中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

河南荥阳市耕地土壤重金属分布特征及来源解析

张妍, 赵新雷, 冯雪珍, 郭亚娇. 河南荥阳市耕地土壤重金属分布特征及来源解析[J]. 岩矿测试, 2024, 43(2): 330-343. doi: 10.15898/j.ykcs.202306300084
引用本文: 张妍, 赵新雷, 冯雪珍, 郭亚娇. 河南荥阳市耕地土壤重金属分布特征及来源解析[J]. 岩矿测试, 2024, 43(2): 330-343. doi: 10.15898/j.ykcs.202306300084
ZHANG Yan, ZHAO Xinlei, FENG Xuezhen, GUO Yajiao. Distribution Characteristics, Ecological Risks, and Source Identification of Heavy Metals in Cultivated Land in Xingyang City[J]. Rock and Mineral Analysis, 2024, 43(2): 330-343. doi: 10.15898/j.ykcs.202306300084
Citation: ZHANG Yan, ZHAO Xinlei, FENG Xuezhen, GUO Yajiao. Distribution Characteristics, Ecological Risks, and Source Identification of Heavy Metals in Cultivated Land in Xingyang City[J]. Rock and Mineral Analysis, 2024, 43(2): 330-343. doi: 10.15898/j.ykcs.202306300084

河南荥阳市耕地土壤重金属分布特征及来源解析

  • 基金项目: 河南省地质研究院院管财政科研项目(2023-901-XM002-KT02)
详细信息
    作者简介: 张妍,硕士,高级工程师,主要从事农业地质工作。 E-mail:86655318@qq.com
    通讯作者: 郭亚娇,硕士,工程师,主要从事农业地质、水文地质工作。E-mail:342276358@qq.com
  • 中图分类号: S151.93;X820.4

Distribution Characteristics, Ecological Risks, and Source Identification of Heavy Metals in Cultivated Land in Xingyang City

More Information
  • 耕地质量关系着人民生活,而重金属是影响耕地质量的重要因素之一。根据全国土壤污染状况调查显示,中国耕地环境状况不容乐观,对耕地的重金属调查分析迫在眉睫。但仅简单地对重金属含量水平及来源类型进行判断已不足以为区域土壤重金属污染治理提供支持,而通过对各类污染源贡献率的定量计算,不仅可以明确农田土壤重金属分布特征,同时可判别污染源类别及来源,从而识别优先控制的污染元素,为重金属污染精准管控提供关键信息。本文采集河南荥阳市耕地表层土壤样品(0~20cm),应用电感耦合等离子体质谱和发射光谱法(ICP-MS/OES)、原子荧光光谱法(AFS)及离子选择电极法(IES)对As、Cd、Cr、Cu、Hg、Ni、Pb、Zn等8种重金属进行测试和pH分析;利用多元统计、绝对因子分析-多元线性回归(APCS-MLR)受体模型探讨研究区8种重金属污染含量空间分布特征及来源,利用富集因子和地累积指数开展土壤污染评价。结果表明:①耕地土壤中重金属含量整体偏高。除Cr外,其他元素为郑州市土壤背景值的1.04~1.40倍,其中Cd的累积效应较明显。②研究区重金属高值区主要分布于荥阳市城区周边。③基于富集因子法、相关性分析、主成分分析及APCS-MLR源解析结果显示,研究区重金属主要有三个来源:自然源对Ni、As、Cu、Cr的贡献率分别为98%、94%、80%及63%;工业源对Cd的贡献率为78%;其他源则主要是农业化肥源、燃煤源的混合源,对Cr、Pb、Hg的贡献率分别为37%、35%及33%。④地累积指数表明,研究区各重金属以无污染为主,而Cd超标率最高,其中度、中-重度污染、重度污染样点数分别为19个、5个及3个,并存在1个极重度污染样点。综上,Cd在研究区耕地中富集较明显,为潜在的主要污染元素;工业源、自然源、农业化肥源及燃煤源是重金属的主要来源,表明人类活动已对研究区耕地产生影响,需采取措施避免该影响进一步加剧。

  • 加载中
  • 图 1  研究区(a)工业企业分布和(b)土壤类型及采样点位

    Figure 1. 

    图 2  研究区土壤重金属空间分布

    Figure 2. 

    图 3  研究区土壤重金属富集因子分布箱式图

    Figure 3. 

    图 4  研究区土壤重金属富集相关性系数矩阵和PCA成分

    Figure 4. 

    图 5  研究区土壤重金属污染贡献率

    Figure 5. 

