中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

直接烧结-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及5种伴生元素

宋洲, 吉义平, 王伟华, 方绍敏, 杨杰, 罗火焰, 周宇齐. 直接烧结-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及5种伴生元素[J]. 岩矿测试, 2023, 42(5): 1041-1051. doi: 10.15898/j.ykcs.202307310113
引用本文: 宋洲, 吉义平, 王伟华, 方绍敏, 杨杰, 罗火焰, 周宇齐. 直接烧结-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及5种伴生元素[J]. 岩矿测试, 2023, 42(5): 1041-1051. doi: 10.15898/j.ykcs.202307310113
SONG Zhou, JI Yiping, WANG Weihua, FANG Shaomin, YANG Jie, LUO Huoyan, ZHOU Yuqi. Determination of Tungsten, Molybdenum and 5 Associated Elements in Tungsten-Molybdenum Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with Direct Sintering[J]. Rock and Mineral Analysis, 2023, 42(5): 1041-1051. doi: 10.15898/j.ykcs.202307310113
Citation: SONG Zhou, JI Yiping, WANG Weihua, FANG Shaomin, YANG Jie, LUO Huoyan, ZHOU Yuqi. Determination of Tungsten, Molybdenum and 5 Associated Elements in Tungsten-Molybdenum Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with Direct Sintering[J]. Rock and Mineral Analysis, 2023, 42(5): 1041-1051. doi: 10.15898/j.ykcs.202307310113

直接烧结-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及5种伴生元素

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产多元素同时分析技术和标准化”
详细信息
    作者简介: 宋洲,博士,高级工程师,主要从事矿石样品分析测试和环境中有机污染物分析检测方法研究。E-mail:sz001123@126.com
  • 中图分类号: 0657.31

Determination of Tungsten, Molybdenum and 5 Associated Elements in Tungsten-Molybdenum Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with Direct Sintering

  • 钨钼矿石一般由多种矿物组成,组分较为复杂,不溶于盐酸、硝酸和王水,常采用碱熔和混合酸酸溶法进行样品消解。然而,碱熔法带来的基体效应严重影响仪器测试的准确性和检出限,而酸溶法对钨钼等难溶元素溶出效率较低,并且需要使用氢氟酸和王水等多种无机强酸进行长时间且操作过程复杂的前处理流程,同时还会造成分析测试仪器损害的问题。因此,开发一种操作简单且高效定量分析钨钼矿石中钨钼及其伴生元素的方法十分必要。本文在碱熔和酸溶的基础上,探索并建立了一种由直接烧结、盐酸-磷酸-柠檬酸络合提取与电感耦合等离子体发射光谱仪(ICP-OES)联用的方法,同时准确定量分析钨钼矿石中钨钼铜铅锌钙铁7种元素。与传统碱熔法相比,通过高温直接烧结让样品中含目标元素的矿物转化为酸可溶态,随后在盐酸-磷酸-柠檬酸混合酸体系的络合作用下,将目标元素转移至溶液中,从而实现快速准确定量测定。最佳实验条件为:600℃烧结1h、5mL磷酸-盐酸(体积比1∶20)提取、5mL 10g/L柠檬酸络合,过滤后上机测定。采用钨矿标准物质(GBW07240和GBW07241)和钼矿标准物质(GBW07238和GBW07239)以及两种实际钨钼矿石样品对本方法进行验证,结果表明7种目标元素测定含量均在标准值范围内,相对误差和相对标准偏差(RSD)均在10%以内。本研究发现,高温直接烧结与盐酸-磷酸-柠檬酸混合酸体系络合提取联用的样品前处理方法,可有效地避免传统碱熔和混合酸酸溶法的缺点,具有更为环保和低能耗的优点,同时可有效地降低化学分析实验室样品分析测试过程中酸气污染物的排放,可为战略性钨钼矿床资源开发和综合利用提供基础支撑。

  • 加载中
  • 图 1  钨矿石标准物质(GBW07241)烧结前后的XRD对比图

    Figure 1. 

    图 2  两种钼矿石标准物质烧结前后的SEM图和EDS图

    Figure 2. 

    图 3  不同烧结温度(a)和烧结时间(b)对标准物质(GBW07241)中钨钼元素测定结果的影响

    Figure 3. 

    图 4  不同磷酸-盐酸体积比对GBW07238中钙铁测定结果的影响

    Figure 4. 

    表 1  不同酸度对GBW07238钨钼测定结果的影响

    Table 1.  Effect of different acidity on the determination of tungsten and molybdenum in GBW07238.

