Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet
-
摘要:
地热水的水化学特征包含其形成过程中地质、构造、断裂、蚀变以及环境变化等多种信息。西藏地区地热资源丰富,部分地热水中含有胶体粒子,开展胶体粒子的形貌、成分、结构等物理化学信息研究,对于了解地热流体的物质来源与胶体粒子关系具有重要意义。胶体粒子的生成与沉淀过程影响着地热水的浊度、电导率、部分阳离子的含量。本文对羊八井地热水中胶体粒子进行一系列分析,采用激光粒度仪测定地热水中胶体粒子的粒径,透射电镜(TEM)和扫描电镜(SEM)表征胶体粒子的形貌,红外光谱(FTIR)测定胶体粒子的特征谱峰,能谱仪(EDS)分析胶体粒子的主要成分,电感耦合等离子体发射光谱(ICP-OES)测定地热水中二氧化硅(SiO2)含量。结果表明:地热水中高含量的SiO2除了以偏硅酸形式存在,还以胶体粒子的形式存在。胶体粒子的平均粒径为80.83nm,该胶体粒子与铯硅华的形成及轻稀土元素的富集有关。此外,该胶体粒子可以用ICP-OES法分析,但不与钼酸铵显色,从而导致采用紫外可见分光光度法(UV-Vis)和ICP-OES测定该类型水体中偏硅酸(H2SiO3)与SiO2结果相差较大,因此对于SiO2含量高于100mg/L的地热水,采用ICP-OES法检测更为准确。
Abstract:BACKGROUND The hydrochemical characteristics of geothermal water include various information such as geological, structural, fracture, alteration, and environmental changes during its formation. It is particularly important to analyse various components in geothermal water accurately. Tibet is rich in geothermal resources, and some geothermal water contains colloidal particles. It is of great significance to study the morphology, composition and structure of colloidal particles for understanding the relationship between the material sources of geothermal fluids and colloidal particles. The generation and precipitation of colloidal particles can affect the turbidity, conductivity, and partial cation content of geothermal water. It is not easy to obtain naturally formed colloidal particles in geothermal water, so there are few reports on the analysis of colloidal particles in geothermal water.
OBJECTIVES To analyze colloidal particles in geothermal water accurately by multiple methods, and understand the relationship between colloidal particles and opals, and the impact of colloidal particles on the analysis of other elements in geothermal water.
METHODS By comparing the changes in the main components of the water samples before and after filtration, the composition of colloidal particles was inferred. The composition and structure of colloidal particles in the filtrate were characterized by scanning electron microscopy (SEM) and other instruments. The particle size of colloidal particles in geothermal water was measured by laser particle size analyzer, the morphology of colloidal particles was characterized by transmission electron microscope (TEM) and SEM, the characteristic spectrum peak of colloidal particles was measured by Fourier transform infrared spectroscopy (FTIR), the main composition of colloidal particles was analyzed by energy dispersive spectrometer (EDS), and the content of silicon in geothermal water was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ultraviolet-visible spectrophotometry (UV-Vis).
RESULTS The colloidal particles in geothermal water are colloidal silica particles. High levels of silica in geothermal water are present in the form of soluble silicic acid and colloidal particles. The average particle size of the colloidal particles is 80.83nm, which is related to the formation of cesium silica and the enrichment of light rare earth elements. The colloidal particle can be analyzed by ICP-OES method, but cannot show color with ammonium molybdate, resulting in a significant difference in the results of using UV-Vis and ICP-OES to determine silicon in this type of water. ICP-OES is a more suitable detection method for geothermal water with high silicon dioxide content. Silicon dioxide can be directly measured whether it exists in the form of metasilicic acid or colloidal particles.
CONCLUSIONS The research shows that the presence of colloidal particles increases the turbidity, but not the conductivity, of geothermal water. The results show that the high content of SiO2 in geothermal water co-exists in the form of metasilicate and colloidal particles, which can be analyzed by ICP-OES but cannot show color with ammonium molybdate. The content of SiO2 colloidal particles in geothermal water can be obtained by calculating the difference between SiO2 measured by ICP-OES and H2SiO3 measured by UV-Vis. SiO2 colloidal particles are relatively stable and not easy to precipitate. SiO2 colloidal particles will adsorb metal ions in geothermal water during the filtration process.