    表 1  分析方法质量监控

    Table 1.  Quality control of analysis method

    元素 分析方法 检出限
    (mg/kg)
    准确度
    (△lgC)
    RSD
    (%)
    报出率
    (%)
    As AFS 0.2 0.008 2.84 100
    Cd ICP-MS 0.03 0.010 4.64 100
    Cr ICP-OES 2 0.011 2.58 100
    Cu ICP-MS 0.3 0.006 5.39 100
    Hg AFS 0.0005 0.003 5.53 100
    Ni ICP-MS 0.3 0.005 5.19 100
    Pb ICP-MS 0.3 0.014 3.75 100
    Zn ICP-OES 1 0.004 4.17 100
    Fe2O3 ICP-OES 0.05(%) 0.006 1.88 100
    pH IES 0.1(无量纲) 0.009 4.91 100
    下载: 导出CSV

    表 2  研究区表层土壤重金属含量统计

    Table 2.  Heavy metal concentrations in surface soil of the study area

    统计项目 pH As
    (mg/kg)
    Cd
    (mg/kg)
    Cr
    (mg/kg)
    Cu
    (mg/kg)
    Hg
    (mg/kg)
    Ni
    (mg/kg)
    Pb
    (mg/kg)
    Zn
    (mg/kg)
    算术平均值 8.22 10.61 0.21 61.21 20.74 0.047 26.15 23.70 65.70
    几何平均值 8.22 10.52 0.20 60.94 20.54 0.041 26.00 23.32 64.29
    中位数 8.21 10.40 0.20 60.80 20.20 0.041 25.60 23.10 62.90
    众数 8.25 10.20 0.19 59.60 19.80 0.034 24.70 23.40 57.40
    算术标准差 0.22 1.45 0.19 5.86 3.23 33.30 2.99 8.05 20.34
    几何标准差 1.03 1.14 1.36 1.10 1.14 1.62 1.11 1.16 1.20
    最大值 9.17 21.00 7.29 120.00 70.10 0.87 47.30 344.50 645.00
    最小值 6.85 4.80 0.08 39.50 11.60 0.0089 14.80 16.40 37.70
    变异系数 0.03 0.14 0.89 0.10 0.16 0.71 0.11 0.34 0.31
    偏度 −0.0056 1.28 27.08 1.08 3.74 9.71 1.71 30.88 14.47
    峰度 0.72 4.68 955.90 7.36 34.81 193.50 5.73 1202.63 345.98
    郑州市背景值 8.11 9.42 0.15 68.82 19.20 0.045 24.71 22.17 56.73
    风险筛选值 6.5~7.5 30 0.3 200 100 2.4 100 120 250
    pH>7.5 25 0.6 250 100 3.4 190 170 300
    下载: 导出CSV

    表 3  研究区表层土壤重金属地累积指数

    Table 3.  Geo-accumulation index of heavy metals in soil of the study area.

    重金属元素 地累积指数
    Igeo)范围
    污染程度的样点数(个)
    无污染 轻度污染 中度污染 中-重度污染 重度污染 重-极重污染 极重污染
    As −1.56~0.57 2059 54 0 0 0 0 0
    Cd −1.45~5.02 1556 529 19 5 3 0 1
    Cr −1.39~0.21 2112 1 0 0 0 0 0
    Cu −1.31~1.28 2057 55 1 0 0 0 0
    Hg −2.92~3.69 1841 248 20 3 1 0 0
    Ni −1.32~0.35 2090 23 0 0 0 0 0
    Pb −1.02~3.37 2079 32 1 0 1 0 0
    Zn −1.17~2.92 2000 105 7 1 0 0 0
    下载: 导出CSV

    表 4  研究区表层土壤重金属主成分分析矩阵

    Table 4.  Principal component analysis matrix of heavy metals in surface soil of the study area.

    重金属元素
    及指标
    变量在各主成分上的因子载荷
    第一主成分 第二主成分 第三主成分
    As 0.565 0.496 −0.383
    Cd 0.775 −0.563 −0.157
    Cr 0.451 0.479 0.325
    Cu 0.701 0.431 0.194
    Hg 0.553 −0.148 0.696
    Ni 0.565 0.653 −0.228
    Pb 0.790 −0.455 −0.237
    Zn 0.832 −0.349 −0.017
    初始特征值 3.556 1.755 0.907
    方差贡献率(%) 44.45 21.93 11.34
    累计方差贡献率(%) 44.45 66.38 77.72
    下载: 导出CSV

    表 5  绝对因子分析-多元线性回归(APCS-MLR)受体模型

    Table 5.  Absolute principal component score-multiple linear regression (APCS-MLR) receptor model

