中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

固体进样-发射光谱法测定钼矿石矿粉中的高含量钼

郭心玮, 李昆, 郝志红, 姚建贞, 徐进力, 白金峰. 固体进样-发射光谱法测定钼矿石矿粉中的高含量钼[J]. 岩矿测试, 2023, 42(5): 1031-1040. doi: 10.15898/j.ykcs.202307310102
引用本文: 郭心玮, 李昆, 郝志红, 姚建贞, 徐进力, 白金峰. 固体进样-发射光谱法测定钼矿石矿粉中的高含量钼[J]. 岩矿测试, 2023, 42(5): 1031-1040. doi: 10.15898/j.ykcs.202307310102
GUO Xinwei, LI Kun, HAO Zhihong, YAO Jianzhen, XU Jinli, BAI Jinfeng. Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique[J]. Rock and Mineral Analysis, 2023, 42(5): 1031-1040. doi: 10.15898/j.ykcs.202307310102
Citation: GUO Xinwei, LI Kun, HAO Zhihong, YAO Jianzhen, XU Jinli, BAI Jinfeng. Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique[J]. Rock and Mineral Analysis, 2023, 42(5): 1031-1040. doi: 10.15898/j.ykcs.202307310102

固体进样-发射光谱法测定钼矿石矿粉中的高含量钼

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产多元素同时分析技术和标准化”
详细信息
    作者简介: 郭心玮,硕士,工程师,主要从事地球化学样品分析测试研究工作。E-mail:guoxinwei@mail.cgs.gov.cn
    通讯作者: 白金峰,硕士,正高级工程师,主要从事地球化学样品分析测试研究工作。E-mail:bjinfeng@mail.cgs.gov.cn
  • 中图分类号: O657.31;O614.61

Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique

More Information
  • 全面、系统地建立钼矿石、钼矿粉分析方法,对钼元素研究开发和保障钼矿工业发展具有重要意义。目前多采用酸溶或碱熔样品后进行分析,其不足是测定钼含量的范围窄,消耗样品量大,还需使用大量酸碱,且受仪器限制,分析高含量钼时多需对样品溶液进行数次稀释,使分析步骤更加繁琐。发射光谱法则可避免上述问题,但用之准确分析高含量钼矿石钼矿粉尚有测试方法的瓶颈需要突破。本文研究通过内标元素、分析线对、缓冲剂配比、电流程序等环节的实验分析,建立了固体进样-交流电弧发射光谱法测定钼矿石中高含量钼的分析方法:优化样品与光谱缓冲剂质量比至1∶2,优化分析线对,截取曝光时间35s,采用以国家一级合成硅酸盐光谱分析标准物质和国家一级矿石标准物质组成的自研标准系列制作标准曲线,由全谱交直流电弧发射光谱仪自动扣除分析线和内标线背景后以对数坐标二次曲线拟合计算,使测定范围扩展为500~500800μg/g,检出限为27.38μg/g,相对标准偏差(RSD)为3.28%~8.30%,相对误差为-0.43%~0.73%。结果表明,本文方法在实现绿色分析的同时,在检出限相当、精密度合格的条件下,一次性分析高含量钼的上限从5%提高至50%。

  • 加载中
  • 图 1  Mo (277.54nm)和Ge (326.9494nm)蒸发行为比较

    Figure 1. 

    图 2  曝光时间选择

    Figure 2. 

    Figure E.1. 

    表 1  标准系列配比及钼含量

    Table 1.  Ratio of the standard series and concentration of Mo.

    标准系列
    编号
    标准系列配比成分钼含量
    (μg/g)
    1GBW07711500
    2GBW07141660
    3GBW071421500
    4GBW071435400
    5GBW07144∶基体(GSES Ⅰ)=1∶5010016
    6GBW07144∶基体(GSES Ⅰ)=1∶2520032
    7GBW07144∶基体(GSES Ⅰ)=1∶5100160
    8GBW07144500800
    下载: 导出CSV

    表 2  方法精密度和准确度

    Table 2.  Accuracy and precision of the method.

