中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素

张楠, 郑智慷, 王家松, 曾江萍. 常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素[J]. 岩矿测试, 2024, 43(2): 366-374. doi: 10.15898/j.ykcs.202301110004
引用本文: 张楠, 郑智慷, 王家松, 曾江萍. 常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素[J]. 岩矿测试, 2024, 43(2): 366-374. doi: 10.15898/j.ykcs.202301110004
ZHANG Nan, ZHENG Zhikang, WANG Jiasong, ZENG Jiangping. Determination of 15 Rare Earth Elements in Phosphate Ores by Inductively Coupled Plasma-Mass Spectrometry with Atmospheric Pressure Closed Microwave Digestion[J]. Rock and Mineral Analysis, 2024, 43(2): 366-374. doi: 10.15898/j.ykcs.202301110004
Citation: ZHANG Nan, ZHENG Zhikang, WANG Jiasong, ZENG Jiangping. Determination of 15 Rare Earth Elements in Phosphate Ores by Inductively Coupled Plasma-Mass Spectrometry with Atmospheric Pressure Closed Microwave Digestion[J]. Rock and Mineral Analysis, 2024, 43(2): 366-374. doi: 10.15898/j.ykcs.202301110004

常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素

  • 基金项目: 中国地质调查局地质调查项目“地质矿产调查标准化与标准制修订(中国地质调查局天津地质调查中心)”(DD20230272)
详细信息
    作者简介: 张楠,硕士,高级工程师,主要从事岩石矿物分析研究。E-mail:nan5460@126.com。
    通讯作者: 曾江萍,硕士,高级工程师,主要从事岩石矿物分析研究。E-mail:zengjiangping@163.com。
  • 中图分类号: O657.63; O614.33

Determination of 15 Rare Earth Elements in Phosphate Ores by Inductively Coupled Plasma-Mass Spectrometry with Atmospheric Pressure Closed Microwave Digestion

More Information
  • 磷矿石中的稀土元素测定方法主要使用电感耦合等离子体质谱法(ICP-MS),样品处理方式主要采用敞口混合酸溶和碱熔传统的酸溶和碱熔处理矿石样品时间较长,试剂加入量大,操作过程较为繁琐,且易造成环境污染。微波消解直接向样品释放能量,工作效率高,且易挥发元素被保留在消化溶液中,防止挥发造成结果偏差及环境污染。本文采用微波消解对磷矿石进行处理,并在二次消解过程中加入饱和硼酸络合溶矿过程中产生的不溶物氟化钙,在线加入铑和铼双内标的方式,建立了ICP-MS测定磷矿石中15种稀土元素的方法。结果表明:二次消解过程中加入饱和硼酸能有效地络合沉淀,彻底溶解样品,经上机测定后15种稀土元素的相对标准偏差(RSD)在0.68%~4.52%之间,回收率在93.1%~106.6%之间,方法检出限为0.003~0.029μg/g。选取两个磷矿石样品,用本方法与混合酸(盐酸-硝酸-氢氟酸-硫酸)酸溶方法进行对比试验,相对标准偏差在−5.82%~5.99%之间,表明本方法测定稀土元素是有效可行的。对于样品的前处理方法,酸溶、碱熔和微波消解都有各自的特点,微波密封消解能避免一些能形成易挥发组分的损失并且外源性污染少。本方法拓展了测定磷矿石中稀土元素的样品前处理方法,操作性强,是对现行方法的有益补充。

  • 加载中
  • 图 1  样品P1(a)和样品P2(b)球粒陨石标准化的稀土元素配分曲线

    Figure 1. 

    表 1  电感耦合等离子体质谱仪工作参数

    Table 1.  Working parameters for ICP-MS instrument

    工作参数实验条件工作参数实验条件
    射频功率1350W采样锥(镍锥)孔径1.0mm
    反射功率2.0W截取锥(镍锥)孔径0.8mm
    冷却气(氩气)流速15.2L/min采样深度110mm
    辅助气(氩气)流速0.8L/min数据采集时间36mm
    雾化气(氩气)流速0.85L/min扫描方式跳峰
    下载: 导出CSV

    表 2  微波消解升温程序

    Table 2.  Temperature program of microwave digestion

    消解步骤升温时间
    (min)
    保持时间
    (min)
    目标温度
    (℃)
    功率
    (W)
    15 21001400
    2551501400
    35301801400
    45101201400

