积型铝土矿矿物组成及地球化学特征探析[J]. 轻金属, 2011(5): 6−9.

    Xia C L, Zhang Q Z, Gao L. Analysis on mineral component and geochemistry of accumulated bauxite in Western Guangxi[J]. Light Metals, 2011(5): 6−9.

    [20]

    蔡书慧, 刘学飞, 孟健寅, 等. 桂西田阳堆积型铝土矿矿物学及地球化学[J]. 地质与勘探, 2012, 48(3): 460−470.

    Cai S H, Liu X F, Meng J Y, et al. Mineralogy and geochemistry of the Tianyang accumulation-type bauxite in Western Guangxi Province[J]. Geology and Exploration, 2012, 48(3): 460−470.

    [21]

    欧阳承新, 奚小双, 曹荆亚. 广西平果堆积型铝土矿成矿元素多重分形特征[J]. 地质科技情报, 2015, 34(5): 114−119.

    Ouyang C X, Xi X S, Cao J Y. Multifractal characteristics of metallogenic elements of Pingguo accumulated bauxite in Guangxi[J]. Geological Science and Technology Information, 2015, 34(5): 114−119.

    [22]

    张永康, 任少峰, 刘金海, 等. 贵州某低品位高硫铝土矿拜尔法溶出试验研究[J]. 矿产保护与利用, 2015(6): 35−39.

    Zhang Y K, Ren S F, Liu J H, et al. Tests on the Bayer dissolving method for the low-grade bauxite with high sulfur in Guizhou[J]. Conservation and Utilization of Mineral Resources, 2015(6): 35−39.

    [23]

    郭鑫, 魏培贺, 田应忠. 河南某地煤下高硫铝土矿深度脱硫试验研究[J]. 昆明理工大学学报(自然科学版), 2020, 45(2): 1−8.

    Guo X, Wei P H, Tian Y Z. An experimental study on deep desulfurization of high sulfur bauxite under coal in Henan Province[J]. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(2): 1−8.

    [24]

    金会心, 吴复忠, 李军旗, 等. 高硫铝土矿微波焙烧脱除黄铁矿硫[J]. 中南大学学报(自然科学版), 2020, 51(10): 2707−2717.

    Jin H X, Wu F Z, Li J Q, et al. Desulfurization of pyrite in high-sulfur bauxite with microwave roasting process[J]. Journal of Central South University (Science and Technology), 2020, 51(10): 2707−2717.

    [25]

    田应忠, 任朋, 郭鑫. 西南某地高硫铝土矿浮选脱硫试验研究[J]. 轻金属, 2021(12): 5−8.

    Tian Y Z, Ren P, Guo X. Experimental study on flotation desulfurization of high-sulfur bauxite in Southwest China[J]. Light Metals, 2021(12): 5−8.

    [26]

    吴国亮, 魏培贺. 中低品位铝土矿新型正浮选捕收剂的开发研究[J]. 有色金属(选矿部分), 2020(2): 115−118.

    Wu G L, Wei P H. Development and research of new positive flotation collector for medium and low-grade bauxite[J]. Nonferrous Metals (Mineral Processing Section), 2020(2): 115−118.

    [27]

    肖红艳, 徐晓晴, 王斐, 等. 新型捕收剂RA-92在低品位碳酸锰矿选矿中的应用[J]. 岩矿测试, 2016, 35(3): 284−289.

    Xiao H Y, Xu X Q, Wang F, et al. Application of novel collector dosage RA-92 in the flotation procedure of low-grade carbonate manganese ore[J]. Rock and Mineral Analysis, 2016, 35(3): 284−289.

    [28]

    马兴飞, 张强, 张姗姗. 低品位高硫铝土矿低温焙烧脱硫研究[J]. 有色金属(冶炼部分), 2021(6): 32−36.

    Ma X F, Zhang Q, Zhang S S. Study on desulfurization of low grade and high sulfur bauxite by low-temperature roasting[J]. Nonferrous Metals (Extractive Metallurgy), 2021(6): 32−36.

    [29]

    李振宇. 西北某高硫铝土矿浮选脱硫试验研究[J]. 矿产综合利用, 2020, 12(6): 127−130.

    Li Z Y. Study on flotation desulfurization of high-sulfur bauxite in Northwest[J]. Multipurpose Utilization of Mineral Resources, 2020, 12(6): 127−130.

    [30]

    高纯生, 邹春林, 陈黎军, 等. 高硫铝土矿重力分选脱硫试验研究[J]. 轻金属, 2020(1): 11−13.

    Gao C S, Zou C L, Chen L J, et al. Experimental study on desulfurization of high sulfur bauxite by gravity separation[J]. Light Metals, 2020(1): 11−13.

  • 加载中

(5)

(4)

计量
  • 文章访问数:  226
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-09-20
修回日期:  2023-03-06
录用日期:  2023-06-28
刊出日期:  2023-12-31

目录