    待测元素 标准值
    (%)
    盐酸不同用量下的测定值(%)
    盐酸
    2.5mL
    盐酸
    5mL
    盐酸
    12.5mL
    盐酸
    25mL
    W 0.36±0.3 0.34 0.36 0.32 0.30
    Mo 1.51±0.3 1.41 1.52 1.45 1.40
    下载: 导出CSV

    表 2  不同柠檬酸(10g/L)添加量对GBW07238钨钼测定结果的影响

    Table 2.  Effect of different addition amount of citric acid on the determination of W and Mo in GBW07238.

    待测元素标准值
    (%)
    柠檬酸不同用量下的测定值(%)
    柠檬酸
    1mL
    柠檬酸
    2mL
    柠檬酸
    5mL
    柠檬酸
    10mL
    W0.36±0.30.300.330.370.42
    Mo1.51±0.31.491.501.511.47
    下载: 导出CSV

    表 3  柠檬酸对GBW07238钨钼测量稳定性的影响

    Table 3.  Effect of citric acid on the measurement stability ofW and Mo in GBW07238.

    放置天数
    (d)
    不加柠檬酸 加5mL柠檬酸
    W含量
    测定值
    (%)
    Mo含量
    测定值
    (%)
    W含量
    测定值
    (%)
    Mo含量
    测定值
    (%)
    0 0.29 1.47 0.37 1.52
    1 0.27 1.45 0.36 1.51
    2 0.25 1.43 0.37 1.50
    4 0.24 1.40 0.36 1.49
    7 0.22 1.38 0.37 1.49
    下载: 导出CSV

    表 4  元素测量波长和方法检出限

    Table 4.  Measured wavelengths of elements and detection limits of the method.

    元素 测量波长
    (nm)
    方法检出限
    (%)
    元素 测量波长
    (nm)
    方法检出限
    (%)
    W 224.876 0.0014 Zn 213.856 0.0023
    Mo 202.030 0.0017 CaO 317.933 0.0045
    Cu 324.754 0.0024 TFe2O3 259.900 0.0067
    Pb 220.353 0.0027
    下载: 导出CSV

    表 5  方法准确度和精密度(n=11)

    Table 5.  Accuracy and precision tests of the method (n=11).

    标准物质编号 参数 W Mo Cu Pb Zn CaO TFe2O3
    GBW07238 标准值(%) 0.36* 1.51* 93.6 18.7 65.5 31.44* 21.34*
    测定值(%)
    RSD(%)
    0.35*
    1.21
    1.52*
    0.75
    92.1
    2.32
    /
    /
    63.4
    4.53
    31.02*
    3.44
    20.15*
    4.09
    相对误差(%) 2.78 0.66 1.60 / 3.21 1.34 5.58
    GBW07239 标准值(%) 0.10* 0.11* 48.6 26.1 120 23.03* 14.66*
    测定值(%) 0.10* 0.11* 52.5 / 125 21.56* 14.59*
    RSD(%) 1.47 0.82 3.78 / 1.16 3.88 4.67
    相对误差(%) 0.00 0.00 7.43 / 4.17 6.38 0.48
    GBW07240 标准值(%) 150 4.2 790 0.29* 0.26* 37.33* 7.79*
    测定值(%) 161 / 805 0.28* 0.27* 37.56* 7.76*
    RSD(%) 7.62 / 0.91 0.56 0.48 0.98 1.17
    相对误差(%) 7.33 / 1.90 3.45 3.85 0.62 0.39
    GBW07241 标准值(%) 2200 980 960 81.2 103 4.17* 5.6*
    测定值(%) 2109 966 972 82.5 99.9 4.03* 5.4*
    RSD(%) 1.23 0.65 1.45 2.67 1.95 2.14 3.55
    相对误差(%) 4.14 1.43 1.25 1.60 3.01 3.36 3.57
    注:带“*”的数据单位为%,其余数据单位均为μg/g。
    下载: 导出CSV

    表 6  钨钼矿石中钨钼等元素三种测定方法综合对比

    Table 6.  Comprehensive comparison of the three methods for determination of W and Mo in tungsten-molybdenum ore.