    测定次数 GBW07141 GBW07142 GBW07143
    1 629.02 1554.30 5221.84
    2 635.15 1574.90 5043.96
    3 699.70 1429.01 5767.91
    4 641.80 1448.65 5803.26
    5 659.32 1498.60 5456.75
    6 654.50 1336.90 5286.44
    7 683.15 1350.19 5087.67
    8 676.11 1713.88 5650.50
    9 681.28 1643.03 5354.01
    10 678.51 1605.32 5214.25
    11 659.32 1386.38 5327.01
    12 679.70 1381.34 5941.20
    标准值(μg/g) 660.00±30 1500.00±100 5400.00±200
    AVE(μg/g) 664.80 1493.54 5429.57
    RSD (%) 3.28 8.30 5.43
    相对误差(%) 0.73 −0.43 0.55
    △lgC 0.003 −0.002 0.002
    下载: 导出CSV
  • [1]

    朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178.

    Zhu X R. Analysis of the supply and demand situation of molybdenum resources at home and abroad[J]. Mineral Protection and Utilization, 2020, 40(1): 172−178.

    [2]

    冯丹丹. 全球钼资源供需形势分析与展望[J]. 国土资源情报, 2020(10): 39−44.

    Feng D D. Analysis and prospect of global molybdenum resource supply and demand situation[J]. Land and Resources Intelligence, 2020(10): 39−44.

    [3]

    郑波. 固体直接进样测土壤重金属的方法与技术研究[D]. 北京: 中国农业科学院, 2016.

    Zheng B. Studies on measuring method and technology of soil heavy metals by using direct solid sampling [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.

    [4]

    赵炳建, 赵浩年, 赵越, 等. 微波消解-电感耦合等离子体原子发射光谱法测定钼铁合金中的钼含量[J]. 分析测试技术与仪器, 2022, 28(4): 422−426.

    Zhao B J, Zhao H N, Zhao Y, et al. Determination of ferromolybdenum alloy by microwave digestion inductively coupled plasma atomic emission spectroscopy[J]. Analysis and Testing Technology and Instruments, 2022, 28(4): 422−426.

    [5]

    王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040

    Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040

    [6]

    杨萍, 党铭铭, 郭永艳, 等. 五酸消解-电感耦合等离子体原子发射光谱法测定矽卡岩型多金属钨矿中钨、钼、铋的含量[J]. 理化检验(化学分册), 2022, 58(7): 773−776.

    Yang P, Dang M M, Guo Y Y, et al. Determination of W, Mo, and Bi in skarn-type polymetallic tungsten ores by ICP-AES with penta acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 773−776.

    [7]

    党铭铭, 杨萍, 雷勇, 等. 电感耦合等离子体发射光谱技术测定多金属伴生矿中钨钼铋两种消解方法的对比[J]. 岩矿测试, 2021, 40(4): 603−611.

    Dang M M, Yang P, Lei Y, et al. Comparison of two different sample digestion methods for determination of tungsten, molybdenum, and bismuth in polymetallic ore by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 603−611.

    [8]

    杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55−60. doi: 10.13228/j.boyuan.issn1000-7571.010796

    Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55−60. doi: 10.13228/j.boyuan.issn1000-7571.010796

    [9]

    黄朝文, 莫凯敏. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中的钨钼[J]. 当代化工研究, 2023(11): 76−78.

    Huang C W, Mo K M. Determination of tungsten and molybdenum in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Modern Chemical Research, 2023(11): 76−78.

    [10]

    吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753

    Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753

    [11]

    Panteeva S, Gladkochoub D, Donkaya T, et al. Determination of 24 trace elements in felsic rocks by inductively coupled plasma spectrometry after lithium metaborate fusion[J]. Spectrochimica Acta Part B, 2003, 58(2): 341−350. doi: 10.1016/S0584-8547(02)00151-9

    [12]

    Diegor W, Longgerich H, Abrajano T, et al. Applicability of a high pressure digestion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J]. Analytica Chemica Acta, 2011, 431(2): 195−207.

