中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

湿法球磨制备超细地质样品及取样量探究

董学林, 向兆, 贾正勋, 张楠, 童铄云, 熊玉祥. 湿法球磨制备超细地质样品及取样量探究[J]. 岩矿测试, 2023, 42(5): 1052-1061. doi: 10.15898/j.ykcs.202307310110
引用本文: 董学林, 向兆, 贾正勋, 张楠, 童铄云, 熊玉祥. 湿法球磨制备超细地质样品及取样量探究[J]. 岩矿测试, 2023, 42(5): 1052-1061. doi: 10.15898/j.ykcs.202307310110
DONG Xuelin, XIANG Zhao, JIA Zhengxun, ZHANG Nan, TONG Shuoyun, XIONG Yuxiang. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(5): 1052-1061. doi: 10.15898/j.ykcs.202307310110
Citation: DONG Xuelin, XIANG Zhao, JIA Zhengxun, ZHANG Nan, TONG Shuoyun, XIONG Yuxiang. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(5): 1052-1061. doi: 10.15898/j.ykcs.202307310110

湿法球磨制备超细地质样品及取样量探究

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题 “战略性矿产现场快速分析装备、技术和应用示范”;湖北省地质局科技计划项目(KJ2021-17)
详细信息
    作者简介: 董学林,博士,正高级工程师,从事岩矿分析和环境分析工作。E-mail:dongxlin109@126.com
    通讯作者: 熊玉祥,正高级工程师,从事岩矿分析及管理工作。E-mail:984694462@qq.com
  • 中图分类号: O657.63

Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples

More Information
  • 当前实验室制备的地质样品存在大颗粒微粒,影响了样品代表性和分析结果的准确度,制备超细样品是有效的解决办法。本文建立了水为助磨剂,湿法球磨制备超细地质样品的方法。结果表明,氧化锆或碳化钨材质的球磨罐会污染样品中锆、钨及钴等微量元素,而玛瑙材质的球磨罐污染样品的风险较小;采用玛瑙材质的球磨罐,20g样品,液固比为1∶1,磨球配置为大8颗、中16颗、小48颗,球磨时间30min,运用该方法对四种代表性样品(岩石、土壤、沉积物及稀土矿石)进行球磨,粒度检测结果表明,球磨后的样品粒度均达到1000目;对60件未知基质类型的样品进行湿法球磨后,D50均小于5μm,D90均小于19μm,表明该方法具有一定的适用性;微观形貌研究表明,球磨制备的样品,大颗粒微粒显著减少,颗粒分布更加均匀;对球磨后的岩石标准物质(GBW07104)进行了取样量试验,所检测的46种元素结果进行统计,除Mo、Cd、Cr等元素外,取样量可减少至2mg;制备的超细样品与电感耦合等离子体质谱(ICP-MS)技术联用,可发挥ICP-MS高灵敏度的效能,同时提高检测效率、减少环境污染。

  • 加载中
  • 图 1  球磨制备样品XRD图谱

    Figure 1. 

    图 2  干法、湿法球磨对样品粒度和比表面积的影响

    Figure 2. 

    图 3  (a)不同助磨剂对样品粒度和比表面积的影响;(b)助磨剂加入量的影响

    Figure 3. 

    图 4  球磨条件的优化

    Figure 4. 

    图 5  球磨时间及样品粒径

    Figure 5. 

    图 6  四件样品不同粒径对比

    Figure 6. 

    图 7  制备的60件超细样品粒度统计

    Figure 7. 

    图 8  样品加工前后SEM图

    Figure 8. 

    表 1  不同材质罐体制备超细样品粒径分布及W、Zr、Co元素含量(n=3)

    Table 1.  Particle size distribution and W, Zr, Co content of ultrafine samples prepared by tanks with different materials (n=3).

    样品编号 球磨罐材质 粒径(μm) 元素含量(μg/g)
    D90 D50 D10 W Zr Co
    1 未球磨处理 72.58 6.38 0.85 0.45 99 13.2
    2 玛瑙罐 20.36 4.86 0.84 0.47 96 13.8
    3 氧化锆罐 12.21 2.95 0.71 1.50 10401 14.5
    4 碳化钨罐 7.78 1.64 0.15 4113 122 404
    下载: 导出CSV
  • [1]

    王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090−1104.

    Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulleti of China, 2010, 29(7): 1090−1104.

    [2]

    涂家润, 卢宜冠, 孙凯, 等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194

    Tu J R, Lu Y G, Sun K, et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194

    [3]

    闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400−405. doi: 10.3969/j.issn.0254-5357.2011.04.004

    Yan B, Zhu X K, Chen Y L. Effects of sample size on Cu and Zn isotope ratio measurements[J]. Rock and Mineral Analysis, 2011, 30(4): 400−405. doi: 10.3969/j.issn.0254-5357.2011.04.004

    [4]

    王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696−703.

    Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696−703.

    [5]

    程志中, 刘妹, 黄宏库, 等. 镍矿石和镍精矿标准物质研制[J]. 岩矿测试, 2013, 32(4): 86-93. doi: 10.3969/j.issn.0254-5357.2013.04.009

    Cheng Z Z, Liu M, Huang H K, et al. Preparation and certification of nickel ore and nickel concentrate reference materials[J]. Rock and Mineral Analysis, 2013, 32(4): 600−607. doi: 10.3969/j.issn.0254-5357.2013.04.009

    [6]

    王晓红, 何红蓼, 王毅民, 等. 超细样品的地质分析应用[J]. 分析测试学报, 2010, 29(6): 578−583.

    Wang X H, He H L, Wang Y M, et al. Geoanalytical techniques using ultra-fine samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 578−583.

    [7]

    刘青山, 靳宏, 臧世阳, 等. 粒度不均匀铬矿石取样代表性的研究[J]. 岩矿测试, 2012, 31(6): 997−999. doi: 10.15898/j.cnki.11-2131/td.2012.06.015

    Liu Q S, Jin H, Zang S Y, et al. A study on the representativeness of sampling for non-uniform particle size chrome ore[J]. Rock and Mineral Analysis, 2012, 31(6): 997−999. doi: 10.15898/j.cnki.11-2131/td.2012.06.015

    [8]

    Flores É M M, Barin J S, Mesko M F, et al. Sample preparation techniques based on combustion reactions in closed vessels—A brief overview and recent applications[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62: 1051−1064. doi: 10.1016/j.sab.2007.04.018

    [9]

    熊英, 陈文科, 田萍, 等. 含粗粒金矿样品采集加工与分析研究进展[J]. 岩矿测试, 2015, 34(1): 12−18. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

    Xiong Y , Chen W K , Tian P, et al. Review on collection, processing and analysis of coarse gold-containing ore samples[J]. Rock and Mineral Analysis, 2015, 34(1): 12-18. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

    [10]

    Agatemor C, Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: A review[J]. Analytica Chimica Acta, 2011, 706(1): 66−83. doi: 10.1016/j.aca.2011.08.027

    [11]

    Linge K L. Trace element determination by ICP-AES and ICP-MS developments and applications reported during 2006 and 2007[J]. Geostandards and Geoanalytical Research, 2008, 32: 16.

    [12]

    Guerrero M M L, Alonso E V, García de Torres A, et al. Simultaneous determination of traces of Pt, Pd, Os, Ir, Rh, Ag and Au metals by magnetic SPE-ICP-OES and in situ chemical vapour generation[J]. Journal of Analytical Atomic Spectrometry, 2017, 32: 2281−2291. doi: 10.1039/C7JA00271H

    [13]

    Sébastien A, Michel V, Mireille P, et al. A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples[J]. Geostandards and Geoanalytical Research, 2007, 24: 19−31.

    [14]

    Eggins S M, Woodhead J D, Kinsley L P J, et al. A simple method for the precise determination of ≥40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J]. Chemical Geology, 1997, 134: 311−326. doi: 10.1016/S0009-2541(96)00100-3

    [15]

    王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68−76.

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68−76.

    [16]

    郑存江, 刘清辉, 胡勇平, 等. 富钴结壳超细标准物质的加工制备[J]. 岩矿测试, 2010, 29(3): 301−304.