    重金属元素 受体模型 R2
    As C(As)=−0.498+0.219APCSF1+1.058APCSF2 0.553
    Cd C(Cd)=0.016+0.181APCSF1+0.003APCSF2 0.917
    Cr C(Cr)=22.498+0.404APCSF1+3.719APCSF2 0.406
    Cu C(Cu)=−5.596+0.967APCSF1+2.47APCSF2 0.673
    Hg C(Hg)=−43.78+17.641APCSF1+7.262APCSF2 0.327
    Ni C(Ni)=−0.452+0.159APCSF1+2.566APCSF2 0.739
    Pb C(Pb)=8.283+7.291APCSF1+0.856APCSF2 0.831
    Zn C(Zn)=4.034+17.793APCSF1+4.422APCSF2 0.813
    下载: 导出CSV
  • [1]

    于林松, 万方, 范海印, 等. 姜湖贡米产地土壤重金属空间分布、源解析及生态风险评价[J]. 环境科学, 2022, 43(8): 4199−4211.

    Yu L S, Wan F, Fan H Y, et al. Spatial distribution, source apportionment, and ecological risk assessment of soil heavy metals in Jianghugongmi producing area, Shandong Province[J]. Environmental Science, 2022, 43(8): 4199−4211.

    [2]

    环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 2014.

    Ministry of Environmental Protection, Ministry of Land and Resources. National Soil Pollution Survey Bulletin[R]. 2014.

    [3]

    Chen R S, Sherbinin A D, Ye C, et al. China’s soil pollution: Farms on the frontline[J]. Science, 2014, 344: 691.

    [4]

    宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133−144. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201013

    Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in topsoil on human health in Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 2022, 41(1): 133−144. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201013

    [5]

    于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408−424.

    Yu F, Wang W, Yu Y, et al. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, Western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408−424.

    [6]

    Zhang J J, Wang Y, Liu J S, et al. Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China[J]. Journal of Soils Sediment, 2016, 16: 634−644. doi: 10.1007/s11368-015-1225-0

    [7]

    杨子鹏, 肖荣波, 陈玉萍, 等. 华南地区典型燃煤电厂周边土壤重金属分布、风险评估及来源分析[J]. 生态学报, 2020, 40(14): 4823−4835.

    Yang Z P, Xiao R B, Chen Y P, et al. Heavy metal distribution, risk assessment and source analysis of soil around a typical coal-fired power plant in South China[J]. Acta Ecologica Sinica, 2020, 40(14): 4823−4835.

    [8]

    张红桔, 赵科理, 叶正钱, 等. 典型山核桃产区土壤重金属空间异质性及其风险评价[J]. 环境科学, 2018, 39(6): 2893−2903.

    Zhang H J, Zhao K L, Ye Z Q, et al. Spatial variation of heavy metals in soils and its ecological risk evaluation in a typical Carya cathayensis production area[J]. Environmental Science, 2018, 39(6): 2893−2903.

    [9]

    尹芳, 封凯, 尹翠景, 等. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学, 2021, 41(11): 5217−5226. doi: 10.3969/j.issn.1000-6923.2021.11.030

    Yi F, Feng K, Yin C J, et al. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai Province[J]. China Environmental Science, 2021, 41(11): 5217−5226. doi: 10.3969/j.issn.1000-6923.2021.11.030

    [10]

    魏洪斌, 罗明, 吴克宁, 等. 冀东平原农田土壤重金属污染源分析与风险评价[J]. 土壤通报, 2023, 54(2): 462−472.

    Wei H B, Luo M, Wu K N, et al. Source analysis and risk assessment of heavy metal pollution in farmland soil in the Eastern Hebei Plain[J]. Chinese Journal of Soil Science, 2023, 54(2): 462−472.

    [11]

    李文明, 孙朝, 陈霄燕, 等. 青海省典型高山农业区域土壤重金属污染评价及来源探析[J]. 岩矿测试, 2023, 42(3): 598−615.

    Li W M, Sun Z, Chen X Y, et al. Evaluation and source of heavy metal pollution in surface soils in typical alpine agricultural areas of Qinghai Province[J]. Rock and Mineral Analysis, 2023, 42(3): 598−615.

    [12]

    陈林, 马琨, 马建军, 等. 宁夏引黄灌区农田土壤重金属生态风险评价及来源解析[J]. 环境科学, 2023, 44(1): 356−366.

    Chen L, Ma K, Ma J J, et al. Risk assessment and source of heavy metals in farmland soils of Yellow River irrigation area of Ningxia[J]. Environmental Science, 2023, 44(1): 356−366.

