Determination of 15 Rare Earth Elements in Phosphate Ores by Inductively Coupled Plasma-Mass Spectrometry with Atmospheric Pressure Closed Microwave Digestion
-
摘要:
磷矿石中的稀土元素测定方法主要使用电感耦合等离子体质谱法(ICP-MS),样品处理方式主要采用敞口混合酸溶和碱熔。传统的酸溶和碱熔处理矿石样品时间较长,试剂加入量大,操作过程较为繁琐,且易造成环境污染。微波消解直接向样品释放能量,工作效率高,且易挥发元素被保留在消化溶液中,防止挥发造成结果偏差及环境污染。本文采用微波消解对磷矿石进行处理,并在二次消解过程中加入饱和硼酸络合溶矿过程中产生的不溶物氟化钙,在线加入铑和铼双内标的方式,建立了ICP-MS测定磷矿石中15种稀土元素的方法。结果表明:二次消解过程中加入饱和硼酸能有效地络合沉淀,彻底溶解样品,经上机测定后15种稀土元素的相对标准偏差(RSD)在0.68%~4.52%之间,回收率在93.1%~106.6%之间,方法检出限为0.003~0.029μg/g。选取两个磷矿石样品,用本方法与混合酸(盐酸-硝酸-氢氟酸-硫酸)酸溶方法进行对比试验,相对标准偏差在−5.82%~5.99%之间,表明本方法测定稀土元素是有效可行的。对于样品的前处理方法,酸溶、碱熔和微波消解都有各自的特点,微波密封消解能避免一些能形成易挥发组分的损失并且外源性污染少。本方法拓展了测定磷矿石中稀土元素的样品前处理方法,操作性强,是对现行方法的有益补充。
Abstract:It takes a long time to treat ore samples by traditional alkali fusion and acid dissolution, and it is easy to cause environmental pollution. Microwave digestion directly releases energy to the sample with high efficiency, and volatile elements are retained in the digestion solution to prevent volatilization from causing deviation of results and environmental pollution. In this experiment, 0.2g of phosphate rock sample was taken and placed in a microwave digestion tank. 3mL hydrochloric acid, 3mL nitric acid, and 2mL hydrofluoric acid were added and then dissolved in the microwave digestion instrument. Then, 2mL of saturated boric acid solution was added for a further microwave digestion. After cooling, the sample was diluted in a 100mL volumetric flask with deionized water. Online addition of rhodium and rhenium as dual internal standards for inductively coupled plasma-mass spectrometry (ICP-MS) determination of rare earth elements in phosphate rock was performed. The relative standard deviation (RSD) of 15 rare earth elements was between 0.68% and 4.52%, the recovery was between 93.1% and 106.6%, and detection limit was between 0.003-0.029μg/g. Two phosphate ore samples were selected and compared with the mixed acid dissolution method. The relative standard deviation was −5.82%-5.99%.
-
-
表 1 电感耦合等离子体质谱仪工作参数
Table 1. Working parameters for ICP-MS instrument
工作参数 实验条件 工作参数 实验条件 射频功率 1350W 采样锥(镍锥)孔径 1.0mm 反射功率 2.0W 截取锥(镍锥)孔径 0.8mm 冷却气(氩气)流速 15.2L/min 采样深度 110mm 辅助气(氩气)流速 0.8L/min 数据采集时间 36mm 雾化气(氩气)流速 0.85L/min 扫描方式 跳峰 表 2 微波消解升温程序
Table 2. Temperature program of microwave digestion
消解步骤 升温时间
(min)保持时间
(min)目标温度
(℃)功率
(W)1 5 2 100 1400 2 5 5 150 1400 3 5 30 180 1400 4 5 10 120 1400 注:第4步为加入饱和硼酸后二次消解步骤。
表 3 方法检出限
Table 3. Detection limit of the method
稀土
元素内标 本文方法检出限
(μg/g)文献[28]方法检出限
(μg/g)稀土
元素内标 本文方法检出限
(μg/g)文献[28]方法检出限