    注:第4步为加入饱和硼酸后二次消解步骤。

    下载: 导出CSV

    表 3  方法检出限

    Table 3.  Detection limit of the method

    稀土
    元素
    内标本文方法检出限
    (μg/g)
    文献28方法检出限
    (μg/g)
    稀土
    元素
    内标本文方法检出限
    (μg/g)
    文献28方法检出限
    (μg/g)
    89Y103Rh0.0160.016 159Tb185Re0.0070.015
    139La103Rh0.0150.013163Dy185Re0.0070.006
    140Ce
    103Rh0.029
    0.021
    165Ho185Re0.003

    0.001

    141Pr103Rh0.009
    0.012
    166Er185Re0.006
    0.039
    146Nd103Rh0.003
    0.010
    169Tm185Re0.0060.002
    147Sm103Rh0.009
    0.008
    172Yb185Re0.007
    0.005
    151Eu103Rh0.004
    0.002
    175Lu185Re0.004
    0.001
    157Gd185Re0.0080.005
    下载: 导出CSV

    表 4  磷矿石标准物质中稀土元素的测定值和精密度

    Table 4.  Determination values and precision of REEs in phosphate rock reference materials

    稀土
    元素
    GBW07210GBW07211
    平均值
    (μg/g)
    加入量
    (μg/g)
    加标后测定值
    (μg/g)
    回收率
    (%)
    RSD
    (%)
    平均值
    (μg/g)
    RSD
    (%)
    La 11.51 10.00 22.21 103.32.28 30.25 3.22
    Ce21.7320.0042.56102.01.3627.641.98
    Pr2.862.004.97102.31.836.311.53
    Nd12.3310.0022.46100.61.9725.422.66
    Sm2.952.004.8698.22.085.204.52
    Eu0.821.001.7696.72.161.121.28
    Gd3.055.007.8998.01.575.263.55
    Tb0.601.001.5194.41.360.961.13
    Dy4.115.008.8797.42.657.322.78
    Ho0.861.001.97105.92.411.412.32
    Er2.762.004.5194.70.684.573.69
    Tm0.410.500.97106.63.380.704.12
    Yb2.672.004.3593.12.054.321.47
    Lu0.430.500.98105.41.780.723.21
    Y38.5740.0080.42102.41.3871.311.12
    下载: 导出CSV

    表 5  未加饱和硼酸和加入饱和硼酸条件下稀土元素的测定结果对比

    Table 5.  Comparison of determination results for REEs before and after adding saturated boric acid

    稀土
    元素
    GBW07210测定值(μg/g)GBW07211测定值(μg/g)
    未加饱和硼酸加饱和硼酸未加饱和硼酸加饱和硼酸
    La 8.08 11.51 18.42 30.25
    Ce14.1021.7315.6627.64
    Pr1.872.864.276.31
    Nd8.6112.3314.2025.42
    Sm2.152.953.145.20
    Eu0.450.820.681.12
    Gd2.163.053.155.26
    Tb0.380.600.570.96
    Dy2.914.115.027.32
    Ho0.510.860.821.41
    Er1.912.762.714.57
    Tm0.230.410.400.70
    Yb1.822.673.024.32
    Lu0.280.430.360.72
    Y23.5338.5752.7571.31
    下载: 导出CSV

    表 6  二次消解保持时间不同条件下稀土元素测定结果对比

    Table 6.  Comparison of determination results for REEs under different conditions of secondary digestion holding time

    稀土
    元素
    GBW07210测定值(μg/g)GBW07211测定值(μg/g)
    消解时间5min消解时间10min消解时间20min消解时间5min消解时间10min消解时间20min
    La 10.23 11.5111.31 26.55 30.25 30.53
    Ce19.421.7321.3523.7127.6427.16
    Pr2.432.862.915.346.316.15
    Nd10.5212.3312.5422.7825.4224.82
    Sm2.362.952.874.525.205.26
    Eu0.690.820.840.931.121.08
    Gd2.573.053.074.375.265.31
    Tb0.550.600.580.820.960.98
    Dy3.764.114.076.587.327.47
    Ho0.730.860.881.371.411.42
    Er2.572.762.783.264.574.61
    Tm0.340.410.410.550.700.72
    Yb2.382.672.713.684.324.41
    Lu0.360.430.410.660.720.74
    Y32.7138.5737.6263.7271.3173.56
    下载: 导出CSV

