中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

四川省沐川县典型土壤剖面重金属分布特征和生态风险评价

廖碧霞, 沈文灵, 贺灵. 四川省沐川县典型土壤剖面重金属分布特征和生态风险评价[J]. 岩矿测试, 2023, 42(6): 1203-1219. doi: 10.15898/j.ykcs.202305090062
引用本文: 廖碧霞, 沈文灵, 贺灵. 四川省沐川县典型土壤剖面重金属分布特征和生态风险评价[J]. 岩矿测试, 2023, 42(6): 1203-1219. doi: 10.15898/j.ykcs.202305090062
LIAO Bixia, SHEN Wenling, HE Ling. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2023, 42(6): 1203-1219. doi: 10.15898/j.ykcs.202305090062
Citation: LIAO Bixia, SHEN Wenling, HE Ling. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2023, 42(6): 1203-1219. doi: 10.15898/j.ykcs.202305090062

四川省沐川县典型土壤剖面重金属分布特征和生态风险评价

  • 基金项目: 中国地质调查局地质调查项目(DD20190522-03,DD20221641-02)
详细信息
    作者简介: 廖碧霞,硕士研究生,主要研究方向为环境地球化学。E-mail:1470949680@qq.com
    通讯作者: 贺灵,博士,高级工程师,主要研究方向为生态地球化学调查与评价。E-mail:lingh1237@163.com
  • 中图分类号: S151.93;X820.4

Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province

More Information
  • 根据全国土壤污染状况调查显示,全国土壤的环境状况总体不容乐观,耕地土壤环境质量令人担忧,已对粮食安全构成威胁。已有的研究工作多集中于土壤重金属的空间分布特征及污染源分析、重金属污染风险评估以及评估方法,但对于不同土壤深度重金属在耕地中的积累与剖面分布的变化及其生态风险分析相对较少。为研究四川省沐川县土壤剖面重金属分布特征和生态风险,本文在研究区选择三个不同地质背景区采集了土柱剖面样品开展相关工作。结果表明:样品中As、Cd、Hg、Pb、Ni、Cu、Zn七项指标中,除了Cu外,其余重金属元素含量都高于国家和四川省土壤背景值,表明这些元素在土壤中呈现不同程度地富集。土壤中7种重金属的浓度与土壤养分(氮、磷、钾),土壤有机碳和pH值存在相关性,如在玉米地剖面中,氮和磷与Cd呈显著正相关,相关系数分别为0.845、0.747。大量研究表明,磷肥中含有一定量的重金属。磷肥中重金属含量高低与磷矿及其来源有关,磷肥能够增加土壤 Cd 含量。土壤有机碳与Cd呈显著正相关,相关系数为0.934,其原因是土壤有机质对重金属的吸附作用,有机碳对土壤中重金属的保留起了重要作用。pH值与Cd呈显著负相关,相关系数为-0.964,随着pH值的增加,土壤对重金属离子的吸附会增加,从而导致土壤中活性重金属离子减少。土壤重金属之间存在显著的正相关关系,表明它们普遍存在同源性。采用地质积累指数($ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $)评价土壤重金属污染程度,并选取潜在生态风险指数($ RI $)评价其潜在生态风险,结果表明土壤中主要污染元素为Cd。生态风险指数显示,玉米地的潜在生态风险较大,其中Cd、Hg的生态风险较高,潜在生态风险指数($ RI $)随着剖面深度的增加而降低。当地应采取适当措施,加强对该地区污染的防治工作,避免对人体健康造成危害。

  • 加载中
  • 图 1  研究区位置和地质简图

    Figure 1. 

    图 2  三个采样点土壤剖面重金属平均含量对比

    Figure 2. 

    图 3  三个采样点土壤剖面重金属垂向分布特征

    Figure 3. 

    图 4  三个采样点土壤剖面有机碳(Corg)、氮(N)、磷(P)、氧化钾(K2O)含量和pH的垂向分布特征

    Figure 4. 