    [13]

    陈丹利, 刘冠男, 行正松, 等. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析[J]. 岩矿测试, 2023, 42(4): 839−851.

    Chen D L, Liu G N, Xing Z S, et al. Accumulation and source apportionment of soil heavy metals in molybdenum-lead-zinc polymetallic ore concentration area of Luanchuan[J]. Rock and Mineral Analysis, 2023, 42(4): 839−851.

    [14]

    孟晓飞, 郭俊娒, 杨俊兴, 等. 河南省典型工业区周边农田土壤重金属分布特征及风险评价[J]. 环境科学, 2021, 42(2): 900−908.

    Meng X F, Guo J M, Yang J X, et al. Spatial distribution and risk assessment of heavy metal pollution in farmland soils surrounding a typical industrial area of Henan Province[J]. Environmental Science, 2021, 42(2): 900−908.

    [15]

    金钰, 叶令帅, 李华威, 等. 河南省柿主产区土壤重金属污染及其生态风险分析[J]. 浙江农林大学学报, 2022, 39(6): 1303−1312. doi: 10.11833/j.issn.2095-0756.20210721

    Jin Y, Ye L S, Li H W, et al. Soil heavy metal pollution and its ecological risk analysis in the main Diospyros kaki producing areas of Henan Province[J]. Journal of Zhejiang A & F University, 2022, 39(6): 1303−1312. doi: 10.11833/j.issn.2095-0756.20210721

    [16]

    Deely J M, Fergusson J E. Heavy metal and organic matter concentrations and distributions in dated sediments of a small estuary adjacent to a small urban area[J]. Science of the Total Environment, 1994, 153(1-2): 97−111. doi: 10.1016/0048-9697(94)90106-6

    [17]

    Niencheski L F, Windom H L, Smith R. Distribution of particulate trace metal in Patos Lagoon Estuary (Brazil)[J]. Marine Pollution Bulletin, 1994, 28(2): 96−102. doi: 10.1016/0025-326X(94)90545-2

    [18]

    贾振邦, 周华, 赵智杰, 等. 应用地积累指数法评价太子河沉积物中重金属污染[J]. 北京大学学报(自然科学版), 2000, 36(4): 525−530.

    Jia Z B, Zhou H, Zhao Z J, et al. The application of the index of geoaccumulation to evaluate heavy metal pollution in sediments in the Benxi section of the Taizi River[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2000, 36(4): 525−530.

    [19]

    王锐, 邓海, 严明书, 等. 重庆市酉阳县南部农田土壤重金属污染评估及来源解析[J]. 环境科学, 2020, 41(10): 4749−4756.

    Wang R, Deng H, Yan M S, et al. Assessment and source analysis of heavy metal pollution in farmland soils in Southern Youyang County, Chongqing[J]. Environmental Science, 2020, 41(10): 4749−4756.

    [20]

    余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119−1125.

    Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6): 1119−1125.

    [21]

    廖书林, 郎印海, 王延松, 等. 辽河口湿地表层土壤中PAHs的源解析研究[J]. 中国环境科学, 2011, 31(3): 490−497.

    Liao S L, Lang Y H, Wang Y S, et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil of Liaohe Estuarine Wetlands[J]. China Environment Science, 2011, 31(3): 490−497.

    [22]

    刘永林, 雒昆利, 袁余洋. 重庆市江津区表层土壤中稀土元素含量与分布特征[J]. 中国稀土学报, 2020, 38(2): 215−224.

    Liu Y L, Luo K L, Yuan Y Y. Content and spatial distribution characteristics of rare earth of surface soil in Jiangjin district, Chongqing City[J]. Journal of the Chinese Society of Rare Earths, 2020, 38(2): 215−224.

    [23]

    Kaiser H F. An index of factorial simplicity[J]. Psychometrika, 1974, 39(1): 31-36.

    [24]

    袁宏, 钟红梅, 赵利, 等. 基于PCA/APCS受体模型的崇州市典型农田土壤重金属污染源解析[J]. 四川环境, 2019, 38(6): 35−43.

    Yuan H, Zhong H M, Zhao L, et al. Analysis of heavy metal pollution sources of typical farmland soils in Chongzhou City based on PCA/APCS receptor model[J]. Sichuan Environment, 2019, 38(6): 35−43.

    [25]

    Hu Y N, He K, Sun Z H, et al. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty[J]. Journal of Hazardous Materials, 2020, 19: 14794.

    [26]

    Zhang H, Wang Z F, Zhang Y L, et al. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinhai—Tibet highwey[J]. Science of the Total Environment, 2015, 521: 160−172.