(μg/g)89Y 103Rh 0.016 0.016 159Tb 185Re 0.007 0.015 139La 103Rh 0.015 0.013 163Dy 185Re 0.007 0.006 140Ce 103Rh 0.029 0.021 165Ho 185Re 0.003 0.001 141Pr 103Rh 0.009 0.012 166Er 185Re 0.006 0.039 146Nd 103Rh 0.003 0.010 169Tm 185Re 0.006 0.002 147Sm 103Rh 0.009 0.008 172Yb 185Re 0.007 0.005 151Eu 103Rh 0.004 0.002 175Lu 185Re 0.004 0.001 157Gd 185Re 0.008 0.005 表 4 磷矿石标准物质中稀土元素的测定值和精密度
Table 4. Determination values and precision of REEs in phosphate rock reference materials
稀土
元素GBW07210 GBW07211 平均值
(μg/g)加入量
(μg/g)加标后测定值
(μg/g)回收率
(%)RSD
(%)平均值
(μg/g)RSD
(%)La 11.51 10.00 22.21 103.3 2.28 30.25 3.22 Ce 21.73 20.00 42.56 102.0 1.36 27.64 1.98 Pr 2.86 2.00 4.97 102.3 1.83 6.31 1.53 Nd 12.33 10.00 22.46 100.6 1.97 25.42 2.66 Sm 2.95 2.00 4.86 98.2 2.08 5.20 4.52 Eu 0.82 1.00 1.76 96.7 2.16 1.12 1.28 Gd 3.05 5.00 7.89 98.0 1.57 5.26 3.55 Tb 0.60 1.00 1.51 94.4 1.36 0.96 1.13 Dy 4.11 5.00 8.87 97.4 2.65 7.32 2.78 Ho 0.86 1.00 1.97 105.9 2.41 1.41 2.32 Er 2.76 2.00 4.51 94.7 0.68 4.57 3.69 Tm 0.41 0.50 0.97 106.6 3.38 0.70 4.12 Yb 2.67 2.00 4.35 93.1 2.05 4.32 1.47 Lu 0.43 0.50 0.98 105.4 1.78 0.72 3.21 Y 38.57 40.00 80.42 102.4 1.38 71.31 1.12 表 5 未加饱和硼酸和加入饱和硼酸条件下稀土元素的测定结果对比
Table 5. Comparison of determination results for REEs before and after adding saturated boric acid
稀土
元素GBW07210测定值(μg/g) GBW07211测定值(μg/g) 未加饱和硼酸 加饱和硼酸 未加饱和硼酸 加饱和硼酸 La 8.08 11.51 18.42 30.25 Ce 14.10 21.73 15.66 27.64 Pr 1.87 2.86 4.27 6.31 Nd 8.61 12.33 14.20 25.42 Sm 2.15 2.95 3.14 5.20 Eu 0.45 0.82 0.68 1.12 Gd 2.16 3.05 3.15 5.26 Tb 0.38 0.60 0.57 0.96 Dy 2.91 4.11 5.02 7.32 Ho 0.51 0.86 0.82 1.41 Er 1.91 2.76 2.71 4.57 Tm 0.23 0.41 0.40 0.70 Yb 1.82 2.67 3.02 4.32 Lu 0.28 0.43 0.36 0.72 Y 23.53 38.57 52.75 71.31 表 6 二次消解保持时间不同条件下稀土元素测定结果对比
Table 6. Comparison of determination results for REEs under different conditions of secondary digestion holding time
稀土
元素GBW07210测定值(μg/g) GBW07211测定值(μg/g) 消解时间5min 消解时间10min 消解时间20min 消解时间5min 消解时间10min 消解时间20min La 10.23 11.51 11.31 26.55 30.25 30.53 Ce 19.4 21.73 21.35 23.71 27.64 27.16 Pr 2.43 2.86 2.91 5.34 6.31 6.15 Nd 10.52 12.33 12.54 22.78 25.42 24.82 Sm 2.36 2.95 2.87 4.52 5.20 5.26 Eu 0.69 0.82 0.84 0.93 1.12 1.08 Gd 2.57 3.05 3.07 4.37 5.26 5.31 Tb 0.55 0.60 0.58 0.82 0.96 0.98 Dy 3.76 4.11 4.07 6.58 7.32 7.47 Ho 0.73 0.86 0.88 1.37 1.41 1.42 Er 2.57 2.76 2.78 3.26 4.57 4.61 Tm 0.34 0.41 0.41 0.55 0.70 0.72 Yb 2.38 2.67 2.71 3.68 4.32 4.41 Lu 0.36 0.43 0.41 0.66 0.72 0.74 Y 32.71 38.57 37.62 63.72 71.31 73.56 表 7 两种前处理方法条件下稀土元素的测定结果对比
Table 7. Comparison of determination results for REEs under two pretreatment methods
稀土
元素样品P1 样品P2 本文方法测定值
(μg/g)混合酸酸溶测定值
(μg/g)相对偏差
(%)本文方法测定值
(μg/g)混合酸酸溶测定值
(μg/g)相对偏差