    图 5  紫色黏质土(PS剖面) Cd与Corg (a)、Hg与Corg (b)、Cd与pH值(c)、Hg与pH值(d)相关关系

    Figure 5. 

    图 6  三个采样点剖面土壤0~10cm深度(a)、30~40cm深度(b)、70~80cm深度(c)和100~110cm深度(d)的重金属地质累积指数($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $)

    Figure 6. 

    表 1  研究区不同类型土柱剖面取样点概况

    Table 1.  Sampling points of different types of soil column profiles in the study area.

    采样地点 采样深度(cm) 土地利用类型 土壤类型 地质背景 可见特征描述
    剖面YS 140 山坡旱地,
    种植玉米
    黄色黏质土 三叠系雷口坡组(T2l),岩性为粉砂岩与白云岩、泥质灰岩互层,夹黑色碳质页岩 0~50cm灰黄色黏质土,50~140cm黄色黏质土
    剖面PS 110 山坡旱地,
    种植玉米
    紫色黏质土 侏罗系蓬莱镇组(J3p)岩性
    以泥岩、砂岩和粉砂岩为主
    0~80cm紫色黏质土,80~110cm紫色黏质土,
    土壤水分降低
    剖面GS 130 茶园地 灰色黏质土 三叠系须家河组(T3x) ,岩性主要为砂岩、粉砂岩、泥岩及煤层组成的沉积旋回 0~40cm,灰色黏质土,有机质较丰富;40~70cm,土壤颜色变黄,细砂成分增多;80~90cm,青灰色淤泥,水分增多;90~100cm,土壤变灰黑色,水分变少;100~120cm,青灰色黏质土;120~130cm,灰绿色,底部为页岩、泥岩
    下载: 导出CSV

    表 2  各指标分析测试检出限

    Table 2.  Detection limit of each index analysis.

    分析项目 检出限 分析项目 检出限
    As 0.5$ \mathrm{m} $g/kg Zn 4$ \mathrm{m} $g/kg
    Cd 0.03$ \mathrm{m} $g/kg P 10$ \mathrm{m} $g/kg
    Cu 1.$ 0\mathrm{ } $mg/kg Corg 0.10%
    Hg 0.0005$ \mathrm{m} $g/kg K2O 0.05%
    Pb 2$ \mathrm{m} $g/kg pH 0.1
    Ni 2$ \mathrm{m} $g/kg N 20$ \mathrm{m} $g/kg
    下载: 导出CSV

    表 3  三个采样点土壤剖面重金属与土壤养分指标的Pearson相关性

    Table 3.  Pearson correlation between heavy metals in soil profiles and soil nutrient indicators at three sampling points.

    采样地点 养分元素 As Cd Cu Hg Ni Pb Zn
    剖面YS N 0.186 0.813** 0.706** −0.419 −0.147 0.724** 0.135
    P 0.401 0.947** 0.758** −0.188 −0.120 0.828** 0.307
    K2O 0.155 −0.399 −0.486 0.795** 0.526 −0.669** 0.638*
    Corg 0.003 0.759** 0.764** −0.721** −0.340 0.861** −0.150
    pH −0.492 −0.455 −0.120 −0.627* −0.088 −0.265 −0.836**
    剖面PS N 0.814** 0.845** 0.828** 0.924** −0.160 −0.072 0.724*
    P 0.458 0.747** 0.504 0.632* −0.209 0.481 0.695*
    K2O −0.113 −0.266 0.047 −0.295 0.924** −0.121 0.424
    Corg 0.865** 0.934** 0.865** 0.955** −0.283 0.065 0.717*
    pH −0.897** −0.964** −0.884** −0.944** 0.287 −0.223 −0.735**
    剖面GS N 0.934** 0.448 −0.262 0.899** −0.765** 0.897** −0.612*
    P 0.186 0.144 0.661* 0.084 0.265 0.485 0.425
    K2O −0.713** −0.237 0.801** −0.721** 0.937** −0.366 0.863**
    Corg 0.947** 0.552 −0.303 0.953** −0.824** 0.893** −0.673*
    pH −0.451 −0.039 −0.054 −0.358 0.227 −0.649* 0.110
    注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。
    下载: 导出CSV

    表 4  土壤剖面重金属之间的Pearson相关性

    Table 4.  Pearson correlation between heavy metals in soil profiles.

