中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素

郭琳, 于汀汀, 孙红宾, 朱云. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素[J]. 岩矿测试, 2024, 43(2): 356-365. doi: 10.15898/j.ykcs.202308070129
引用本文: 郭琳, 于汀汀, 孙红宾, 朱云. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素[J]. 岩矿测试, 2024, 43(2): 356-365. doi: 10.15898/j.ykcs.202308070129
GUO Lin, YU Tingting, SUN Hongbin, ZHU Yun. Determination of Beryllium and Major Elements in Beryllium Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2024, 43(2): 356-365. doi: 10.15898/j.ykcs.202308070129
Citation: GUO Lin, YU Tingting, SUN Hongbin, ZHU Yun. Determination of Beryllium and Major Elements in Beryllium Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2024, 43(2): 356-365. doi: 10.15898/j.ykcs.202308070129

偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产多元素同时分析技术和标准化”
详细信息
    作者简介: 郭琳,高级工程师,主要从事地质实验测试及标准化研究。E-mail:guolno_1@aliyun.com
  • 中图分类号: O657.31;O616

Determination of Beryllium and Major Elements in Beryllium Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Lithium Metaborate Fusion

  • 广泛赋存在花岗伟晶岩和热液石英脉中的铍矿石是铍最重要的矿物载体,目前铍矿石系统分析仍以传统化学法为主,影响分析效率,亟待开发一种简单高效的铍矿石中多元素分析方法。本文建立了一种基于偏硼酸锂熔融-电感耦合等离子体发射光谱(ICP-OES)测定铍矿石中铍及主量元素的定量分析方法,使用4∶1熔剂-样品比,950℃下熔融15min后,通过超声提取制备溶液。偏硼酸锂熔融法能有效地分解铍矿石中的氧化物,克服了传统酸溶或碱熔无法检测硅、钠、钾等元素的局限。本方法通过校准曲线与样品基体匹配,加入铕作内标等措施消除基体效应,实现了各元素(以氧化物计)低至0.003%~0.2%的检出限,满足铍精矿质量检测需求。对绿柱石、香花石、日光榴石样品(BeO含量范围为0.14%~13.33%)测定的相对标准偏差(RSD)小于6.83%,与混合酸酸溶分析方法的测定值相对偏差为0.06%~21.28%。通过标准物质GBW07150、GBW07151和GBW07183验证,本方法精密度和准确度均符合地质矿产实验室测试质量管理规范,适用于多种类型铍矿石样品中铍及主量元素的快速连续分析。

  • 加载中
  • 图 1  四个温度下制备溶液的测定结果与标准物质标准值范围的比较

    Figure 1. 

    图 2  加入内标测定和直接测定的相对标准偏差比较

    Figure 2. 

    图 3  未知样品各元素(以氧化物计)含量分布

    Figure 3. 

    表 1  分析元素、内标元素谱线及观测方式

    Table 1.  Characteristic wavelengths of analytical elements, internal standard elements and observation mode

    元素谱线(nm)观测方式元素谱线(nm)观测方式
    Al308.215径向Mn257.610轴向
    Be313.107径向Na589.592径向
    Ca317.933径向P213.617轴向
    Fe259.939径向Si251.611径向
    K776.490径向Ti334.940轴向
    Mg279.553径向Eu412.970径向
    下载: 导出CSV

    表 2  方法检出限和测定下限

    Table 2.  Detection limit and determination limit of the method

    成分 检出限
    (%)
    测定下限
    (%)
    成分 检出限
    (%)
    测定下限
    (%)
    Al2O3 0.06 0.20 MnO 0.005 0.02
    BeO 0.01 0.03 Na2O 0.03 0.10
    CaO 0.02 0.07 P2O5 0.05 0.17
    TFe2O3 0.01 0.03 SiO2 0.20 0.66
    K2O 0.02 0.07 TiO2 0.003 0.01
    MgO 0.01 0.03
    下载: 导出CSV

    表 3  铍及主量元素测定结果精密度统计

    Table 3.  Precision statistics of determination results for beryllium and major elements