    [13]

    任梦阳. 氟化氢铵消解-电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中的钨锡钼[J]. 中国无机分析化学, 2022, 12(2): 52−55. doi: 10.3969/j.issn.2095-1035.2022.02.008

    Ren M Y. Determination of tungsten, tin and molybdenum in geochemical samples by inductively coupled plasma mass spectrometry (ICP-MS) with ammmonium fluoride digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 52−55. doi: 10.3969/j.issn.2095-1035.2022.02.008

    [14]

    张征莲, 施意华, 唐碧玉, 等. 电感耦合等离子体质谱(ICP-MS)法测定炭质页岩中的钨钼钪[J]. 中国无机分析化学, 2021, 11(4): 39−44.

    Zhang Z L, Shi Y H, Tang B Y, et al. Determination of tungsten, molybdenum and scandium in carbon shale by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(4): 39−44.

    [15]

    邓飞, 韩亮, 马青兰. X射线荧光光谱压片法快速分析钼矿石中的钼含量[J]. 甘肃科技, 2014, 3(15): 39−40,12.

    Deng F, Han L, Ma Q L. Rapid analysis of molybdenum content in molybdenum ores by X-ray fluorescence spectroscopy compression method[J]. Gansu Science and Technology, 2014, 3(15): 39−40,12.

    [16]

    王学田, 丁力, 李艳娟, 等. X射线荧光光谱法同时测定矿石中钨钼锡[J]. 分析试验室, 2015, 34(9): 1031−1037.

    Wang X T, Ding L, Li Y J, et al. Simultaneous determination of W, Mo and Sn in ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(9): 1031−1037.

    [17]

    杨小丽, 李小丹, 杨梅. X射线荧光光谱法测定以钨和钼为主的多金属矿中主次成分[J]. 冶金分析, 2013, 33(8): 38−42.

    Yang X L, Li X D, Yang M. Determination of major and minor components in tungsten and molybdenum polymetallic ore by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2013, 33(8): 38−42.

    [18]

    温利刚, 贾木欣, 付强,等. 基于扫描电子显微镜-X射线能谱的矿物自动分析系统(BPMA)测定高纯石英砂中杂质矿物[J]. 中国无机分析化学, 2023, 13(8): 845−850.

    Wen L G, Jia M X, Fu Q, et al. Determination of impurity minerals in high-purity quartz by SEM-EDS-based automated process mineralogy analyzing system (BPMA)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 845−850.

    [19]

    付雪涛, 赵俊莎, 高亚欣, 等. X射线能谱法测定镍钴锰酸锂中镍、钴、锰三元素摩尔比[J]. 中国无机分析化学, 2020, 10(1): 76−80.

    Fu X T, Zhao J S, Gao Y X, et al. Determination for the molar ratio of nickel, cobalt, manganese of nickel-cobalt-manganese lithium by X-ray energy spectrum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 76−80.

    [20]

    高尚, 黄梦诗, 杨振英, 等. 扫描电镜中X射线能谱仪的技术进展[J]. 分析科学学报, 2022, 38(1): 115−121.

    Gao S, Huang M S, Yang Z Y, et al. Technical progress of X-ray energy dispersive spectroscopy in scanning electron microscope[J]. Journal of Analytical Science, 2022, 38(1): 115−121.

    [21]

    《岩石矿物分析》编委会. 《岩石矿物分析》(第四版 第一分册)[M]. 北京: 地质出版社, 2011: 660-679, 903-923.

    Editorial Board of “ Rock and Mineral Analysis”. Rock and Mineral Analysis (Fourth Edition, Volume Ⅰ)[M]. Beijing: Geological Publishing House, 2011: 660-679, 903-923.

    [22]

    张勤. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 25(3): 292−297.

    Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3): 292−297.

    [23]

    柴红, 冯先进, 李华昌. 电弧原子发射光谱(Arc-AES)的应用研究进展[J]. 中国资源综合利用, 2018, 36(1): 88−92.

    Chai H, Feng X J, Li H C. Study on the application progress of arc-emission spectroscopy (Arc-AES) technology[J]. China Resources Comprehensive Utilization, 2018, 36(1): 88−92.

    [24]

    杨婷. 发射光谱法测定地质样品中的锡[J]. 科技资讯, 2016, 14(27): 154, 156.

    Yang T. Determination of tin in geological samples by emission spectroscopy[J]. Science and Technology Information, 2016, 14(27): 154, 156.