    对比项目 标准方法 文献[13]方法 文献[11]方法 本文方法
    测试元素 单元素W或Mo W、Mo、B、S、P W W、Mo、Cu、Pb、Zn、Ca、Fe
    称样量 0.2~0.5g 0.5g 0.1g 0.1g
    实验器皿 铁坩埚或
    刚玉坩埚
    镍坩埚 聚四氟乙烯加压消解管 瓷坩埚
    消解试剂 4g过氧化钠 2.5g氢氧化钠+
    0.5g过氧化钠
    10mL氢氟酸+5mL硝酸
    引入杂质 钠离子 钠离子(使用离子交换树脂去除)
    测试方法 分光光度法 ICP-OES ICP-OES ICP-OES
    操作时长 4.5h 5.0h 30h 1.5h
    下载: 导出CSV

    表 7  实际样品不同方法分析结果对比

    Table 7.  Comparison of analytical results determined by different methods for actual samples.

    待测元素 1#样品测定值(%) 2#样品测定值(%)
    本文方法 其他方法 本文方法 其他方法
    W / / / /
    Mo 0.16 0.1619 26.69 26.8619
    Cu 18.59 18.44 8.65 8.53
    Pb 0.073 0.072 0.126 0.128
    Zn 0.51 0.53 0.16 0.17
    CaO 9.98 10.2 0.92 0.91
    TFe2O3 26.68 26.47 19.36 19.15
    注:“/”表示低于检出限。
    下载: 导出CSV
  • [1]

    Wang X, Qin W Q, Jiao F, et al. Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: A case study of Luoyang Yulu Mining Company[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 2318−2338.

    [2]

    Hussain A, Noor H Y, Afsar U, et al. Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration[J]. Separation and Purification Technology, 2022, 295: 121318. doi: 10.1016/j.seppur.2022.121318

    [3]

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189−1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    [4]

    王川, 郭义蓉. 熔融制样-X射线荧光光谱法测定锡矿和钨钼矿中16种组分[J]. 理化检验(化学分册), 2020, 56(7): 765−770.

    Wang C, Guo Y R. XRFS determination of 16 components in tin ore and tungsten molybdenum ore with fused sample preparation[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 765−770.

    [5]

    王风, 程相恩, 陈传伟. 电感耦合等离子体原子发射光谱法测定钼矿石中的钨钼[J]. 冶金分析, 2014, 34(6): 53−56. doi: 10.13228/j.issn.1000-7571.2014.06.011

    Wang F, Cheng X E, Chen C W. Determination of tungsten and molybdenum in molybdenum ores by inductively coupled plasma-atomic emission spectrometry[J]. Metallurgical Analysis, 2014, 34(6): 53−56. doi: 10.13228/j.issn.1000-7571.2014.06.011

    [6]

    李纯浪, 白家源, 杨绍辉, 等. ICP-OES连续测定硫化矿石中锌、铜、锡、铁、硫、铅、钨、钼、银、镉十种元素[J]. 世界有色金属, 2019(20): 293−295. doi: 10.3969/j.issn.1002-5065.2019.20.169

    Li C L, Bai J Y, Yang S H, et al. Continuous determination of zinc, copper, tin, iron, sulfur, lead, tungsten, molybdenum, silver and cadmium in sulfide ores by ICP-OES[J]. World Nonferrous Metals, 2019(20): 293−295. doi: 10.3969/j.issn.1002-5065.2019.20.169

    [7]

    黄朝文, 莫凯敏. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中的钨钼[J]. 当代化工研究, 2023(11): 76−78. doi: 10.20087/j.cnki.1672-8114.2023.11.023

    Huang C W, Mo K M. Determination of tungsten and molybdenum in tungsten ore and molybdenum ores by inductively coupled plasma-mass spectrometry with alkali fusion[J]. Modern Chemical Research, 2023(11): 76−78. doi: 10.20087/j.cnki.1672-8114.2023.11.023

    [8]

    杨小莉, 杨小丽, 李小丹, 等. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J]. 岩矿测试, 2014, 33(3): 321−326. doi: 10.3969/j.issn.0254-5357.2014.03.006

    Yang X L, Yang X L, Li X D, et al. Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 321−326. doi: 10.3969/j.issn.0254-5357.2014.03.006

    [9]

    王蕾, 张保科, 马生凤, 等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661−664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    Wang L, Zhang B K, Ma S F, et al. Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661−664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    [10]

    李延超, 梁静, 李来平, 等. 电感耦合等离子体发射光谱法同时测定钨锡矿中6种元素[J]. 中国钨业, 2019, 34(4): 70−74. doi: 10.3969/j.issn.1009-0622.2019.04.013

    Li Y C, Liang J, Li L P, et al. Simultaneous determination of 6 elements in tungsten and tin ores by inductively coupled plasma emission spectrometry[J]. China Tungsten Industry, 2019, 34(4): 70−74. doi: 10.3969/j.issn.1009-0622.2019.04.013

    [11]

    鲁忍. 微波消解-电感耦合等离子体原子发射光谱法测定钨矿石中钨[J]. 化学分析计量, 2020, 29(6): 105-108.