    表 7  两种前处理方法条件下稀土元素的测定结果对比

    Table 7.  Comparison of determination results for REEs under two pretreatment methods

    稀土
    元素
    样品P1样品P2
    本文方法测定值
    (μg/g)
    混合酸酸溶测定值
    (μg/g)
    相对偏差
    (%)
    本文方法测定值
    (μg/g)
    混合酸酸溶测定值
    (μg/g)
    相对偏差
    (%)
    La 22.71 23.56 −3.74 16.51 15.88 3.82
    Ce35.6334.852.1928.3428.011.16
    Pr5.876.01−2.393.823.93−2.88
    Nd26.0325.123.5014.4513.983.25
    Sm6.626.482.113.393.58−5.60
    Eu1.521.473.291.011.04−2.97
    Gd5.975.852.013.563.68−3.37
    Tb1.121.110.890.640.67−4.69
    Dy6.646.462.714.053.874.44
    Ho1.331.274.510.870.861.15
    Er3.673.455.992.262.28−0.88
    Tm0.590.565.080.350.37−5.71
    Yb3.613.82−5.822.482.55−2.82
    Lu0.570.553.510.380.365.26
    Y35.8837.24−3.7921.1620.811.65
    下载: 导出CSV
  • [1]

    韩兴国, 李凌浩, 黄建辉. 生物地球化学概论[M]. 北京: 高等教育出版社, 1999: 245-253.

    Han X G, Li L H, Huang J H. Introduction to biogeochemistry[M]. Beijing: Higher Education Press, 1999: 245-253.

    [2]

    郭江峰,姚多喜,陈健,等. 重庆龙潭组煤中稀土元素地球化学及地质成因分析[J]. 地学前缘, 2016, 23(3): 51.

    Guo J F,Yao D X,Chen J,et al. Geochemistry of the rare earth elements of coals from the Longtan Formation in Chongqing and its geological implication[J]. Earth Science Frontiers, 2016, 23(3): 51.

    [3]

    尹明, 李家熙. 岩石矿物分析(第四版: 第二分册)[M]. 北京: 地质出版社, 2011: 105-115.

    Yin M, Li J X. Rock and Mineral Analysis (The fourth edition: Volume Ⅱ) [M]. Beijing: Geological Publishing House , 2011: 105-115.

    [4]

    李冰,周建雄,詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916.

    Li B,Zhou J X,Zhan X C. Modern instrumental analysis of inorganic multi-elements[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916.

    [5]

    周凯红,张立峰,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量[J]. 冶金分析, 2022, 42(8): 87−95. doi: 10.13228/j.boyuan.issn1000-7571.011751

    Zhou K H,Zhang L F,Li J. Determination of total amount of fifteen rare earth elements and its component in Bayan Obo ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(8): 87−95. doi: 10.13228/j.boyuan.issn1000-7571.011751

    [6]

    杨惠玲,杜天军,王书勤,等. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素[J]. 冶金分析, 2022, 42(5): 8−14. doi: 10.13228/j.boyuan.issn1000-7571.011704

    Yang H L,Du T J,Wang S Q,et al. Determination of rare earth and scattered elements in metallic ores by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(5): 8−14. doi: 10.13228/j.boyuan.issn1000-7571.011704

    [7]

    杨小丽,李小丹,邹棣华. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56−62. doi: 10.13228/j.boyuan.issn1000-7571.009739

    Yang X L,Li X D,Zou D H. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 56−62. doi: 10.13228/j.boyuan.issn1000-7571.009739

    [8]

    孙朝阳,杨凯,代小吕,等. 电感耦合等离子体质谱(ICP-MS)法测定岩石中的稀土元素[J]. 中国无机分析化学, 2015, 5(4): 48−52. doi: 10.3969/j.issn.2095-1035.2015.04.011

    Sun C Y,Yang K,Dai X L,et al. Determination of rare earth elements in rock by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 48−52. doi: 10.3969/j.issn.2095-1035.2015.04.011

    [9]

    王家松,王力强,王娜,等. 偏硼酸锂熔融分解锆英砂的实验条件优化研究[J]. 华北地质, 2022, 45(4): 48−52.