    Zheng C J, Liu Q H, Hu Y P, et al. Processing and preparation of ultra-fine Co-rich crust reference materials[J]. Rock and Mineral Analysis, 2010, 29(3): 301−304.

    [17]

    赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 687−694. doi: 10.15898/j.cnki.11-2131/td.201711230185

    Zhao X L, Li Z W, Wang Y, et al. Preparation and certification of niobium-tantalum concentrate reference materials[J]. Rock and Mineral Analysis, 2018, 37(6): 687−694. doi: 10.15898/j.cnki.11-2131/td.201711230185

    [18]

    Balcerzak M. Sample digestion methods for the determination of traces of precious metals by spectrometric techniques[J]. Analytical Sciences, 2002, 18: 737−750. doi: 10.2116/analsci.18.737

    [19]

    孙德忠, 何红蓼. 封闭酸溶-等离子体质谱法分析超细粒度地质样品中42个元素[J]. 岩矿测试, 2007, 26(1): 21−25. doi: 10.3969/j.issn.0254-5357.2007.01.006

    Sun D Z, He H L. Determination of 42 elements in ultra-fine geological samples by inductively coupled plasma-mass spectrometry with pressurized acid digestion[J]. Rock and Mineral Analysis, 2007, 26(1): 21−25. doi: 10.3969/j.issn.0254-5357.2007.01.006

    [20]

    王毅民, 陈幼平. 近30年来我国地质分析重要成果评介[J]. 地质论评, 2008, 54(5): 653−669. doi: 10.3321/j.issn:0371-5736.2008.05.010

    Wang Y M, Chen Y P. Review on important achievements of geoanalysis in last 30 years of Cnina[J]. Geological Review, 2008, 54(5): 653−669. doi: 10.3321/j.issn:0371-5736.2008.05.010

    [21]

    杜高翔, 王海荣, 柴红勇, 等. 粉体制备中助磨剂的应用研究现状[J]. 化工矿物与加工, 2004(10): 6−9. doi: 10.3969/j.issn.1008-7524.2004.10.002

    Du G X, Wang H R, Chai H Y, et al. Study status of application of grinding aids in the preparation of powders[J]. Industrial Minerals & Processing, 2004(10): 6−9. doi: 10.3969/j.issn.1008-7524.2004.10.002

    [22]

    高伟, 王泽红, 毛勇. 助磨剂在石英粉磨中的应用研究现状及发展趋势[J]. 金属矿山, 2019, 48(9): 22−27. doi: 10.19614/j.cnki.jsks.201909004

    Gao W, Wang Z H, Mao Y. Research status and development trend of grinding aid in quartz grinding[J]. Metal Mine, 2019, 48(9): 22−27. doi: 10.19614/j.cnki.jsks.201909004

    [23]

    He M, Forssberg E. Rheological behaviors in wet ultrafine grinding of limestone[J]. Minerals and Metallurgical Processing, 2007, 24: 19−29.

    [24]

    Hasegawa M, Kimata M, Shimane M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114: 145−151. doi: 10.1016/S0032-5910(00)00290-4

    [25]

    Wang X, Li G, Zhang Q, et al. Determination of major/ minor and trace elements in seamount phosphorite by XRF spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28: 81−88. doi: 10.1111/j.1751-908X.2004.tb01044.x

    [26]

    Wang Y, Gao Y, Wang X, et al. Investigations into the preparation of ultra-fine particle size geochemical reference materials[J]. Geostandards and Geoanalytical Research, 2007, 28: 113−121.

    [27]

    王焰, 钟宏, 曹勇华, 等. 我国铂族元素, 钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202

    Wang Y, Zhong H, Cao Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202

    [28]

    周成胶, 张刚阳, 张丁川. 铼金属矿床类型, 元素赋存形式和富集机制[J]. 地质科技情报, 2021, 40(4): 115−130.

    Zhou C J, Zhang G Y, Zhang D C. Types, element occurrence forms and enrichment mechanisms of rhemium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115−130.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1282
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2023-07-31
修回日期:  2023-08-27
录用日期:  2023-09-08
刊出日期:  2023-10-31

目录