    元素 As Cd Cu Hg Ni Pb Zn
    As 1
    Cd 0.546** 1
    Cu 0.187 0.644** 1
    Hg 0.772** 0.141 −0.288 1
    Ni −0.369* 0.141 0.683** −0.769** 1
    Pb 0.822** 0.672** 0.310 0.566** −0.311 1
    Zn 0.029 0.500** 0.783** −0.484** 0.864** 0.065 1
    注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。
    下载: 导出CSV

    表 5  三个采样点土壤剖面重金属潜在生态风险指数

    Table 5.  Potential ecological risk index of heavy metals in soil profiles of three sampling points.

    采样地点 采样深度
    (cm)
    $ {E}_{i} $  RI
    As Cd Cu Hg Ni Pb Zn
    剖面YS 10 21.9 278.4 5.0 83.3 5.0 8.7 1.2 403.5
    30 21.1 141.6 4.3 72.9 4.9 7.8 1.0 253.6
    60 20.0 125.3 4.5 66.7 5.1 6.9 1.0 229.6
    90 18.0 95.7 3.7 88.6 4.7 6.4 1.1 218.1
    110 20.6 96.5 3.8 96.9 5.1 6.2 1.1 230.1
    140 20.7 146.6 4.3 90.5 5.6 6.0 1.2 274.9
    剖面PS 10 7.7 177.3 4.8 27.8 6.9 5.5 1.4 231.4
    30 8.0 171.6 5.0 22.5 7.2 6.0 1.4 221.7
    60 7.0 103.3 4.7 16.8 7.4 5.0 1.3 145.5
    90 6.3 80.5 4.1 15.2 7.0 4.8 1.3 147.6
    110 6.3 80.1 4.3 13.7 8.0 5.4 1.4 119.2
    剖面GS 10 9.6 56.6 3.4 74.2 3.4 6.3 0.7 154.3
    30 9.7 101.8 3.8 78.6 3.9 6.2 0.8 204.8
    60 6.9 33.8 3.5 64.8 4.2 5.0 0.8 119.1
    90 2.3 64.2 3.0 31.6 5.2 3.9 0.9 111.0
    110 0.9 21.6 3.9 30.4 6.0 3.6 0.9 67.5
    130 1.5 85.1 5.0 25.7 7.4 3.8 1.2 129.7
    下载: 导出CSV
  • [1]

    Chai L, Wang Y, Wang X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China[J]. Ecological Indicators, 2021, 125: 107507. doi: 10.1016/j.ecolind.2021.107507

    [2]

    Zhang L X, Zhu G Y, Ge X, et al. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): Pollution characteristics, predictive models, and quantitative source apportionment[J]. Journal of Hazardous Materials, 2018, 360: 32−42. doi: 10.1016/j.jhazmat.2018.07.075

    [3]

    Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84−91. doi: 10.1016/j.envpol.2010.09.019

    [4]

    Zhuo H, Wang X, Liu H, et al. Source analysis and risk assessment of heavy metals in development zones: A case study in Rizhao, China[J]. Environmental Geochemistry and Health, 2019, 42: 135−146.

    [5]

    Pecina V, Brtnický M, Baltazár T, et al. Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: A meta-analysis[J]. Chemosphere, 2020, 267: 129215.

    [6]

    Yunus K, Zuraidah M A, John A. A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia[J]. Ecofeminism and Climate Change, 2020, 1(1): 21−35. doi: 10.1108/EFCC-03-2020-0003

    [7]

    贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征 [J]. 岩矿测试, 2021, 40(3): 384-396.

    He L, Wu C, Zeng D M, et al. Soil heavy metal distribution and ecological risk characteristics in typical geological background areas of Southwestern China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396.