-
表 1 样品过滤前后及稀释后分析结果
Table 1. Analysis results of samples after different treatments.
样品及
处理pH Na
(mg/L)K
(mg/L)Ca
(mg/L)Mg
(mg/L)Fe
(mg/L)Mn
(mg/L)Al
(mg/L)浑浊度
(NTU)地热水 8.61 1658 259.1 15.49 0.12 0.81 0.0099 5.13 41.7 过滤后 8.63 1520 248.8 7.31 0.13 ND 0.0059 0.16 2.42 稀释2倍 8.81 593.5 137.8 4.55 0.048 0.40 0.0021 1.82 17.4 稀释5倍 8.83 240.2 54.46 1.82 0.019 0.17 0.00092 0.70 5.92 稀释10倍 8.84 133.4 29.42 1.11 ND 0.078 0.00085 0.36 2.41 稀释20倍 8.81 64.64 13.84 0.45 ND 0.052 0.00078 0.18 0.94 稀释50倍 8.74 31.42 5.83 0.41 0.40 0.17 ND 0.070 0.53 稀释100倍 8.70 14.75 2.95 2.88 0.40 0.010 ND 0.029 ND 样品及
处理HCO3 −
(mg/L)CO3 2−
(mg/L)SO4 2−
(mg/L)Cl−
(mg/L)SiO2
(mg/L)H2SiO3
(mg/L)HBO2
(mg/L)TDS
(mg/L)电导率
(mS/cm)地热水 169.3 406.8 190.4 1973 1509 121.5 1175 7340 7.28 过滤后 211.0 384.0 192.6 2015 120.8 79.15 1115 5554 7.21 稀释2倍 56.74 210.9 88.14 927.5 671.0 92.70 540.7 2571 3.14 稀释5倍 27.24 84.26 41.68 376.1 262.8 77.33 208.4 1325 1.35 稀释10倍 13.62 41.85 18.41 196.1 138.2 55.45 110.7 767.8 0.69 稀释20倍 18.72 12.28 9.03 92.27 69.11 33.85 54.68 336.4 0.35 稀释50倍 7.38 7.25 3.90 39.32 29.34 7.07 22.25 134.2 0.18 稀释100倍 8.51 2.23 1.91 20.21 15.13 3.50 11.25 70.26 0.067 注:“ND”表示未检出,除pH、浑浊度、电导率外其他组分含量的单位为mg/L。过滤后为地热水经过0.1µm滤膜过滤胶体粒子后的样品;稀释2倍、稀释5倍、稀释10倍、稀释20倍、稀释50倍、稀释100倍分别为地热水通过超纯水稀释,稀释后的样品摇匀后静置20天然后进行分析测试。
-
[1] 李明礼,多吉,王祝,等. 西藏日多温泉水化学特征及其物质来源[J]. 中国岩溶, 2015, 34(3): 209−216. doi: 10.11932/karst20150302
Li M L,Duo J,Wang Z,et al. Hydrochemical characteristics and material sources of the Riduo thermal spring in Tibet[J]. Carsologica Sinica, 2015, 34(3): 209−216. doi: 10.11932/karst20150302
[2] 李皓婷,郭宁,孙会肖,等. 西藏查孜温泉水化学特征分析[J]. 地质论评, 2019, 65(Z1): 3−4. doi: 10.16509/j.georeview.2019.s1.002
Li H T,Guo N,Sun H X,et al. Analysis of hydrochemical characteristics of the Chazi thermal spring in Tibet[J]. Geological Review, 2019, 65(Z1): 3−4. doi: 10.16509/j.georeview.2019.s1.002
[3] 郭宁,孙会肖,李皓婷,等. 西藏觉拥温泉水化学特征分析[J]. 地质论评, 2019, 65(Z1): 21−23. doi: 10.16509/j.georeview.2019.s1.011
Guo N,Sun H X,Li H T,et al. Hydrochemical characteristics of Jueyong hot spring in Tibet[J]. Geological Review, 2019, 65(Z1): 21−23. doi: 10.16509/j.georeview.2019.s1.011
[4] 章旭,郝红兵,刘康林,等. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4): 1−9. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01
Zhang X,Hao H B,Liu K L,et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 1−9. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01
[5] 谭梦如,周训,张彧齐,等. 云南勐海县勐阿街温泉水化学和同位素特征及成因[J]. 水文地质工程地质, 2019, 46(3): 70−80. doi: 10.16030/j.cnki.issn.1000-3665.2019.03.10
Tan M R,Zhou X,Zhang Y Q,et al. Hydrochemical and isotopic characteristics and formation of the Mengajie hot spring in Menghai County of Yunnan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 70−80. doi: 10.16030/j.cnki.issn.1000-3665.2019.03.10
[6] 刘成龙,王广才,史浙明,等. 云南硫磺洞温泉水文地球化学特征和成因分析[J]. 地震研究, 2020, 43(2): 278−286. doi: 10.3969/j.issn.1000-0666.2020.02.009
Liu C L,Wang G C,Shi Z M,et al. Hydrogeochemical characteristics and formation of the Liuhuangdong spring in Yunnan Province[J]. Journal of Seiemological Research, 2020, 43(2): 278−286. doi: 10.3969/j.issn.1000-0666.2020.02.009
[7] 刘明亮,何曈,吴启帆,等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221−2231.