    样品编号 项目 Al2O3 BeO CaO TFe2O3 K2O MgO MnO Na2O SiO2 TiO2
    GBW07151 含量平均值(%) 14.77 0.36 0.58 0.58 3.85 0.070 0.036 4.65 73.91 0.016
    RSD (%) 0.52 1.31 3.86 3.80 2.02 3.16 3.38 0.93 0.51 6.83
    YC (%) 2.57 5.82 7.73 7.73 4.46 12.45 14.21 4.18 0.46 16.57
    Lz-2
    (实际铍矿石样品)
    含量平均值(%) 17.53 10.52 0.15 0.74 0.20 0.068 0.12 2.18 66.09 0.032
    RSD (%) 0.62 1.59 6.14 3.67 3.89 1.85 3.02 2.22 0.61 6.82
    YC (%) 2.35 2.02 10.60 7.27 9.95 12.52 11.12 5.36 0.54 14.54
    下载: 导出CSV

    表 4  标准物质中铍及主量元素的测定值与标准值对比

    Table 4.  Comparison of determination values and standard values of beryllium and major elements in standard materials

    样品编号 测定参数 Al2O3 BeO CaO TFe2O3 K2O MgO MnO Na2O SiO2 TiO2
    GBW07150 测定值(%) 14.93 0.06 0.60 0.49 4.14 0.07 0.03 4.75 73.74 0.01
    标准值(%) 14.86 0.060 0.582 0.513 4.10 0.071 0.03 4.79 73.97 0.015
    相对误差(%) 0.47 −1.67 3.26 −3.70 0.98 −4.23 0.00 −0.84 −0.31 −6.67
    YB (%) 1.81 6.08 5.46 5.64 3.09 8.78 10.41 2.92 0.32 11.85
    GBW07151 测定值(%) 14.74 0.35 0.61 0.57 3.94 0.08 0.04 4.74 74.04 0.02
    标准值(%) 14.81 0.365 0.584 0.593 3.89 0.069 0.036 4.67 73.99 0.016
    相对误差(%) −0.47 −3.29 4.62 −3.88 1.29 8.70 −2.78 1.50 0.07 0.00
    YB (%) 1.81 4.10 5.46 5.44 3.14 8.83 10.05 2.95 0.32 11.71
    GBW07183 测定值(%) 15.74 2.99 0.51 0.46 3.17 0.08 0.02 3.64 71.84 0.01
    标准值(%) 15.55 3.02 0.52 0.47 3.28 0.083 0.02 3.67 71.97 0.01
    相对误差(%) 1.22 −0.99 −1.92 −2.13 −3.26 −2.41 5.00 −0.82 −0.18 0.00
    YB (%) 1.77 2.29 5.62 5.76 3.33 8.50 11.24 3.21 0.34 12.76
    下载: 导出CSV

    表 5  碱熔法和酸溶法处理样品铍及主量元素测定结果比对

    Table 5.  Comparison of determination results for beryllium and major elements in samples processed using alkaline fusion and acid dissolution

    样品编号 测定参数 Al2O3 BeO CaO TFe2O3 K2O MgO MnO Na2O TiO2
    Be-xh 碱熔法测定值(%) 16.97 0.14 20.99 11.55 1.33 1.21 1.61 1.34
    酸溶法测定值(%) 17.27 0.11 21.20 11.37 1.27 1.17 1.64 1.24
    RD (%) −1.72 19.56 −1.00 1.50 4.65 3.28 −2.33 7.52
    Be-rgl 碱熔法测定值(%) 0.68 12.81 1.77 26.10 0.08 0.29 16.47 0.026
    酸溶法测定值(%) 0.66 13.05 1.90 26.46 0.08 0.31 16.73 0.021
    RD (%) 2.78 −1.85 −7.24 −1.34 −4.57 −7.40 −1.55 21.28
    Lz-2 碱熔法测定值(%) 17.44 10.62 0.15 0.71 0.24 0.068 0.11 2.11 0.033
    酸溶法测定值(%) 17.38 10.55 0.13 0.71 0.26 0.066 0.12 2.29 0.029
    RD (%) 0.35 0.67 17.05 −0.06 −6.27 2.48 −2.53 −8.21 12.90
    Be-kq 碱熔法测定值(%) 19.77 0.54 0.88 0.89 4.17 0.041 0.22 2.93 0.010
    酸溶法测定值(%) 19.59 0.49 0.92 0.92 4.27 0.038 0.23 3.10
    RD (%) 0.90 8.48 −3.54 −3.18 −2.35 6.73 −3.51 −5.68
    注:表格中的“−” 为低于本方法测定下限的测定结果。
    下载: 导出CSV
  • [1]