    [8]

    Zhang Q, Han G, Liu M, et al. Distribution and contamination assessment of soil heavy metals in the Jiulongjiang River catchment, Southeast China[J]. International Journal of Environmental Research and Public Health, 2019, 16: 4674. doi: 10.3390/ijerph16234674

    [9]

    Frišták V, Pipíška M, Lesný J, et al. Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: Comparative study[J]. Environmental Monitoring and Assessment, 2014, 187(1): 4093.

    [10]

    Kumar V, Sharma A, Kaur P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art[J]. Chemosphere, 2019, 216: 449−462. doi: 10.1016/j.chemosphere.2018.10.066

    [11]

    周亚龙, 王乔林, 王成文, 等. 雄安新区企业周边农田土壤-作物系统重金属污染风险及累积效应[J]. 环境科学, 2021, 42(12): 5977-5987.

    Zhou Y L, Wang Q L, Wang C W, et al. Risk and cumulative effect of heavy metal pollution in farmland soil crop system around enterprises in Xiong’an[J]. Environmental Science, 2021, 42 (12): 5977-5987.

    [12]

    宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133-144.

    Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in surface soil of Fuping County, Hebei Province on human health[J]. Rock and Mineral Testing, 2022, 41(1): 133-144.

    [13]

    Huang H B, Lin C Q, Yu R L, et al. Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China[J]. RSC Advances, 2019, 9: 14736−14744. doi: 10.1039/C9RA02333J

    [14]

    Barrena-González J, Contador J F L, Fernández M P. Mapping soil properties at a regional scale: Assessing deterministic vs. geostatistical interpolation methods at different soil depths[J]. Sustainability, 2022, 14: 10049. doi: 10.3390/su141610049

    [15]

    谢龙涛, 潘剑君, 白浩然, 等. 基于GIS的农田土壤重金属空间分布及污染评价——以南京市江宁区某乡镇为例[J]. 土壤学报, 2020, 57(2): 316-325.

    Xie L T, Pan J J, Bai H R, et al. GIS based spatial distribution and pollution assessment of heavy metals in farmland soil—Taking a township in Jiangning District of Nanjing as an example[J]. Journal of Soil Science, 2020, 57 (2): 316-325.

    [16]

    Ye X, Li H, Ma Y, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties[J]. Journal of Soils and Sediments, 2014, 14: 1407−1416. doi: 10.1007/s11368-014-0901-9

    [17]

    成晓梦, 孙彬彬, 贺灵, 等. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819.

    Cheng X M, Sun B B, He L, et al. Characteristics and influencing factors of soil selenium content in Western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819.

    [18]

    韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222.

    Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of soil selenium in Northern Muchuan County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 215-222.

    [19]

    Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108−118.

    [20]

    Hakanson L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8

    [21]

    魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991(4): 12−19,94.

    Wei F S, Chen J S, Wu Y Y, et al. Study on the background values of soil environment in China[J]. Environmental Science, 1991(4): 12−19,94.

    [22]

    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 21(2): 112-115.

    Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metal toxicity coefficient in potential ecological hazard index evaluation[J]. Environmental Science and Technology, 2008, 21(2): 112-115.

    [23]

    成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191.

    Cheng H X, Peng M, Zhao C D, et al. The driving mechanism of supergene chemical kinetics and the distribution pattern of chemical elements in soils in Southwest China[J]. Geoscience Frontiers, 2019, 26(6): 159-191.

    [24]

    Huang Y, Li T, Wu C, et al. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils[J]. Journal of Hazardous Materials, 2015, 299: 540−549. doi: 10.1016/j.jhazmat.2015.07.041

    [25]

    Sun C, Liu J, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China[J]. Chemosphere, 2013, 92(5): 517−523. doi: 10.1016/j.chemosphere.2013.02.063

    [26]

    Pan L B, Ma J, Wang X L, et al. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution[J]. Chemosphere, 2016, 148: 248−254. doi: 10.1016/j.chemosphere.2015.12.049

    [27]

    Dumat C, Quenea K, Bermond A, et al. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils[J]. Environmental Pollution, 2006, 142(3): 521−529. doi: 10.1016/j.envpol.2005.10.027

    [28]

    Huang B, Li Z, Li D, et al. Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile[J]. Environmental Science and Pollution Research, 2017, 24(30): 23939−23952. doi: 10.1007/s11356-017-0012-4

    [29]

    Kelepertzis E, Paraskevopoulou V, Argyraki A, et al. Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece)[J]. 2015, 15(11): 2275.