    Wang J S,Wang L Q,Wang N,et al. Optimization of experimental conditions for melting decomposition of zircon sands by lithium metaborate[J]. North China Geology, 2022, 45(4): 48−52.

    [10]

    辛文彩,朱志刚,宋晓云,等. 应用电感耦合等离子体质谱测定深海富稀土沉积物中稀土元素方法研究[J]. 海洋地质前沿, 2022, 38(9): 92−96.

    Xin W C,Zhu Z G,Song X Y,et al. On pretreatment method for the determination of rare earth elements in deep sea REY-rich sediments by inductively coupled plasma-mass spectrometry[J]. Marine Geology Frontiers, 2022, 38(9): 92−96.

    [11]

    吴葆存,于亚辉,闫红岭,等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753

    Wu B C,Yu Y H,Yan H L,et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753

    [12]

    李正鹤,黄金松,王佳翰. 工作碱熔-电感耦合等离子体质谱法测定海洋沉积物中的稀土元素[J]. 化学世界, 2021, 11(4): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701

    Li Z H,Huang J S,Wang J H. Determination of rare earth elements in marine sediments by alkali fusion inductively coupled plasma mass spectrometry[J]. Chemical World, 2021, 11(4): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701

    [13]

    曾江萍,王家松,王娜,等. 敞开酸溶-电感耦合等离子体质谱法测定锑矿石中的稀土元素[J]. 华北地质, 2021, 44(4): 80−84.

    Zeng J P,Wang J S,Wang N,et al. Determination of rare earth elements in antimony ore by open acid dissolution-inductively coupled plasma mass spectrometry[J]. North China Geology, 2021, 44(4): 80−84.

    [14]

    龚仓,丁洋,陆海川,等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. doi: 10.15898/j.cnki.11-2131/td.202011030136

    Gong C,Ding Y,Lu H C,et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348. doi: 10.15898/j.cnki.11-2131/td.202011030136

    [15]

    Zhao W,Zong K Q,Liu Y S,et al. An effective oxide interference correction on Sc and REE for routine analyses of geological samples by inductively coupled plasma-mass spectrometry[J]. Journal of Earth Science, 2019, 30(6): 1302−1310. doi: 10.1007/s12583-019-0898-5

    [16]

    苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007

    Su C F. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007

    [17]

    戴雪峰,蒋宗明,杨利华. 电感耦合等离子体质谱(ICP-MS)法测定铜铅锌矿中稀土元素[J]. 中国无机分析化学, 2016, 6(1): 26−29. doi: 10.3969/j.issn.2095-1035.2016.01.007

    Dai X F,Jiang Z M,Yang L H. Determination rare earth elements in copper,lead and zinc ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 26−29. doi: 10.3969/j.issn.2095-1035.2016.01.007

    [18]

    张亚峰,冯俊,唐杰,等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186−192. doi: 10.7538/zpxb.2016.37.02.0186

    Zhang Y F,Feng J,Tang J,et al. Simultaneous determination of species of micro,trace and tare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186−192. doi: 10.7538/zpxb.2016.37.02.0186

    [19]

    程祎,李志伟,于亚辉,等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中铌、钽、锆、铪和16种稀土元素[J]. 理化检验(化学分册), 2020, 56(7): 782−787.

    Cheng Y,Li Z W,Yu Y H,et al. ICP-MS determination of Nb,Ta,Zr,Hf and 16 rare earth elements in geological samples with high pressure closed digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(7): 782−787.

    [20]

    曾江萍,王家松,朱悦,等. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789−797. doi: 10.15898/j.cnki.11-2131/td.202112070197

    Zeng J P,Wang J S,Zhu Y,et al. Determination of 15 rare earth elements in uranium ore by open acid dissolution-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789−797. doi: 10.15898/j.cnki.11-2131/td.202112070197

    [21]

    王佩佩,李霄,宋伟娇. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235−240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    Wang P P,Li X,Song W Q. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J]. Journal of Instrumental Analysis, 2016, 35(2): 235−240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    [22]

    王贵超,刘荣丽,王志坚,等. 微波消解-电感耦合等离子体质谱法测定深海沉积物中稀土总量[J]. 理化检验(化学分册), 2021, 57(7): 627−632.

    Wang G C,Liu R L,Wang Z J,et al. Determination of total content of rare earths in deep-sea sediments by inductively coupled plasma mass spectrometry after microwave digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(7): 627−632.