    王登红, 孙艳, 代鸿章, 等. 我国“三稀矿产”的资源特征及开发利用研究[J]. 中国工程科学, 2019, 21(1): 119−127. doi: 10.15302/J-SSCAE-2019.01.017

    Wang D H, Sun Y, Dai H Z, et al. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China[J]. Strategic Study of CAE, 2019, 21(1): 119−127. doi: 10.15302/J-SSCAE-2019.01.017

    [2]

    李建康, 邹天人, 王登红, 等. 中国铍矿成矿规律[J]. 矿床地质, 2017, 36(4): 951−978.

    Li J K, Zou T R, Wang D H, et al. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 2017, 36(4): 951−978.

    [3]

    董京娱, 黄凡, 王登红, 等. 不同类型铍矿床中绿柱石的地球化学特征及其地质意义[J]. 岩石学报, 2023, 39(7): 2153−2166. doi: 10.18654/1000-0569/2023.07.16

    Dong J Y, Huang F, Wang D H, et al. Geochemical characteristics and geological significance of beryl in different of beryl in different types of beryllium deposits[J]. Acta Petrologica Sinica, 2023, 39(7): 2153−2166. doi: 10.18654/1000-0569/2023.07.16

    [4]

    邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023, 44(1): 148−154.

    Deng W, Yan S Q, Tan H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 148−154.

    [5]

    施璐, 鞠楠, 伍月, 等. 华北克拉通北缘东段新发现大喜营子铷-铍矿床[J]. 地质与资源, 2023, 32(2): 245−248.

    Shi L, Ju N, Wu Y, et al. Newly discovered Daxiyingzi Rb-Be deposit in the eastern section of the northern margin of North China Craton[J]. Geology and Resources, 2023, 32(2): 245−248.

    [6]

    陈振宇, 李胜利, 李晓峰, 等. 冀北窟窿山火山岩型铍矿化的发现及其地质意义[J]. 岩石学报, 2023, 38(7): 1901−1914.

    Chen Z Y, Li S L, Li X F, et al. Discovery and prospecting potential of volcanic beryllium mineralization in Kulongshan[J]. Acta Petrologica Sinica, 2023, 38(7): 1901−1914.

    [7]

    唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3): 655−675. doi: 10.18654/1000-0569/2022.03.05

    Tang J L, Ke Q, Xu X W, et al. Magma evolution and mineralization of Longmenshan lithium beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica, 2022, 38(3): 655−675. doi: 10.18654/1000-0569/2022.03.05

    [8]

    钱烨, 赵昌吉, 张涛, 等. 吉林中部早侏罗世A型花岗岩的地球化学特征及地质意义[J]. 黑龙江科技大学学报, 2021, 31(5): 562−568.

    Qian Y, Zhao C J, Zhang T, et al. Geochemical characteristics and geological significance of early Jurassic A type granite[J]. Journal of Heilongjiang University of Science & Technology, 2021, 31(5): 562−568.

    [9]

    陈振宇, 李建康, 周振, 等. 硬岩型锂-铍-铌-钽资源工艺矿物学评价指标体系[J]. 岩石学报, 2023, 39(7): 1887−1907. doi: 10.18654/1000-0569/2023.07.02

    Chen Z Y, Li J K, Zhou Z, et al. Study on process mineralogical evaluation index system of hard rock lithium-beryllium-niobium-tantalum mineral resources[J]. Acta Petrologica Sinica, 2023, 39(7): 1887−1907. doi: 10.18654/1000-0569/2023.07.02

    [10]

    张盈盈, 石磊. 电感耦合等离子体原子发射光谱(ICP-AES)法测定铝铍中间合金中的铍[J]. 中国无机分析化学, 2018, 8(1): 33−36.