(%)La 22.71 23.56 −3.74 16.51 15.88 3.82 Ce 35.63 34.85 2.19 28.34 28.01 1.16 Pr 5.87 6.01 −2.39 3.82 3.93 −2.88 Nd 26.03 25.12 3.50 14.45 13.98 3.25 Sm 6.62 6.48 2.11 3.39 3.58 −5.60 Eu 1.52 1.47 3.29 1.01 1.04 −2.97 Gd 5.97 5.85 2.01 3.56 3.68 −3.37 Tb 1.12 1.11 0.89 0.64 0.67 −4.69 Dy 6.64 6.46 2.71 4.05 3.87 4.44 Ho 1.33 1.27 4.51 0.87 0.86 1.15 Er 3.67 3.45 5.99 2.26 2.28 −0.88 Tm 0.59 0.56 5.08 0.35 0.37 −5.71 Yb 3.61 3.82 −5.82 2.48 2.55 −2.82 Lu 0.57 0.55 3.51 0.38 0.36 5.26 Y 35.88 37.24 −3.79 21.16 20.81 1.65 -
[1] 韩兴国, 李凌浩, 黄建辉. 生物地球化学概论[M]. 北京: 高等教育出版社, 1999: 245-253.
Han X G, Li L H, Huang J H. Introduction to biogeochemistry[M]. Beijing: Higher Education Press, 1999: 245-253.
[2] 郭江峰,姚多喜,陈健,等. 重庆龙潭组煤中稀土元素地球化学及地质成因分析[J]. 地学前缘, 2016, 23(3): 51.
Guo J F,Yao D X,Chen J,et al. Geochemistry of the rare earth elements of coals from the Longtan Formation in Chongqing and its geological implication[J]. Earth Science Frontiers, 2016, 23(3): 51.
[3] 尹明, 李家熙. 岩石矿物分析(第四版: 第二分册)[M]. 北京: 地质出版社, 2011: 105-115.
Yin M, Li J X. Rock and Mineral Analysis (The fourth edition: Volume Ⅱ) [M]. Beijing: Geological Publishing House , 2011: 105-115.
[4] 李冰,周建雄,詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916.
Li B,Zhou J X,Zhan X C. Modern instrumental analysis of inorganic multi-elements[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916.
[5] 周凯红,张立峰,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量[J]. 冶金分析, 2022, 42(8): 87−95. doi: 10.13228/j.boyuan.issn1000-7571.011751
Zhou K H,Zhang L F,Li J. Determination of total amount of fifteen rare earth elements and its component in Bayan Obo ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(8): 87−95. doi: 10.13228/j.boyuan.issn1000-7571.011751
[6] 杨惠玲,杜天军,王书勤,等. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素[J]. 冶金分析, 2022, 42(5): 8−14. doi: 10.13228/j.boyuan.issn1000-7571.011704
Yang H L,Du T J,Wang S Q,et al. Determination of rare earth and scattered elements in metallic ores by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(5): 8−14. doi: 10.13228/j.boyuan.issn1000-7571.011704
[7] 杨小丽,李小丹,邹棣华. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56−62. doi: 10.13228/j.boyuan.issn1000-7571.009739
Yang X L,Li X D,Zou D H. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 56−62. doi: 10.13228/j.boyuan.issn1000-7571.009739
[8] 孙朝阳,杨凯,代小吕,等. 电感耦合等离子体质谱(ICP-MS)法测定岩石中的稀土元素[J]. 中国无机分析化学, 2015, 5(4): 48−52. doi: 10.3969/j.issn.2095-1035.2015.04.011
Sun C Y,Yang K,Dai X L,et al. Determination of rare earth elements in rock by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 48−52. doi: 10.3969/j.issn.2095-1035.2015.04.011
[9] 王家松,王力强,王娜,等. 偏硼酸锂熔融分解锆英砂的实验条件优化研究[J]. 华北地质, 2022, 45(4): 48−52.