    [23]

    张宏丽,高小飞,姚明星,等. 微波消解-电感耦合等离子体质谱法测定赤泥中稀土总量及分量[J]. 稀土, 2019, 7(3): 96−101. doi: 10.16533/j.cnki.15-1099/tf.20190002

    Zhang H L,Gao X F,Yao M X,et al. Microwave dissolving-inductively coupled plasma mass spectrometric determination of total and individual REE in red mud[J]. Chinese Rare Earths, 2019, 7(3): 96−101. doi: 10.16533/j.cnki.15-1099/tf.20190002

    [24]

    黄金松,李正鹤,王佳翰. 微波消解-ICP-MS测定海洋沉积物中的稀土元素[J]. 化学试剂, 2021, 43(4): 515−519. doi: 10.13822/j.cnki.hxsj.2021007883

    Huang J S,Li Z H,Wang J H. Determination of rare earth elements in marine sediments by microwave digestion ICP-MS[J]. Chemical Reagents, 2021, 43(4): 515−519. doi: 10.13822/j.cnki.hxsj.2021007883

    [25]

    李银花,赵雨薇,刘曙,等. 微波消解-高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定原油中22种微量元素[J]. 中国无机分析化学, 2022, 12(6): 94−102. doi: 10.3969/j.issn.2095-1035.2022.06.015

    Li Y H,Zhao Y W,Liu S,et al. Determination of 22 trace elements in crude oil by high resolution inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 94−102. doi: 10.3969/j.issn.2095-1035.2022.06.015

    [26]

    沈健,赵雨薇,王兵. 微波消解-高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定煤炭中35种痕量金属元素[J]. 中国无机分析化学, 2022, 12(2): 26−34. doi: 10.3969/j.issn.2095-1035.2022.02.004

    Shen J,Zhao Y W,Wang B. Determination of 35 trace metal elements in coal by high resolution inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 26−34. doi: 10.3969/j.issn.2095-1035.2022.02.004

    [27]

    张楠,徐铁民,吴良英,等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644−649.

    Zhang N,Xu T M,Wu L Y,et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644−649.

    [28]

    郭振华,何汉江,田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素[J]. 岩矿测试, 2014, 33(1): 25−28. doi: 10.3969/j.issn.0254-5357.2014.01.005

    Guo Z H,He H J,Tian F Y. Determination of rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with mixed acid dissolution[J]. Rock and Mineral Analysis, 2014, 33(1): 25−28. doi: 10.3969/j.issn.0254-5357.2014.01.005

    [29]

    倪文山,刘长森,姚明星,等. 电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J]. 冶金分析, 2016, 36(7): 69−73.

    Ni W S,Liu C S,Yao M X,et al. Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 69−73.

    [30]

    李明来,王良士,彭新林,等. 电感耦合等离子体原子发射光谱法测定磷矿石中微量稀土元素[J]. 冶金分析, 2011, 30(1): 47−50.

    Li M L,Wang L S,Peng X L,et al. Determination of trace rare earth elements in phosphate ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2011, 30(1): 47−50.

    [31]

    李海,杨朝帅,余亚美,等. 微波消解-磺基水杨酸光度法测定磷矿石中铁[J]. 冶金分析, 2017, 37(1): 61−65. doi: 10.13228/j.boyuan.issn1000-7571.009930

    Li H,Yang C S,Yu Y M,et al. Determination of iron in phosphate ore by sulfosalicylic acid spectrophotometry with microwave digestion[J]. Metallurgical Analysis, 2017, 37(1): 61−65. doi: 10.13228/j.boyuan.issn1000-7571.009930

    [32]

    彭桦,张屹璇,余慧茹,等. 微波碱熔消解快速测定磷矿石和磷精矿中二氧化硅[J]. 云南化工, 2022, 49(9): 37−39.

    Peng H,Zhang Q X,Yu H R,et al. Rapid determination of silica in phosphate rock and phosphate concentrate by microwave alkaline melting and digestion[J]. Yunnan Chemical Technology, 2022, 49(9): 37−39.

  • 加载中

(1)

(7)

计量
  • 文章访问数:  116
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2023-01-11
修回日期:  2023-04-06
录用日期:  2023-06-15
刊出日期:  2024-04-30

目录