Liu M L,He T,Wu Q F,et al. Hydrogeochemistry of geothermal waters from Xiongan New Area and its indicating significance[J]. Earth Science, 2020, 45(6): 2221−2231.
[8] 王祝,李明礼,邵蓓,等. 电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J]. 岩矿测试, 2015, 34(3): 302−307. doi: 10.15898/j.cnki.11-2131/td.2015.03.007
Wang Z,Li M L,Shao B,et al. Determination of 11 major and minor elements in geothermal water of the Riduo hotsprings from Tibet by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2015, 34(3): 302−307. doi: 10.15898/j.cnki.11-2131/td.2015.03.007
[9] 李清彩,赵庆令,安茂国,等. 电感耦合等离子体发射光谱法测定地热水中的硫化物[J]. 岩矿测试, 2017, 36(3): 239−245. doi: 10.15898/j.cnki.11-2131/td.201612120181
Li Q C,Zhao Q L,An M G,et al. Determination of sulfide in geothermal water by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(3): 239−245. doi: 10.15898/j.cnki.11-2131/td.201612120181
[10] 陈磊磊,陶宗涛,袁锡泰,等. 电感耦合等离子体原子发射光谱法测定地热水中钾、钠、钙、镁的含量[J]. 理化检验(化学分册), 2018, 54(8): 911−915.
Chen L L,Tao Z T,Yuan X T,et al. ICP-AES determination of potassium,sodium,calcium,and magnesium in geothermal water[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(8): 911−915.
[11] 姜贞贞,刘高令,王祝,等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005
Jiang Z Z,Liu G L,Wang Z,et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005
[12] Jahan S,Alias Y B,Bakar A F B A,et al. Transport and retention behavior of carbonaceous colloids in natural aqueous medium:Impact of water chemistry[J]. Chemosphere, 2019, 217: 213−222. doi: 10.1016/j.chemosphere.2018.11.015
[13] Xu H,Xu M,Li Y,et al. Characterization,origin,and aggregation behavior of colloids in eutrophic shallow lake[J]. Water Research, 2018, 142: 176−186. doi: 10.1016/j.watres.2018.05.059
[14] Tanaka M,Takahashi K. Identification of chemical species of silica in natural hot water using fast atom-bombartment mass spectrometry[J]. Instrumentation Science & Technology, 2005, 33(1): 47−60.
[15] Otsu E,Etou M,Ohashi H,et al. Quantification method of size distribution of polysilicic acid in supersaturated silicic acid solution[J]. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2013, 29(3): 333. doi: 10.2116/analsci.29.333
[16] 罗雯,赵元艺,任二峰,等. 西藏谷露铯硅华1H,29Si魔角旋转核磁共振研究[J]. 盐湖研究, 2012, 20(3): 43−47.
Luo W,Zhao Y Y,Ren E F,et al. 1H and 29Si MAS NMR of the geyserite in Tibetan Gulu area,China[J]. Journal of Salt Lake Resrarch, 2012, 20(3): 43−47.