Wang J S,Wang L Q,Wang N,et al. Optimization of experimental conditions for melting decomposition of zircon sands by lithium metaborate[J]. North China Geology, 2022, 45(4): 48−52.
[10] 辛文彩,朱志刚,宋晓云,等. 应用电感耦合等离子体质谱测定深海富稀土沉积物中稀土元素方法研究[J]. 海洋地质前沿, 2022, 38(9): 92−96.
Xin W C,Zhu Z G,Song X Y,et al. On pretreatment method for the determination of rare earth elements in deep sea REY-rich sediments by inductively coupled plasma-mass spectrometry[J]. Marine Geology Frontiers, 2022, 38(9): 92−96.
[11] 吴葆存,于亚辉,闫红岭,等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753
Wu B C,Yu Y H,Yan H L,et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753
[12] 李正鹤,黄金松,王佳翰. 工作碱熔-电感耦合等离子体质谱法测定海洋沉积物中的稀土元素[J]. 化学世界, 2021, 11(4): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701
Li Z H,Huang J S,Wang J H. Determination of rare earth elements in marine sediments by alkali fusion inductively coupled plasma mass spectrometry[J]. Chemical World, 2021, 11(4): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701
[13] 曾江萍,王家松,王娜,等. 敞开酸溶-电感耦合等离子体质谱法测定锑矿石中的稀土元素[J]. 华北地质, 2021, 44(4): 80−84.
Zeng J P,Wang J S,Wang N,et al. Determination of rare earth elements in antimony ore by open acid dissolution-inductively coupled plasma mass spectrometry[J]. North China Geology, 2021, 44(4): 80−84.
[14] 龚仓,丁洋,陆海川,等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. doi: 10.15898/j.cnki.11-2131/td.202011030136
Gong C,Ding Y,Lu H C,et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348. doi: 10.15898/j.cnki.11-2131/td.202011030136
[15] Zhao W,Zong K Q,Liu Y S,et al. An effective oxide interference correction on Sc and REE for routine analyses of geological samples by inductively coupled plasma-mass spectrometry[J]. Journal of Earth Science, 2019, 30(6): 1302−1310. doi: 10.1007/s12583-019-0898-5
[16] 苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007
Su C F. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007
[17] 戴雪峰,蒋宗明,杨利华. 电感耦合等离子体质谱(ICP-MS)法测定铜铅锌矿中稀土元素[J]. 中国无机分析化学, 2016, 6(1): 26−29. doi: 10.3969/j.issn.2095-1035.2016.01.007
Dai X F,Jiang Z M,Yang L H. Determination rare earth elements in copper,lead and zinc ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 26−29. doi: 10.3969/j.issn.2095-1035.2016.01.007
[18] 张亚峰,冯俊,唐杰,等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186−192. doi: 10.7538/zpxb.2016.37.02.0186
Zhang Y F,Feng J,Tang J,et al. Simultaneous determination of species of micro,trace and tare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186−192. doi: 10.7538/zpxb.2016.37.02.0186
[19] 程祎,李志伟,于亚辉,等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中铌、钽、锆、铪和16种稀土元素[J]. 理化检验(化学分册), 2020, 56(7): 782−787.
Cheng Y,Li Z W,Yu Y H,et al. ICP-MS determination of Nb,Ta,Zr,Hf and 16 rare earth elements in geological samples with high pressure closed digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(7): 782−787.
[20] 曾江萍,王家松,朱悦,等. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789−797. doi: 10.15898/j.cnki.11-2131/td.202112070197
Zeng J P,Wang J S,Zhu Y,et al. Determination of 15 rare earth elements in uranium ore by open acid dissolution-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789−797. doi: 10.15898/j.cnki.11-2131/td.202112070197
[21] 王佩佩,李霄,宋伟娇. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235−240. doi: 10.3969/j.issn.1004-4957.2016.02.017
Wang P P,Li X,Song W Q. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J]. Journal of Instrumental Analysis, 2016, 35(2): 235−240. doi: 10.3969/j.issn.1004-4957.2016.02.017
[22] 王贵超,刘荣丽,王志坚,等. 微波消解-电感耦合等离子体质谱法测定深海沉积物中稀土总量[J]. 理化检验(化学分册), 2021, 57(7): 627−632.