    Zhang Y Y, Shi L. Determination of beryllium in aluminum-beryllium alloy by inductively coupled plasma-atomic emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 33−36.

    [11]

    刘军, 孙洪涛, 李晖, 等. 电感耦合等离子体原子发射光谱法测定铍中氧化铍的含量[J]. 理化检验(化学分册), 2019, 55(12): 1452−1454.

    Liu J, Sun H T, Li H, et al. Determination of beryllium oxide in beryllium by inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(12): 1452−1454.

    [12]

    杜桂荣, 赵杰, 丁红芳, 等. 电感耦合等离子体原子发射光谱法(ICP-OES)测定铍轴伴生矿石中的铍[J]. 中国无机分析化学, 2015, 5(2): 30−33.

    Du G R, Zhao J, Ding H F, et al. Determination of beryllium in beryllium associated uranium ore by inductively coupled plasma optical emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 30−33.

    [13]

    姚钟威, 田学达, 罗义威, 等. 萤石矿石中低品位彼的测定[J]. 湿法冶金, 2021, 40(2): 174−177.

    Yao Z W, Tian X Y, Luo Y W, et al. Determination of low grade beryllium in fluorite ore[J]. Hydrometallurgy of China, 2021, 40(2): 174−177.

    [14]

    赵学沛. 多种酸溶矿ICP-AES测定稀有金属矿中锂铍铌钽锡[J]. 化学研究与应用, 2017, 29(11): 1714−1718.

    Zhao X P. Determination of lithium, beryllium, niobium and tantalum in rare metal ores by four acid soluble ICP-AES[J]. Chemical Research and Application, 2017, 29(11): 1714−1718.

    [15]

    雷勇, 勾钰霞, 易建春, 等. 密闭消解-电感耦合等离子体光谱法测定稀有金属矿选冶流程样品中锂、铍、铌和钽[J]. 矿产综合利用, 2023, 44(4): 205−210.

    Lei Y, Gou Y X, Yi J C, et al. Inductively coupled plasma atomic emission spectrometric determination of lithium, beryllium, niobium and tantalum in sample of beneficiation process of rare metal ore after closed digestion[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 205−210.

    [16]

    杨林, 邹国庆, 周武权, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯[J]. 中国无机分析化学, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    Yang L, Zou G Q, Zhou W Q, et al. Determination of Li, Be, Nb, Ta, Rb, Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    [17]

    张永盛, 谭雪英. ICP-AES法测定绿柱石中铍硅铝铁镁钙钛和锰[J]. 分析试验室, 1993, 12(5): 61-63.

    Zhang Y S, Tan X Y. Determination of Be, Si, Al, Fe, Ca, Mn, Ti , Mg in beryl by ICP-AES[J]. Chinese Journal of Analysis Laboratory, 1993, 12(5): 61-63.

    [18]

    方彦霞, 齐白羽, 张彦翠, 等. 电感耦合等离子体原子发射光谱法同时测定铍冶炼过程中的铍、铁、铝和硅[J]. 理化检验(化学分册), 2019, 52(1): 80−82.

    Fang Y X, Qi B Y, Zhang Y C, et al. Simultaneous determination of beryllium, iron, aluminum and silicon in beryllium smelting process by inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 52(1): 80−82.

    [19]

    石华, 陶丽萍, 安国荣. 电感耦合等离子体原子发射光谱 (ICP-AES)法测定碳酸盐型石墨中硅、铁、铝等9种元素[J]. 中国无机分析化学, 2016, 6(1): 59−61.

    Shi H, Tao L P, An G R. Determination of nine elements in carbonate graphite ores by ICP-AES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 59−61.

    [20]

    陈国娟, 庄驷耕, 徐晓欣. 无水偏硼酸锂熔融-电感耦合等离子体发射光谱法(ICP-AES)测定岩屑样品中的造岩元素[J]. 当代化工, 2018, 47(6): 1314−1420.