    [25]

    Savinova E, Sukach Y, Kolesov G, et al. Using arc excitation atomic emission spectrometry in studying the microelement composition of bottom sediments[J]. Journal of Analytical Chemistry, 2013, 68(2): 127-131.

    [26]

    马景治, 曲少鹏, 李光一, 等. 固体进样-发射光谱法同时测定地球化学样品中铜铅锌镍[J]. 岩矿测试, 2022, 41(6): 1007−1016.

    Ma J Z, Qu S P, Li G Y, et al. Simultaneous determination of copper, lead, zinc and nickel in geochemical samples by emission spectrometry with solid sampling technique[J]. Rock and Mineral Analysis, 2022, 41(6): 1007−1016.

    [27]

    赵丽, 于阗. 液体缓冲剂交流电弧发射光谱分析中内标元素选择探讨[J]. 现代科学仪器, 2021, 38(3): 57−60.

    Zhao L, Yu T. Selection of internal standard elements in AC arc emission spectroscopy of liquid buffers[J]. Modern Scientific Instruments, 2021, 38(3): 57−60.

    [28]

    王鹤龄, 李光一, 曲少鹏, 等. 氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J]. 岩矿测试, 2017, 36(4): 367−373.

    Wang H L, Li G Y, Qu S P, et al. Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367−373.

    [29]

    姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124−3127.

    Yao J Z, Hao Z H, Tang R L, et al. Determination of high content tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124−3127.

    [30]

    肖细炼, 朱园园, 陈燕波, 等. 交流电弧-光电直读发射光谱法测定岩石矿物样品中高含量锡[J]. 理化检验(化学分册), 2021, 57(3): 241−246.

    Xiao X L, Zhu Y Y, Chen Y B, et al. Determination of high content tin in rock and mineral samples by alternating current AC-optoelectronic direct reading emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(3): 241−246.

    [31]

    郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-Arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527−533.

    Hao Z H, Yao J Z, Tang R L, et al. Determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by DC arc direct reading atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527−533.

    [32]

    李小辉. 交流电弧直读原子发射光谱法快速测定钼矿石中的银[J]. 理化检验(化学分册), 2017, 53(6): 716−718.

    Li X H. Rapid determination of silver in molybdenum ores by AC arc direct reading atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6): 716−718.

    [33]

    马景治, 李光一, 董学兵, 等. 交流电弧发射光谱法测定铅矿石中锡[J]. 冶金分析, 2023, 43(2): 39−45.

    Ma J Z, Li G Y, Dong X B, et al. Determination of tin in lead ore by AC arc emission spectrometry[J]. Metallurgical Analysis, 2023, 43(2): 39−45.

    [34]

    郭心玮, 郝志红, 姚建贞, 等. 交流电弧原子发射光谱固体粉末样品制备方法的改进[J]. 分析测试技术与仪器, 2023, 29(1): 7−15.

    Guo X W, Hao Z H, Yao J Z, et al. Improvement of preparation method for determination of solid powder samples by AC-arc atomic emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 7−15.

    [35]

    曲红静, 吴冬梅, 赵燕秋. 全谱直流电弧发射光谱法同时测定钛白粉中13种杂质元素[J]. 分析仪器, 2023(4): 16−19.

    Qu H J, Wu D M, Zhao Y Q. Simultaneous determination of 13 impurity elements in titanium dioxide by full spectrum DC arc emission spectrometry[J]. Analytical Instrumentation, 2023(4): 16−19.

    [36]

    黄海波, 袁静, 凌波, 等. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质, 2023, 44(1): 103−117.

    Huang H B, Yuan J, Ling B, et al. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology, 2023, 44(1): 103−117.

    [37]

    郝志红, 姚建贞, 唐瑞玲, 等. 交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡钼、铅的方法研究[J]. 地质学报, 2016, 90(8): 2070−2082.

    Hao Z H, Yao J Z, Tang R L, et al. Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct reading atomic emission spectroscopy[J]. Acta Geologica Sinica, 2016, 90(8): 2070−2082.

  • 加载中

(3)

(2)

计量
  • 文章访问数:  993
  • PDF下载数:  86
  • 施引文献:  0
出版历程
收稿日期:  2023-07-31
修回日期:  2023-09-08
录用日期:  2023-09-17
刊出日期:  2023-10-31

目录