    [27]

    田江涛, 赵同阳, 杨万志, 等. 喀喇昆仑岔路口地区发现科马提岩及找矿意义[J]. 新疆地质, 2021, 39(3): 357−364. doi: 10.3969/j.issn.1000-8845.2021.03.001

    Wang J T, Zhao T Y, Yang W Z, et al. First identify of komatiites in Karakoram chalukou area and its prospecting significance[J]. Xinjiang Geology, 2021, 39(3): 357−364. doi: 10.3969/j.issn.1000-8845.2021.03.001

    [28]

    Lv J S, Liu Y, Zhuang Z L, et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju Country (Eastern China) using multivariate and geostatistical approach[J]. Journal of Soils and Sediments, 2015, 15(1): 163−178. doi: 10.1007/s11368-014-0937-x

    [29]

    李强, 曹莹, 何连生, 等. 典型冶炼行业场地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2021, 42(12): 5930−5937.

    Li Q, Cao Y, He L S, et al. Spatial distribution characteristics and source analysis of soil heavy metals at typical smelting industry sites[J]. Environmental Science, 2021, 42(12): 5930−5937.

    [30]

    瞿明凯, 李卫东, 张传荣, 等. 基于受体模型和地统计学相结合的土壤镉污染源解析[J]. 中国环境科学, 2013, 33(5): 854−860. doi: 10.3969/j.issn.1000-6923.2013.05.014

    Qu M K, Li W D, Zhang C R, et al. Source apportionment of soil heavy metal Cd based on the combination of receptor model and geostatistics[J]. China Environmental Science, 2013, 33(5): 854−860. doi: 10.3969/j.issn.1000-6923.2013.05.014

    [31]

    Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469: 843−853. doi: 10.1016/j.scitotenv.2013.08.090

    [32]

    Men C, Liu R M, Xu F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China[J]. Science of the Total Environment, 2018, 612: 138−147. doi: 10.1016/j.scitotenv.2017.08.123

    [33]

    Chen L, Wang G M, Wu S H, et al. Heavy metals in agricultural soils of the Lihe River Watershed, East China: Spatial distribution, ecological risk, and pollution source[J]. International Journal of Environmental Research and Public Health, 2019, 16(12): 1−17.

    [34]

    Zhao S C, Qiu S J, He P. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China[J]. Journal of Plant Nutrition, 2018, 41(15): 1970−1979. doi: 10.1080/01904167.2018.1485158

    [35]

    Zhang Z X, Lu Y, Li H P, et al. Assessment of heavy metal contamination, distribution and source identi-fication in the sediments from the Zijiang River, China[J]. Science of the Total Environment, 2018, 645: 235−243. doi: 10.1016/j.scitotenv.2018.07.026

    [36]

    孙建伟, 贾煦, 刘向东, 等. 豫西金矿集区矿业活动对周边农田土壤重金属影响研究[J]. 岩矿测试, 2023, 42(1): 192−202. doi: 10.3969/j.issn.0254-5357.2023.1.ykcs202301015

    Sun J W, Jia X, Liu X D, et al. Influence of mining activities in the gold ore concentration area in Western Henan on the heavy metals in surrounding farmland soil[J]. Rock and Mineral Analysis, 2023, 42(1): 192−202. doi: 10.3969/j.issn.0254-5357.2023.1.ykcs202301015

    [37]

    陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219−2238. doi: 10.11654/jaes.2018-1449

    Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10): 2219−2238. doi: 10.11654/jaes.2018-1449

    [38]

    刘孝严, 樊亚男, 刘鹏, 等. 基于文献计量分析的长江经济带农田土壤重金属污染特征[J]. 环境科学, 2022, 43(11): 5169−5179.

    Liu X Y, Fan Y N, Liu P, et al. Characteristics of heavy metal pollution in farmland soil of the Yangtze River Economic Belt based on bibliometric analysis[J]. Environmental Science, 2022, 43(11): 5169−5179.

    [39]

    汤金来, 赵宽, 胡睿鑫, 等. 滁州市表层土壤重金属含量特征、源解析及污染评价[J]. 环境科学, 2023, 44(6): 3562−3572.

    Tang J L, Zhao K, Hu R X, et al. Heavy metal concentration, source, and pollution assessment in topsoil of Chuzhou City[J]. Environmental Science, 2023, 44(6): 3562−3572.

  • 加载中

(5)

(5)

计量
  • 文章访问数:  298
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2023-06-30
修回日期:  2024-01-14
录用日期:  2024-02-01
刊出日期:  2024-04-30

目录