    [30]

    Sun R, Yang J, Xia P, et al. Contamination features and ecological risks of heavy metals in the farmland along shoreline of Caohai Plateau wetland, China[J]. Chemosphere, 2020, 254: 126828. doi: 10.1016/j.chemosphere.2020.126828

    [31]

    王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466−480.

    Wang M, Li S T. The status of heavy metal content in fertilizers and the impact of fertilization on heavy metal enrichment in soil and crops[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 466−480.

    [32]

    Jiang B, Adebayo A, Jia J, et al. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community[J]. Journal of Hazardous Materials, 2019, 362: 187−195. doi: 10.1016/j.jhazmat.2018.08.060

    [33]

    Khaledian Y, Pereira P, Brevik E C, et al. The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in lithuanian podzols[J]. Land Degradation & Development, 2017, 28(1): 345−354.

    [34]

    Xu J, Kleja D B, Biester H, et al. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil[J]. Chemosphere, 2014, 109: 99−105. doi: 10.1016/j.chemosphere.2014.02.058

    [35]

    Ahmad M, Soo lee S, Yang J E, et al. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil[J]. Ecotoxicology and Environmental Safety, 2012, 79: 225−231. doi: 10.1016/j.ecoenv.2012.01.003

    [36]

    Huang B, Li Z, Huang J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science and Pollution Research, 2015, 22(15): 11467−11477. doi: 10.1007/s11356-015-4386-x

    [37]

    Zhang H, Luo Y, Makino T, et al. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust[J]. Journal of Hazardous Materials, 2013, 248: 303−312.

    [38]

    Li X P, Feng L. Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, northwest of China[J]. Atmospheric Environment, 2012, 47: 58−65. doi: 10.1016/j.atmosenv.2011.11.041

    [39]

    Li X, Yang H, Zhang C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in Central China[J]. Chemosphere, 2017, 170: 17−24. doi: 10.1016/j.chemosphere.2016.12.011

    [40]

    Wang X P, Wang L Q, Zhang Q, et al. Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk[J]. Environmental Pollution, 2022, 299: 118911.1−118911.9.

    [41]

    Novara A, Ruehl J, la Mantia T, et al. Litter contribution to soil organic carbon in the processes of agriculture abandon[J]. Solid Earth, 2015, 6(2): 425−432. doi: 10.5194/se-6-425-2015

    [42]

    Zhao S, Qiu S, He P. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China[J]. Journal of Plant Nutrition, 2018, 41(15): 1970−1979. doi: 10.1080/01904167.2018.1485158

    [43]

    陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833.

    Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution assessment of heavy metals in farmland soils in China[J]. Environmental Science, 2020, 41(6): 2822-2833.

    [44]

    Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690−700. doi: 10.1016/j.scitotenv.2018.06.068

    [45]

    Wei M, Pan A, Ma R, et al. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province[J]. Process Safety and Environmental Protection, 2023, 171: 225−237. doi: 10.1016/j.psep.2022.12.089

    [46]

    张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692−703. doi: 10.13227/j.hjkx.2014.02.047

    Zhang X M, Zhang X Y, Zhong T Y, et al. Study on the enrichment and spatial distribution of heavy metals in farmland soils in China[J]. Environmental Science, 2014, 35(2): 692−703. doi: 10.13227/j.hjkx.2014.02.047

  • 加载中

(6)

(5)

计量
  • 文章访问数:  304
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-05-09
修回日期:  2023-07-06
录用日期:  2023-08-06
刊出日期:  2023-12-31

目录