    Lu R. Determination of tungsten in tungsten ore by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chemical Analysis and Meterage, 2019, 29(6): 105−108.

    [12]

    颜忠国, 杨洁懿, 刘文艳. 示波极谱法钨钼连续测定[J]. 冶金与材料, 2021, 41(6): 57, 59.

    Yan Z G, Yang J Y, Liu W Y. Continuous determination of tungsten and molybdenum by oscillopolarography[J]. Metallurgy and Materials, 2021, 41(6): 57, 59.

    [13]

    姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030−1034.

    Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten and molybdenum ore by inductively coupled plasma atomic emission spectrometry combined with alkali fusion separation using ion exchange resin[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1030−1034.

    [14]

    王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040

    Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma-optical emission spectrometry with Lithium metaborate fusion[J]. Rock and Mineral Testing, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040

    [15]

    秦海娜, 尚世超, 倪高波, 等. 硫酸磷酸溶解-电感耦合等离子体发射光谱法测定钨矿石中的钨钼铜[J]. 分析仪器, 2023(2): 57−61. doi: 10.3969/j.issn.1001-232x.2023.02.010

    Qin H N, Shang S C, Ni G B, et al. Determination of tungsten, molybdenum and copper in tungsten ore by sulfuric acid and phosphoric acid solution-inductively coupled plasma emission spectrometry[J]. Analytical Instrumention, 2023(2): 57−61. doi: 10.3969/j.issn.1001-232x.2023.02.010

    [16]

    党铭铭, 杨萍, 雷勇, 等. 电感耦合等离子体发射光谱技术测定多金属伴生矿中钨钼铋两种消解方法的对比[J]. 岩矿测试, 2021, 40(4): 603−611. doi: 10.15898/j.cnki.11-2131/td.202103050032

    Dang M M, Yang P, Lei Y, et al. Comparison of two different sample digestion methods for determination of tungsten, molybdenum, and bismuth in polymetallic ore by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 603−611. doi: 10.15898/j.cnki.11-2131/td.202103050032

    [17]

    杨萍, 党铭铭, 郭永艳, 等. 五酸消解-电感耦合等离子体原子发射光谱法测定矽卡岩型多金属钨矿中钨、钼、铋的含量[J]. 理化检验(化学分册), 2022, 58(7): 773−776.

    Yang P, Dang M M, Guo Y Y, et al. Determination of W, Mo and Bi in skarn-type polymetallic tungsten ore by ICP-AES with penta acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 773−776.

    [18]

    曹俊飞, 王婷, 李剑, 等. 微波消解-电感耦合等离子体质谱法测定钨钼矿中多种微量稀土元素[J]. 岩矿测试, 2023, 42(4): 861−873. doi: 10.15898/j.ykcs.202210190200

    Cao J F, Wang T, Li J, et al. Determination of trace rare earth elements content in tungsten-molybdenum ore by inductively coupled plasma mass spectrometry with microwave digestion system[J]. Rock and Mineral Analysis, 2023, 42(4): 861−873. doi: 10.15898/j.ykcs.202210190200

    [19]

    赵志飞, 储溱, 向兆, 等. 电感耦合等离子体质谱法同时测定矿石中钨钼铜[J]. 冶金分析, 2012, 32(3): 20−24. doi: 10.3969/j.issn.1000-7571.2012.03.004

    Zhao Z F, Chu Q, Xiang Z, et al. Simultaneous determination of tungsten, molybdenum and copper in ores by inductively coupled plasma-mass spectrometry[J]. Metallurgical Analysis, 2012, 32(3): 20−24. doi: 10.3969/j.issn.1000-7571.2012.03.004

    [20]

    杨林, 邹国庆, 周武权, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定钨锡矿石中钨锡钼铜铅锌硫砷[J/OL]. 中国无机分析化学. [2023-07-25].https://kns.cnki.net/kcms2/detail/11.6005.o6.20230724.1021.002.html.

    Yang L, Zou G G, Zhou W Q, et al. Determination of W, Sn, Mo, Cu, Pb Zn, S, As in Tungsten-tin ore by inductively coupled plasma optical emission Spectrometry with alkali fusion[J/OL]. Inorganic Analytical Chemistry in China. [2023-07-25].https://kns.cnki.net/kcms2/detail/11.6005.o6.20230724.1021.002.html.