[17] Elenga H I,Tan H,Shi D,et al. Elemental distribution and partitioning law between the geothermal water and associated deposits for a typical geothermal system with large-scale siliceous sinter deposits in the Tibet[J]. Geochemistry International, 2021, 59(13): 1258−1273. doi: 10.1134/S0016702921100037
[18] 董贺. 季铵化合物辅助Stöber法制备SiO2粒子[D]. 长春: 吉林大学, 2021: 1-121.
Dong H. Preparation of silica particles by quaternary ammonium compounds assisted Stöber method[D]. Changchun: Jilin University, 2021: 1-121.
[19] Shimada K,Tarutani T. Gel chromatographic study of the polymerization of silicic acid[J]. Journal of Chromatography A, 1979, 168(2): 401−406. doi: 10.1016/0021-9673(79)80010-2
[20] Arnórsson S,Bjarnason J Ö,Giroud N,et al. Sampling and analysis of geothermal fluids[J]. Geofluids, 2006, 6(3): 203−216.
[21] Verma M P,Izquierdo G,Urbino G A,et al. Inter-laboratory comparison of SiO2 analysis for geothermal water chemistry[J]. Geothermics, 2012, 44: 33−42. doi: 10.1016/j.geothermics.2012.06.003
[22] 严俊,胡仙超,方飚,等. 应用XRF-SEM-XRD-FTIR等分析测试技术研究丽水蓝色类欧泊(蛋白石)的矿物学与光学特征[J]. 岩矿测试, 2014, 33(6): 795−801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006
Yan J,Hu X C,Fang B,et al. Study on the mineralogical and optical characteristics of blue opal from Lishui investigated by XRF-SEM-XRD-FTIR[J]. Rock and Mineral Analysis, 2014, 33(6): 795−801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006
[23] 张诚. 浙江丽水蓝色蛋白石的宝石矿物学特征研究[D]. 北京: 中国地质大学(北京), 2018: 1−86.
Zhang C. Study on the gemological and mineralogical characteristics of blue opal from Lishui, Zhejiang[D]. Beijing: China University of Geosciences (Beijing), 2018: 1−86.
[24] Curtis N J,Gascooke J R,Pring A. Silicon-oxygen region infrared and Raman analysis of opals:The effect of sample preparation and measurement type[J]. Minerals, 2021, 11(2): 173. doi: 10.3390/min11020173
[25] 王海雷. 西藏地热区微生物对铯的吸附及其对铯硅华成矿的贡献[D]. 北京: 中国地质科学院, 2006: 1−119.
Wang H L. Accumulation of cesium by microorganisms and role of microorganisms in the formation of cesium-bearing geyserites in geothermal areas, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 2006: 1−119.
[26] 邹鹏飞,邱杨,王彩会. 南京汤山温泉区地热水成因模式分析[J]. 高校地质学报, 2015, 21(1): 155−162. doi: 10.16108/j.issn1006-7493.2014119
Zou P F,Qiu Y,Wang C H. Analyses of the genesis of Tangshang hot spring area in Nanjing[J]. Geological Journal of China Universities, 2015, 21(1): 155−162. doi: 10.16108/j.issn1006-7493.2014119
[27] 宋小燕. 修饰蛋白石次序吸附染料及重金属特性研究[D]. 大连: 大连理工大学, 2015: 1−67.
Song X Y. Research on adsorption performance of dye onto opal and heavy metals onto opal-dye sludge[D]. Dalian: Dalian University of Technology, 2015: 1−67.
[28] Choppin G R,Pathak P,Thakur P. Polymerization and complexation behavior of silicic acid:A review[J]. Main Group Metal Chemistry, 2008, 31(1-2): 53−72.
[29] 牛新生,刘喜方,陈文西. 西藏多格错仁南岸钙华地球化学特征与钾盐地质意义[J]. 沉积学报, 2013, 31(6): 1031−1040. doi: 10.14027/j.cnki.cjxb.2013.06.007
Niu X S,Liu X F,Chen W X. Travertine in south bank of Dogai Coring,Tibet:Geochemical characteristics and potash geological significance[J]. Acta Sedimfntologica Sinica, 2013, 31(6): 1031−1040. doi: 10.14027/j.cnki.cjxb.2013.06.007
[30] Watanabe Y,Amitani N,Yokoyama T,et al. Synthesis of mesoporous silica from geothermal water[J]. Scientific Reports, 2021, 11(1): 1−9. doi: 10.1038/s41598-020-79139-8