Wang G C,Liu R L,Wang Z J,et al. Determination of total content of rare earths in deep-sea sediments by inductively coupled plasma mass spectrometry after microwave digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(7): 627−632.
[23] 张宏丽,高小飞,姚明星,等. 微波消解-电感耦合等离子体质谱法测定赤泥中稀土总量及分量[J]. 稀土, 2019, 7(3): 96−101. doi: 10.16533/j.cnki.15-1099/tf.20190002
Zhang H L,Gao X F,Yao M X,et al. Microwave dissolving-inductively coupled plasma mass spectrometric determination of total and individual REE in red mud[J]. Chinese Rare Earths, 2019, 7(3): 96−101. doi: 10.16533/j.cnki.15-1099/tf.20190002
[24] 黄金松,李正鹤,王佳翰. 微波消解-ICP-MS测定海洋沉积物中的稀土元素[J]. 化学试剂, 2021, 43(4): 515−519. doi: 10.13822/j.cnki.hxsj.2021007883
Huang J S,Li Z H,Wang J H. Determination of rare earth elements in marine sediments by microwave digestion ICP-MS[J]. Chemical Reagents, 2021, 43(4): 515−519. doi: 10.13822/j.cnki.hxsj.2021007883
[25] 李银花,赵雨薇,刘曙,等. 微波消解-高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定原油中22种微量元素[J]. 中国无机分析化学, 2022, 12(6): 94−102. doi: 10.3969/j.issn.2095-1035.2022.06.015
Li Y H,Zhao Y W,Liu S,et al. Determination of 22 trace elements in crude oil by high resolution inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 94−102. doi: 10.3969/j.issn.2095-1035.2022.06.015
[26] 沈健,赵雨薇,王兵. 微波消解-高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定煤炭中35种痕量金属元素[J]. 中国无机分析化学, 2022, 12(2): 26−34. doi: 10.3969/j.issn.2095-1035.2022.02.004
Shen J,Zhao Y W,Wang B. Determination of 35 trace metal elements in coal by high resolution inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 26−34. doi: 10.3969/j.issn.2095-1035.2022.02.004
[27] 张楠,徐铁民,吴良英,等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644−649.
Zhang N,Xu T M,Wu L Y,et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644−649.
[28] 郭振华,何汉江,田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素[J]. 岩矿测试, 2014, 33(1): 25−28. doi: 10.3969/j.issn.0254-5357.2014.01.005
Guo Z H,He H J,Tian F Y. Determination of rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with mixed acid dissolution[J]. Rock and Mineral Analysis, 2014, 33(1): 25−28. doi: 10.3969/j.issn.0254-5357.2014.01.005
[29] 倪文山,刘长森,姚明星,等. 电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J]. 冶金分析, 2016, 36(7): 69−73.
Ni W S,Liu C S,Yao M X,et al. Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 69−73.
[30] 李明来,王良士,彭新林,等. 电感耦合等离子体原子发射光谱法测定磷矿石中微量稀土元素[J]. 冶金分析, 2011, 30(1): 47−50.
Li M L,Wang L S,Peng X L,et al. Determination of trace rare earth elements in phosphate ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2011, 30(1): 47−50.
[31] 李海,杨朝帅,余亚美,等. 微波消解-磺基水杨酸光度法测定磷矿石中铁[J]. 冶金分析, 2017, 37(1): 61−65. doi: 10.13228/j.boyuan.issn1000-7571.009930
Li H,Yang C S,Yu Y M,et al. Determination of iron in phosphate ore by sulfosalicylic acid spectrophotometry with microwave digestion[J]. Metallurgical Analysis, 2017, 37(1): 61−65. doi: 10.13228/j.boyuan.issn1000-7571.009930
[32] 彭桦,张屹璇,余慧茹,等. 微波碱熔消解快速测定磷矿石和磷精矿中二氧化硅[J]. 云南化工, 2022, 49(9): 37−39.
Peng H,Zhang Q X,Yu H R,et al. Rapid determination of silica in phosphate rock and phosphate concentrate by microwave alkaline melting and digestion[J]. Yunnan Chemical Technology, 2022, 49(9): 37−39.
-