    [21]

    张征莲, 施意华, 唐碧玉, 等. 电感耦合等离子体质谱(ICP-MS)法测定炭质页岩中的钨钼钪[J]. 中国无机分析化学, 2021, 11(4): 39−44. doi: 10.3969/j.issn.2095-1035.2021.04.008

    Zhang Z L, Shi Y H, Tang B Y, et al. Determination of tungsten, molybdenum and scandium in carbon shale by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(4): 39−44. doi: 10.3969/j.issn.2095-1035.2021.04.008

    [22]

    张邦胜, 肖连生, 张启修. 沉淀法分离钨钼的研究进展[J]. 江西有色金属, 2001(2): 26−29. doi: 10.3969/j.issn.1674-9669.2001.02.008

    Zhang B S, Xiao L S, Zhang Q X. Progress in W/Mo separation by precipitation[J]. Jiangxi Nonferrous Metals, 2001(2): 26−29. doi: 10.3969/j.issn.1674-9669.2001.02.008

    [23]

    张聪, 王清良, 周龙, 等. 难溶含铀碱渣氧化焙烧酸浸试验研究[J]. 矿冶工程, 2022, 42(4): 116−119.

    Zhang C, Wang Q L, Zhou L, et al. Experimental study on treating refractory alkaline uranium-containing residue by oxidative roasting and acid leaching[J]. Mining and Metallurgical Engineering, 2022, 42(4): 116−119.

    [24]

    Zhu Y, Guo B, Zuo W R, et al. Effect of sintering temperature on structure and properties of porous ceramics from tungsten ore tailings[J]. Materials Chemistry and Physics, 2022, 287: 126315. doi: 10.1016/j.matchemphys.2022.126315

    [25]

    杨炳红, 符招弟, 傅饶, 等. 复杂钼矿石中钼的化学物相分析[J]. 冶金分析, 2020, 40(4): 23−28. doi: 10.13228/j.boyuan.issn1000-7571.010828

    Yang B H, Fu Z D, Fu R, et al. Chemical phase analysis of molybdenum in complex molybdenum ore[J]. Metallurgical Analysis, 2020, 40(4): 23−28. doi: 10.13228/j.boyuan.issn1000-7571.010828

    [26]

    韩跃新, 靳建平, 李慧, 等. 基于XRD和SEM的含碳微细粒金矿氧化焙烧机理研究[J]. 光谱学与光谱分析, 2018, 38(5): 1592−1598.

    Han Y X, Jin J P, Li H, et al. Study on the mechanism of oxidation roasting of carbonaceous fine-grained gold ores based on XRD and SEM[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1592−1598.

    [27]

    王鑫尧, 杨洪英, 康建, 等. 复杂钼钨矿石溶浸试验[J]. 有色金属(冶炼部分), 2023(5): 75−80.

    Wang X Y, Yang H Y, Kan J, et al. Leaching experiment of low-grade complex molybdenum tungsten ore[J]. Nonferrous Metals (Extractive Metallurgy), 2023(5): 75−80.

    [28]

    姜丽帅, 韩百岁, 冷红光, 等. 辉钼矿湿法冶金研究进展[J]. 中国冶金, 2023, 33(2): 22−30,37. doi: 10.13228/j.boyuan.issn1006-9356.20220702

    Jiang L S, Han B S, Leng H G, et al. Research progress of hydrometallurgy of molybdenite[J]. China Metallurgy, 2023, 33(2): 22−30,37. doi: 10.13228/j.boyuan.issn1006-9356.20220702

    [29]

    Liu R Z, Zhao Z W, Li Y L. Acid leaching-extraction-circulation process based on Mo(Ⅵ) coordination with H3PO4 to efficiently extract molybdenum from different components of molybdenum calcine[J]. Separation and Purification Technology, 2023, 322: 124269. doi: 10.1016/j.seppur.2023.124269

    [30]

    Xiao X B, Zhang G Q, Guan W J, et al. A novel method for preparing tungsten and molybdenum peroxy complex solution and its application to tungsten-molybdenum separation[J]. Hydrometallurgy, 2023, 215: 105974. doi: 10.1016/j.hydromet.2022.105974

    [31]

    Fu J H, Han H S, Wei Z, et al. Selective separation of scheelite from calcite using tartaric acid and Pb-BHA complexes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622: 126657. doi: 10.1016/j.colsurfa.2021.126657

  • 加载中

(4)

(7)

计量
  • 文章访问数:  968
  • PDF下载数:  93
  • 施引文献:  0
出版历程
收稿日期:  2023-07-31
修回日期:  2023-08-21
录用日期:  2023-09-12
刊出日期:  2023-10-31

目录