    Chen G J, Zhuang S G, Xu X X. Determination of rock forming elements in cuttings by melting-ICP-AES method[J]. Contemporary Chemical Industry, 2018, 47(6): 1314−1420.

    [21]

    刘静, 彭展, 马慧侠, 等. 偏硼酸锂熔融-火焰原子吸收光谱法测定铝土矿中K2O和Na2O含量的研究[J]. 轻金属, 2022(2): 53−57.

    Liu J, Peng Z, Ma H X, et al. Determination of K2O and Na2O content in bauxite by flame atomic absorption spectrometry with lithium metaborate fusion[J]. Light Metals, 2022(2): 53−57.

    [22]

    门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 688−697.

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 688−697.

    [23]

    《岩石矿物分析》编委会. 岩石矿物分析(第四版 第一分册) [M]. 北 京: 地 质 出 版 社, 2011: 207, 466-467.

    The editorial committee of “Rock and Mineral Analysis”. Rock and Mineral Analysis (The fourth edition: Vol. Ⅰ)[M]. Beijing: Geological Publishing House, 2011: 207, 406.

    [24]

    王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688−697.

    Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688−697.

    [25]

    王冠, 董俊, 徐国栋, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜能谱测定锡矿石中锡钨锌铜铁锰[J]. 岩矿测试, 2023, 42(1): 114−124.

    Wang G, Dong J, Xu G D, et al. Determination of tin, tungsten, zinc, copper, iron and manganese in tin ore by lithium metaborate fusion-inductively coupled plasma-optical emission spectrometry combined with scanning electron microscopy-energy dispersive X-ray spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114−124.

    [26]

    邝安宏, 胡家明. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定透辉石中的SiO2、CaO、MgO、Al2O3、Fe2O3[J]. 分析测试技术与仪器, 2018, 24(3): 173−178.

    Kuang A H, Hu J M. Determination of SiO2, CaO, MgO, Al2O3, Fe2O3 in diopside by inductively coupled plasma atomic emission spectrometry with lithium metaborate fusion sample pretreatment[J]. Analysis and Testing Technology and Instruments, 2018, 24(3): 173−178.

    [27]

    马生凤, 温宏利, 巩爱华, 等. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J]. 岩矿测试, 2009, 28(6): 535−540.

    Ma S F, Wen H L, Gong A H, et al. Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J]. Rock and Mineral Analysis, 2009, 28(6): 535−540.

    [28]

    Panteeva S V, Gladkochoub D P, Donskaya T V, et al. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion[J]. Spectrochimica Acta Part, 2003, 58: 341−350. doi: 10.1016/S0584-8547(02)00151-9

    [29]

    王家松, 王力强, 王娜, 等. 偏硼酸锂熔融分解锆英砂的实验条件优化研究[J]. 华北地质, 2022, 45(4): 48−52.

    Wang J S, Wang L Q, W N, et al. Optimization of experimental conditions for melting decomposition[J]. North China Geology, 2022, 45(4): 48−52.

    [30]

    郑建国, 周勤, 钱浩雯. 内标法在ICP-AES中的应用研究-Ⅰ. 信号的相关性与精密度的改善[J]. 分析测试学报, 1994, 13(2): 28−34.

    Zheng J G, Zhou Q, Qian H W. Applied research of ICP-AES internal standard method-Ⅰ. Correlation of signals and improving precision[J]. Journal of Instrumental Analysis, 1994, 13(2): 28−34.

    [31]

    叶家喻, 江宝林. 区域地球化学勘查样品分析方法[M]. 北京: 地质出版社, 2004: 226-227.

    Ye J Y, Jiang B L. Methods of sample analysis for regional geochemical exploration[M]. Beijing: Geological Publishing House, 2004: 226-227.

  • 加载中

(3)

(5)

计量
  • 文章访问数:  963
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2023-08-07
修回日期:  2024-02-20
录用日期:  2024-02-29
刊出日期:  2024-04-30

目录